101
|
Li JY, Li YH, Qi MY, Lin Q, Tang ZR, Xu YJ. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01567] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Qiong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
102
|
Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: Insights into the role of Co2+ and cocatalyst. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
103
|
Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem Rev 2020; 120:12175-12216. [DOI: 10.1021/acs.chemrev.9b00840] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
| | - Junfa Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
104
|
Zeng C, Zeng Q, Dai C, Hu Y. An oriented built-in electric field induced by cobalt surface gradient diffused doping in MgIn2S4 for enhanced photocatalytic CH4 evolution. Dalton Trans 2020; 49:9213-9217. [DOI: 10.1039/d0dt01686a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co gradient doping in MgIn2S4 creates an oriented built-in electric field for efficiently extracting carriers from the inside to the surface.
Collapse
Affiliation(s)
- Chao Zeng
- Institute of Advanced Materials (IAM)
- Jiangxi Normal University
- Nanchang
- P. R. China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
| | - Qing Zeng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| |
Collapse
|
105
|
Li XB, Xin ZK, Xia SG, Gao XY, Tung CH, Wu LZ. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem Soc Rev 2020; 49:9028-9056. [DOI: 10.1039/d0cs00930j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The protocol of artificial photosynthesis using semiconductor nanocrystals shines light on green, facile and low-cost small molecule activation to produce solar fuels and value-added chemicals.
Collapse
Affiliation(s)
- Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhi-Kun Xin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Shu-Guang Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiao-Ya Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
106
|
Wei C, Hou H, Wang E, Lu M. Preparation of a Series of Pd@UIO-66 by a Double-Solvent Method and Its Catalytic Performance for Toluene Oxidation. MATERIALS 2019; 13:ma13010088. [PMID: 31877997 PMCID: PMC6981644 DOI: 10.3390/ma13010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/04/2022]
Abstract
This paper reports on the preparation, characterization, and catalytic properties of the Pd@UIO-66 for toluene oxidation. The samples are prepared by the double-solvent method to form catalysts with large specific surface area, highly dispersed Pd0 (Elemental palladium) and abundant adsorbed oxygen, which are characterized by X-ray Photoelectron Spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and Transmission Electron Microscopy (TEM). The results show that as the Pd content increases, the adsorbed oxygen content further increases, but at the same time Pd0 will agglomerate and lose some active sites, which will affect its catalytic performance. While 0.2%Pd@UIO-66 has the highest concentration of Pd0, the result shows it has the best catalytic activity and the T90 temperature is 210 °C.
Collapse
Affiliation(s)
| | | | | | - Min Lu
- Correspondence: ; Tel.: +86-1357-851-1861
| |
Collapse
|
107
|
Masood H, Toe CY, Teoh WY, Sethu V, Amal R. Machine Learning for Accelerated Discovery of Solar Photocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02531] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hassan Masood
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cui Ying Toe
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wey Yang Teoh
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vidhyasaharan Sethu
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
108
|
Yang J, Hao J, Xu S, Wang Q, Dai J, Zhang A, Pang X. InVO 4/β-AgVO 3 Nanocomposite as a Direct Z-Scheme Photocatalyst toward Efficient and Selective Visible-Light-Driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32025-32037. [PMID: 31398285 DOI: 10.1021/acsami.9b10758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic CO2 reduction to solar fuel is a promising route to alleviate the ever-growing energy crisis and global warming. Herein, to enhance photoconversion efficiency of CO2 reduction, a series of direct Z-scheme composites consisting of β-AgVO3 nanoribbons and InVO4 nanoparticles (InVO4/β-AgVO3) are prepared via a facile hydrothermal method and subsequent in situ growth process. The prepared InVO4/β-AgVO3 composites exhibit enhanced photocatalytic activity for reduction of CO2 to CO under visible-light illumination. A CO evolution rate of 12.61 μmol·g-1·h-1 is achieved over the optimized 20% In-Ag without any cocatalyst or sacrificial agent, which is 11 times larger than that yielded by pure InVO4 (1.12 μmol·g-1·h-1). Moreover, the CO selectivity is more than 93% over H2 production from the side reaction of H2O reduction. Significantly, based on the results of electron spin resonance (ESR) and in situ irradiated XPS tests, it is proposed that the synthesized InVO4/β-AgVO3 catalysts comply with the direct Z-scheme transfer mechanism. Significantly improved photocatalytic activities for selective CO2 reduction could be primarily ascribed to effective separation of photoinduced electron-hole pairs and enhanced reducibility of photoelectrons at the conduction band of InVO4. This work provides a new insight for constructing highly efficient photocatalytic CO2 reduction systems toward solar fuel generation.
