101
|
Gorka AP, Nani RR, Schnermann MJ. Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery. Acc Chem Res 2018; 51:3226-3235. [PMID: 30418020 DOI: 10.1021/acs.accounts.8b00384] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical approaches that visualize and manipulate biological processes have transformed modern biomedical research. An enduring challenge is to translate these powerful methods into increasingly complex physiological settings. Longer wavelengths, typically in the near-infrared (NIR) range (∼650-900 nm), can enable advances in both fundamental and clinical settings; however, suitable probe molecules are needed. The pentamethine and heptamethine cyanines, led by prototypes Cy5 and Cy7, are among the most useful compounds for fluorescence-based applications, finding broad use in a range of contexts. The defining chemical feature of these molecules, and the key chromophoric element, is an odd-numbered polymethine that links two nitrogen atoms. Not only a light-harvesting functional group, the cyanine chromophore is subject to thermal and photochemical reactions that dramatically alter many properties of these molecules. This Account describes our recent studies to define and use intrinsic cyanine chromophore reactivity. The hypothesis driving this research is that novel chemistries that manipulate the cyanine chromophore can be used to address challenging problems in the areas of imaging and drug delivery. We first review reaction discovery efforts that seek to address two limitations of long-wavelength fluorophores: undesired thiol reactivity and modest fluorescence quantum yield. Heptamethine cyanines with an O-alkyl substituent at the central C4' carbon were prepared through a novel N- to O-transposition reaction. Unlike commonly used C4'-phenol variants, this new class of fluorophores is resistant to thiol modification and exhibits improved in vivo imaging properties when used as antibody tags. We have also developed a chemical strategy to enhance the quantum yield of far-red pentamethine cyanines. Using a synthetic strategy involving a cross metathesis/tetracyclization sequence, this approach conformationally restrains the pentamethine cyanine scaffold. The resulting molecules exhibit enhanced quantum yield (ΦF = 0.69 vs ΦF = 0.15). Furthermore, conformational restraint improves interconversion between reduced hydrocyanine and intact cyanine forms, which enables super resolution microscopy. This Account then highlights efforts to use cyanine photochemical reactivity for NIR photocaging. Our approach involves the deliberate use of cyanine photooxidation, a reaction previously only associated with photodegradation. The uncaging reaction sequence is initiated by photooxidative chromophore cleavage (using wavelengths of up to 780 nm), which prompts a C-N bond hydrolysis/cyclization sequence resulting in phenol liberation. This approach has been applied to generate the first NIR-activated antibody-drug conjugates. Tumor uptake can be monitored in vivo using NIR fluorescence, prior to uncaging with an external irradiation source. This NIR uncaging strategy can slow tumor progression and increase survival in a MDA-MB-468- luc mouse model. Broadly, the vantage point of cyanine reactivity is providing novel probe molecules with auspicious features for use in complex imaging and drug delivery settings.
Collapse
Affiliation(s)
- Alexander P. Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 20850, United States
| |
Collapse
|
102
|
Borg RE, Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem Photobiol 2018; 94:1175-1209. [PMID: 29953628 PMCID: PMC6252265 DOI: 10.1111/php.12967] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly growing field which offers high spatial resolution and high contrast for deep-tissue imaging in vivo. PAI is nonionizing and noninvasive and combines the optical resolution of fluorescence imaging with the spatial resolution of ultrasound imaging. In particular, the development of exogenous PA contrast agents has gained significant momentum of late with a vastly expanding complexity of dye materials under investigation ranging from small molecules to macromolecular proteins, polymeric and inorganic nanoparticles. The goal of this review is to survey the current state of the art in molecular photoacoustic contrast agents (MPACs) for applications in biomedical imaging. The fundamental design principles of MPACs are presented and a review of prior reports spanning from early-to-current literature is put forth.
