101
|
Chattoraj S, Amin A, Jana B, Mohapatra S, Ghosh S, Bhattacharyya K. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET. Chemphyschem 2015; 17:253-9. [PMID: 26615975 DOI: 10.1002/cphc.201500982] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/26/2015] [Indexed: 12/22/2022]
Abstract
Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging.
Collapse
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax
| | - Asif Amin
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India.
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax.
| |
Collapse
|
102
|
Yang ZY, Li H, Zeng YP, Hao YH, Liu C, Liu J, Wang WD, Li R. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24218-28. [PMID: 26485120 DOI: 10.1021/acsami.5b07702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A multifunctional theranostic platform based on photosensitizer (chlorin e6, Ce6)-loaded branched polyethylenimine-PEGylated ceria nanoparticles (PPCNPs-Ce6) was created for the development of effective cancer treatments involving the use of imaging-guided synchronous photochemotherapy. PPCNPs-Ce6 with high Ce6 photosensitizer loading (Ce6: cerium ∼40 wt %) significantly enhanced the delivery of Ce6 into cells and its accumulation in lysosomes, remarkably improving photodynamic therapeutic (PDT) efficacy levels compared to those in the administration of free Ce6 at ultralow drug doses (∼200 nM). Interestingly, PPCNPs-Ce6 efficiently induced HeLa cell death even at low concentrations (∼10 μM) without the use of laser irradiation and exhibit chemocytotoxicity. Inductively coupled plasma mass spectrometry (ICP-MS) and biology transmission electron microscopy (Bio-TEM) analyses demonstrated that ceria nanoparticles enter cells abundantly and accumulate in lysosomes or large vesicles. We then evaluated the effects of the different materials on lysosomal integrity and function, which revealed that PPCNPs-Ce6 catastrophically impaired lysosomal function compared to results with PPCNPs and Ce6. Studies of apoptosis revealed greater induction of apoptosis by PPCNPs-Ce6 treatment. This multifunctional nanocarrier also exhibited a high degree of solubility and stability in aqueous solutions, suggesting its applicability for extensive biomedical application.
Collapse
Affiliation(s)
- Zhang-You Yang
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Hong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yi-Ping Zeng
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yu-Hui Hao
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Cong Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Jing Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| |
Collapse
|
103
|
Chattoraj S, Amin MA, Mohapatra S, Ghosh S, Bhattacharyya K. Cancer Cell Imaging Using in Situ Generated Gold Nanoclusters. Chemphyschem 2015; 17:61-8. [PMID: 26437799 DOI: 10.1002/cphc.201500731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/26/2022]
Abstract
In situ generated fluorescent gold nanoclusters (Au-NCs) are used for bio-imaging of three human cancer cells, namely, lung (A549), breast (MCF7), and colon (HCT116), by confocal microscopy. The amount of Au-NCs in non-cancer cells (WI38 and MCF10A) is 20-40 times less than those in the corresponding cancer cells. The presence of a larger amount of glutathione (GSH) capped Au-NCs in the cancer cell is ascribed to a higher glutathione level in cancer cells. The Au-NCs exhibit fluorescence maxima at 490-530 nm inside the cancer cells. The fluorescence maxima and matrix-assisted laser desorption ionization (MALDI) mass spectrometry suggest that the fluorescent Au-NCs consist of GSH capped clusters with a core structure (Au8-13). Time-resolved confocal microscopy indicates a nanosecond (1-3 ns) lifetime of the Au-NCs inside the cells. This rules out the formation of aggregated Au-thiolate complexes, which typically exhibit microsecond (≈1000 ns) lifetimes. Fluorescence correlation spectroscopy (FCS) in live cells indicates that the size of the Au-NCs is ≈1-2 nm. For in situ generation, we used a conjugate consisting of a room-temperature ionic liquid (RTIL, [pmim][Br]) and HAuCl4. Cytotoxicity studies indicate that the conjugate, [pmim][AuCl4], is non-toxic for both cancer and non-cancer cells.
Collapse
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Md Asif Amin
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India.
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India.
| |
Collapse
|