Collapse
Affiliation(s)
- Juan Yang
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China
| | - Jingyi Hao
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China
| | - Siyu Xu
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China
| | - Qi Wang
- School of Environmental Science and Engineering , Zhejiang Gongshang University , Hangzhou 310018 , P.R. China
| | - Jun Dai
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China
| | - Anchao Zhang
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China
| | - Xinchang Pang
- School of Materials Science and Engineering , Zhengzhou University , Zhengzhou 450001 , P.R. China
| |
Collapse
|
109
|
Iyemperumal SK, Fenton TG, Gillingham SL, Carl AD, Grimm RL, Li G, Deskins NA. The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. J Chem Phys 2019. [DOI: 10.1063/1.5110300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Satish Kumar Iyemperumal
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Thomas G. Fenton
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | - Alexander D. Carl
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Ronald L. Grimm
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Gonghu Li
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - N. Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
110
|
Zhang HX, Hong QL, Li J, Wang F, Huang X, Chen S, Tu W, Yu D, Xu R, Zhou T, Zhang J. Isolated Square-Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO 2 to CO. Angew Chem Int Ed Engl 2019; 58:11752-11756. [PMID: 31232501 DOI: 10.1002/anie.201905869] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Indexed: 11/11/2022]
Abstract
Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2 . Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady-state and time-resolved fluorescence spectra show these Cu sites promote the separation of electron-hole pairs and electron transfer. As a result, the cage achieves solar-driven reduction of CO2 to CO with an evolution rate of 3334 μmol g-1 h-1 and a high selectivity of 82.6 %.
Collapse
Affiliation(s)
- Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jing Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry Sun Yat-Sen University, Guangzhou, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xinsong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Wenguang Tu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, Singapore
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry Sun Yat-Sen University, Guangzhou, China
| | - Rong Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, Singapore
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
111
|
Zhang H, Hong Q, Li J, Wang F, Huang X, Chen S, Tu W, Yu D, Xu R, Zhou T, Zhang J. Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO
2
to CO. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905869] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hai‐Xia Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Qin‐Long Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jing Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province School of Chemistry Sun Yat-Sen University Guangzhou China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xinsong Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Shumei Chen
- College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Wenguang Tu
- School of Chemical & Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore Singapore
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province School of Chemistry Sun Yat-Sen University Guangzhou China
| | - Rong Xu
- School of Chemical & Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore Singapore
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
112
|
Muraoka K, Vequizo JJM, Kuriki R, Yamakata A, Uchiyama T, Lu D, Uchimoto Y, Ishitani O, Maeda K. Oxygen‐Doped Ta
3
N
5
Nanoparticles for Enhanced Z‐Scheme Carbon Dioxide Reduction with a Binuclear Ruthenium(II) Complex under Visible Light. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kanemichi Muraoka
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Japan Society for the Promotion of Science Kojimachi Business Centre Building, 5–3-1, Kojimachi, Chiyoda-ku Tokyo 102-0083 Japan
| | - Junie Jhon M. Vequizo
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Ryo Kuriki
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Japan Society for the Promotion of Science Kojimachi Business Centre Building, 5–3-1, Kojimachi, Chiyoda-ku Tokyo 102-0083 Japan
| | - Akira Yamakata
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies Kyoto University Nihonmatsu-cho, Yoshida, Sakyo-ku Kyoto 606-8317 Japan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies Kyoto University Nihonmatsu-cho, Yoshida, Sakyo-ku Kyoto 606-8317 Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|