Collapse
Affiliation(s)
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
| |
Collapse
|
103
|
Ghosh G, Belh SJ, Chiemezie C, Walalawela N, Ghogare AA, Vignoni M, Thomas AH, McFarland SA, Greer EM, Greer A. S,S-Chiral Linker Induced U Shape with a Syn-facial Sensitizer and Photocleavable Ethene Group. Photochem Photobiol 2018; 95:293-305. [PMID: 30113068 DOI: 10.1111/php.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
There is a major need for light-activated materials for the release of sensitizers and drugs. Considering the success of chiral columns for the separation of enantiomer drugs, we synthesized an S,S-chiral linker system covalently attached to silica with a sensitizer ethene near the silica surface. First, the silica surface was modified to be aromatic rich, by replacing 70% of the surface groups with (3-phenoxypropyl)silane. We then synthesized a 3-component conjugate [chlorin sensitizer, S,S-chiral cyclohexane and ethene building blocks] in 5 steps with a 13% yield, and covalently bound the conjugate to the (3-phenoxypropyl)silane-coated silica surface. We hypothesized that the chiral linker would increase exposure of the ethene site for enhanced 1 O2 -based sensitizer release. However, the chiral linker caused the sensitizer conjugate to adopt a U shape due to favored 1,2-diaxial substituent orientation; resulting in a reduced efficiency of surface loading. Further accentuating the U shape was π-π stacking between the (3-phenoxypropyl)silane and sensitizer. Semiempirical calculations and singlet oxygen luminescence data provided deeper insight into the sensitizer's orientation and release. This study has lead to insight on modifications of surfaces for drug photorelease and can help lead to the development of miniaturized photodynamic devices.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Sarah J Belh
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Callistus Chiemezie
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ashwini A Ghogare
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Mariana Vignoni
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC
| | - Edyta M Greer
- Department of Natural Sciences, Baruch College of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
104
|
Fu Y, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib Ther 2018; 1:33-43. [PMID: 30294716 PMCID: PMC6161754 DOI: 10.1093/abt/tby007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Currently, four antibody-drug conjugates (ADCs) are approved by the Food and Drug Administration or the European Medicine Agency to treat cancer patients. More than 60 ADCs are in clinical development for cancer therapy. More than 60% of ADCs in clinical trials employ microtubule inhibitors as their payloads. A better understanding of payloads other than microtubule inhibitors, especially DNA-damaging agents, is important for further development of ADCs. In this review, we highlight an emerging trend of using DNA-damaging agents as payloads for ADCs. This review summarizes recent advances in our understanding gained from ongoing clinical studies; it will help to define the utility of DNA-damaging payloads for ADCs as cancer therapeutics. Future directions of the development of ADCs are also discussed, focusing on targeting drug resistance and combination treatment with immunotherapy.
Collapse
Affiliation(s)
- Ying Fu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
105
|
Luciferase-induced photoreductive uncaging of small-molecule effectors. Nat Commun 2018; 9:3539. [PMID: 30166547 PMCID: PMC6117273 DOI: 10.1038/s41467-018-05916-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is extensively used to study dynamic systems and has been utilized in sensors for studying protein proximity, metabolites, and drug concentrations. Herein, we demonstrate that BRET can activate a ruthenium-based photocatalyst which performs bioorthogonal reactions. BRET from luciferase to the ruthenium photocatalyst is used to uncage effector molecules with up to 64 turnovers of the catalyst, achieving concentrations >0.6 μM effector with 10 nM luciferase construct. Using a BRET sensor, we further demonstrate that the catalysis can be modulated in response to an analyte, analogous to allosterically controlled enzymes. The BRET-induced reaction is used to uncage small-molecule drugs (ibrutinib and duocarmycin) at biologically effective concentrations in cellulo. Bioluminescence resonance energy transfer (BRET) has been mostly employed in imaging applications. Here the authors use BRET to activate a ruthenium-based photocatalyst and perform a bioorthogonal chemical reaction, which can be used to uncage small molecule drugs in a cellular context.
