101
|
Pai S, Hafftlang M, Atongo G, Nagel C, Niesel J, Botov S, Schmalz HG, Yard B, Schatzschneider U. New modular manganese(i) tricarbonyl complexes as PhotoCORMs: in vitro detection of photoinduced carbon monoxide release using COP-1 as a fluorogenic switch-on probe. Dalton Trans 2014; 43:8664-78. [DOI: 10.1039/c4dt00254g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
102
|
Grau M, Kyriacou A, Cabedo Martinez F, de Wispelaere IM, White AJP, Britovsek GJP. Unraveling the origins of catalyst degradation in non-heme iron-based alkane oxidation. Dalton Trans 2014; 43:17108-19. [DOI: 10.1039/c4dt02067g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of iron(ii) complexes with tetradentate and pentadentate pyridyl amine ligands has been used for the oxidation of cyclohexane with hydrogen peroxide. Ligand degradation is observed under oxidising conditions via oxidative N-dealkylation.
Collapse
Affiliation(s)
- Michaela Grau
- Department of Chemistry
- Imperial College London
- London, UK
| | | | | | | | | | | |
Collapse
|
103
|
Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 2013; 544:87-95. [PMID: 24161941 DOI: 10.1016/j.abb.2013.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Heme degradation through the action of heme oxygenase (HO) is unusual in that it utilizes heme as both a substrate and cofactor for its own degradation. HO catalyzes the oxygen-dependent degradation of heme to biliverdin with the release of CO and "free" iron. The characterization of HO enzymes from humans to bacteria reveals a similar overall structural fold that contributes to the unique reaction manifold. The heme oxygenases share a similar heme-dependent activation of O2 to the ferric hydroperoxide as that of the cytochrome P450s and peroxidases. However, whereas the P450s promote cleavage of the ferric hydroperoxide OO bond to the oxoferryl species the HOs stabilize the ferric hydroperoxide promoting hydroxylation at the heme edge. The alternate reaction pathway in HO is achieved through the conformational flexibility and extensive hydrogen bond network within the heme binding site priming the heme for hydroxylation. Until recently it was believed that all heme degrading enzymes converted heme to biliverdin and iron, with the release of carbon monoxide (CO). However, the recent discovery of the bacterial IsdG-like heme degrading proteins of Staphylococcus aureus, Bacillus anthracis and Mycobacterium tuberculosis has expanded the reaction manifold of heme oxidation. Characterization of the heme degradation products in the IsdG-like reaction suggests a mechanism distinct from the classical HOs. In the following review we will discuss the structure-function of the canonical HOs as it relates to the emerging alternate reaction manifold of the IsdG-like proteins.
Collapse
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA.
| | - Geoffrey Heinzl
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA
| |
Collapse
|
104
|
Garcia-Bosch I, Sharma SK, Karlin KD. A selective stepwise heme oxygenase model system: an iron(IV)-oxo porphyrin π-cation radical leads to a verdoheme-type compound via an isoporphyrin intermediate. J Am Chem Soc 2013; 135:16248-51. [PMID: 24147457 DOI: 10.1021/ja405739m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The selective oxidation of the α-position of two heme-Fe(III) tetraarylporphryinate complexes occurs when water(hydroxide) attacks their oxidized Cmpd I-type equivalents, high-valent Fe(IV)═O π-cation radical species ((P(+•))Fe(IV)═O). Stepwise intermediate formation occurs, as detected by UV-vis spectroscopic monitoring or mass spectrometric interrogation, being iron(III) isoporphyrins, iron(III) benzoyl-biliverdins, and the final verdoheme-like products. Heme oxygenase (HO) enzymes could proceed through heterolytic cleavage of an iron(III)-hydroperoxo intermediate to form a transient Cmpd I-type species.
Collapse
Affiliation(s)
- Isaac Garcia-Bosch
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
105
|
Unno M, Ardèvol A, Rovira C, Ikeda-Saito M. Structures of the substrate-free and product-bound forms of HmuO, a heme oxygenase from corynebacterium diphtheriae: x-ray crystallography and molecular dynamics investigation. J Biol Chem 2013; 288:34443-58. [PMID: 24106279 DOI: 10.1074/jbc.m113.486936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe(3+)-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe(3+)-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe(3+)-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe(3+)-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit.
Collapse
Affiliation(s)
- Masaki Unno
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
106
|
Dördelmann G, Meinhardt T, Sowik T, Krueger A, Schatzschneider U. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem Commun (Camb) 2013; 48:11528-30. [PMID: 23090687 DOI: 10.1039/c2cc36491c] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) was used for the first time to attach a biologically active carbon monoxide delivery agent to modified nanodiamond (ND) as a highly biocompatible carrier. The [Mn(CO)(3)(tpm)](+) photoactivatable CO-releasing molecule (PhotoCORM) on the surface retained the carbon monoxide release properties of the parent compound as shown with the myoglobin assay.