Collapse
|
106
|
Anderson ED, Sova S, Ivanic J, Kelly L, Schnermann MJ. Defining the conditional basis of silicon phthalocyanine near-IR ligand exchange. Phys Chem Chem Phys 2018; 20:19030-19036. [PMID: 29971294 PMCID: PMC6344126 DOI: 10.1039/c8cp03842b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bond cleavage reactions initiated by long-wavelength light are needed to extend the scope of the caged-uncaged paradigm into complex physiological settings. Axially unsymmetrical silicon phthalocyanines (SiPcs) undergo efficient release of phenol ligands in a reaction contingent on three factors - near-IR light (690 nm), hypoxia, and a thiol reductant. These studies detail efforts to define the mechanistic basis for this unique conditionally-dependent bond cleavage reaction. Spectroscopic studies provide evidence for the formation of a key phthalocyanine radical anion intermediate formed from the triplet state in a reductant-dependent manner. Computational chemistry studies indicate that phenol ligand solvolysis proceeds through a heptacoordinate silicon transition state and that this solvolytic process is favored following SiPc radical anion formation. These results provide insight regarding the central role that radical anion intermediates formed through photoinduced electron transfer with biological reductants can play in long-wavelength uncaging reactions.
Collapse
Affiliation(s)
- Erin D Anderson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, USA.
| | | | | | | | | |
Collapse
|
107
|
Gorka AP, Yamamoto T, Zhu J, Schnermann MJ. Cyanine Photocages Enable Spatial Control of Inducible Cre-Mediated Recombination. Chembiochem 2018; 19:1239-1243. [PMID: 29473264 DOI: 10.1002/cbic.201800061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Optical control over protein expression could provide a means to interrogate a range of biological processes. One approach has employed caged ligands of the estrogen receptor (ER) in combination with broadly used ligand-dependent Cre recombinase proteins. Existing approaches use UV or blue wavelengths, which hinders their application in tissue settings. Additionally, issues of payload diffusion can impede fine spatial control over the recombination process. Here, we detail the chemical optimization of a near-infrared (NIR) light-activated variant of the ER antagonist cyclofen. These studies resulted in modification of both the caging group and payload with lipophilic n-butyl esters. The appendage of esters to the cyanine cage improved cellular uptake and retention. The installation of a 4-piperidyl ester enabled high spatial resolution of the light-initiated Cre-mediated recombination event. These studies described chemical modifications with potential general utility for improving spatial control of intracellular caging strategies. Additionally, these efforts will enable future applications to use these molecules in complex physiological settings.
Collapse
Affiliation(s)
- Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA.,Present Address: Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT, 06269, USA
| | - Tsuyoshi Yamamoto
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
108
|
Cha J, Nani RR, Luciano MP, Kline G, Broch A, Kim K, Namgoong JM, Kulkarni RA, Meier JL, Kim P, Schnermann MJ. A chemically stable fluorescent marker of the ureter. Bioorg Med Chem Lett 2018; 28:2741-2745. [PMID: 29510880 DOI: 10.1016/j.bmcl.2018.02.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Surgical methods guided by exogenous fluorescent markers have the potential to define tissue types in real time. Small molecule dyes with efficient and selective renal clearance could enable visualization of the ureter during surgical procedures involving the abdomen and pelvis. These studies report the design and synthesis of a water soluble, net neutral C4'-O-alkyl heptamethine cyanine, Ureter-Label (UL)-766, with excellent properties for ureter visualization. This compound is accessed through a concise synthetic sequence involving an N- to O-transposition reaction that provides other inaccessible C4'-O-alkyl heptamethine cyanines. Unlike molecules containing a C4'-O-aryl substituent, which have also been used for ureter visualization, UL-766 is not reactive towards glutathione and the cellular proteome. In addition, rat models of abdominal surgery reveal that UL-766 undergoes efficient and nearly exclusive renal clearance in vivo. In total, this molecule represents a promising candidate for visualizing the ureter during a variety of surgical interventions.
Collapse
Affiliation(s)
- Jaepyeong Cha
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave., NW Washinton, DC 20010, United States.
| | - Roger R Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Gabriel Kline
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Aline Broch
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave., NW Washinton, DC 20010, United States
| | - Kihoon Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave., NW Washinton, DC 20010, United States; Department of Surgery, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan 612-896, South Korea
| | - Jung-Man Namgoong
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave., NW Washinton, DC 20010, United States; Department of Surgery, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, South Korea
| | - Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Peter Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, 111 Michigan Ave., NW Washinton, DC 20010, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
109
|
Nagaya T, Gorka AP, Nani RR, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Schnermann MJ, Kobayashi H. Molecularly Targeted Cancer Combination Therapy with Near-Infrared Photoimmunotherapy and Near-Infrared Photorelease with Duocarmycin-Antibody Conjugate. Mol Cancer Ther 2017; 17:661-670. [PMID: 29237807 DOI: 10.1158/1535-7163.mct-17-0851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 01/11/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that uses an antibody-photoabsorber conjugate (APC). However, the effect of NIR-PIT can be enhanced when combined with other therapies. NIR photocaging groups, based on the heptamethine cyanine scaffold, have been developed to release bioactive molecules near targets after exposure to light. Here, we investigated the combination of NIR-PIT using panitumumab-IR700 (pan-IR700) and the NIR-releasing compound, CyEt-panitumumab-duocarmycin (CyEt-Pan-Duo). Both pan-IR700 and CyEt-Pan-Duo showed specific binding to the EGFR-expressing MDAMB468 cell line in vitro In in vivo studies, additional injection of CyEt-Pan-Duo immediately after NIR light exposure resulted in high tumor accumulation and high tumor-background ratio. To evaluate the effects of combination therapy in vivo, tumor-bearing mice were separated into 4 groups: (i) control, (ii NIR-PIT, (iii) NIR-release, (iv) combination of NIR-PIT and NIR-release. Tumor growth was significantly inhibited in all treatment groups compared with the control group (P < 0.05), and significantly prolonged survival was achieved (P < 0.05 vs. control). The greatest therapeutic effect was shown with NIR-PIT and NIR-release combination therapy. In conclusion, combination therapy of NIR-PIT and NIR-release enhanced the therapeutic effects compared with either NIR-PIT or NIR-release therapy alone. Mol Cancer Ther; 17(3); 661-70. ©2017 AACR.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Roger R Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
110
|
Zhang J, Jin Z, Hu XX, Meng HM, Li J, Zhang XB, Liu HW, Deng T, Yao S, Feng L. Efficient Two-Photon Fluorescent Probe for Glutathione S-Transferase Detection and Imaging in Drug-Induced Liver Injury Sample. Anal Chem 2017; 89:8097-8103. [DOI: 10.1021/acs.analchem.7b01659] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Zhen Jin
- Guangdong
Provincial Key Laboratory of Veterinary Pharmaceutics Development
and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Xiao Hu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Hong-Min Meng
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Li
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Hong-Wen Liu
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Tanggang Deng
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Shan Yao
- The People’s
Hospital of Dangshan County, Dangshan 235300, China
| | - Lili Feng
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative
Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| |
Collapse
|
111
|
Miller EW. (Near-Infra) Red Means STOP: Shutting Down Cancer with NIR Light. ACS CENTRAL SCIENCE 2017; 3:266-268. [PMID: 28470040 PMCID: PMC5408336 DOI: 10.1021/acscentsci.7b00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
112
|
Chin AL, Zhong Y, Tong R. Emerging strategies in near-infrared light triggered drug delivery using organic nanomaterials. Biomater Sci 2017; 5:1491-1499. [DOI: 10.1039/c7bm00348j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Near-infrared light has significant advantages for light-triggered drug delivery systems within deep tissues.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Yongliang Zhong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Rong Tong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|