Collapse
Affiliation(s)
- G Dördelmann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
107
|
Pfeiffer H, Sowik T, Schatzschneider U. Bioorthogonal oxime ligation of a Mo(CO)4(N–N) CO-releasing molecule (CORM) to a TGF β-binding peptide. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2012.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
108
|
Matsui T, Nambu S, Ono Y, Goulding CW, Tsumoto K, Ikeda-Saito M. Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. Biochemistry 2013; 52:3025-7. [PMID: 23600533 DOI: 10.1021/bi400382p] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IsdG and IsdI from Staphylococcus aureus are novel heme-degrading enzymes containing unusually nonplanar (ruffled) heme. While canonical heme-degrading enzymes, heme oxygenases, catalyze heme degradation coupled with the release of CO, in this study we demonstrate that the primary C1 product of the S. aureus enzymes is formaldehyde. This finding clearly reveals that both IsdG and IsdI degrade heme by an unusual mechanism distinct from the well-characterized heme oxygenase mechanism as recently proposed for MhuD from Mycobacterium tuberculosis. We conclude that heme ruffling is critical for the drastic mechanistic change for these novel bacterial enzymes.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Ma M, Noei H, Mienert B, Niesel J, Bill E, Muhler M, Fischer RA, Wang Y, Schatzschneider U, Metzler-Nolte N. Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. Chemistry 2013; 19:6785-90. [PMID: 23536364 DOI: 10.1002/chem.201201743] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 02/01/2013] [Indexed: 01/21/2023]
Abstract
Crystals of MIL-88B-Fe and NH2-MIL-88B-Fe were prepared by a new rapid microwave-assisted solvothermal method. High-purity, spindle-shaped crystals of MIL-88B-Fe with a length of about 2 μm and a diameter of 1 μm and needle-shaped crystals of NH2-MIL-88B-Fe with a length of about 1.5 μm and a diameter of 300 nm were produced with uniform size and excellent crystallinity. The possibility to reduce the as-prepared frameworks and the chemical capture of carbon monoxide in these materials was studied by in situ ultrahigh vacuum Fourier-transform infrared (UHV-FTIR) spectroscopy and Mössbauer spectroscopy. CO binding occurs to unsaturated coordination sites (CUS). The release of CO from the as-prepared materials was studied by a myoglobin assay in physiological buffer. The release of CO from crystals of MIL-88B-Fe with t(1/2) = 38 min and from crystals of NH2-MIL-88B-Fe with t(1/2) = 76 min were found to be controlled by the degradation of the MIL materials under physiological conditions. These MIL-88B-Fe and NH2-MIL-88B-Fe materials show good biocompatibility and have the potential to be used in pharmacological and therapeutic applications as carriers and delivery vehicles for the gasotransmitter carbon monoxide.
Collapse
Affiliation(s)
- Mingyan Ma
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem 2013; 288:10101-10109. [PMID: 23420845 DOI: 10.1074/jbc.m112.448399] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme. Distinct from the canonical heme degradation, we have found that the MhuD catalysis does not generate CO. Product analyses by electrospray ionization-MS and NMR show that MhuD cleaves heme at the α-meso position but retains the meso-carbon atom at the cleavage site, which is removed by canonical heme oxygenases. The novel tetrapyrrole product of MhuD, termed "mycobilin," has an aldehyde group at the cleavage site and a carbonyl group at either the β-meso or the δ-meso position. Consequently, MhuD catalysis does not involve verdoheme, the key intermediate of ring cleavage by canonical heme oxygenase enzymes. Ruffled heme is apparently responsible for the heme degradation mechanism unique to MhuD. In addition, MhuD heme degradation without CO liberation is biologically significant as one of the signals of M. tuberculosis transition to dormancy is mediated by the production of host CO.
Collapse
Affiliation(s)
- Shusuke Nambu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masao Ikeda-Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan.
| |
Collapse
|
111
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
112
|
Gheidi M, Safari N, Zahedi M. Structure and Redox Behavior of Iron Oxophlorin and Role of Electron Transfer in the Heme Degradation Process. Inorg Chem 2012; 51:12857-66. [DOI: 10.1021/ic3017497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahin Gheidi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| | - Nasser Safari
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| | - Mansour Zahedi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran
| |
Collapse
|
113
|
Davydov R, Gilep AA, Strushkevich NV, Usanov SA, Hoffman BM. Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing studies. J Am Chem Soc 2012; 134:17149-56. [PMID: 23039857 DOI: 10.1021/ja3067226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450scc (CYP11A1) catalyzes conversion of cholesterol (CH) to pregnenolone, the precursor to all steroid hormones. This process proceeds via three sequential monooxygenation reactions: two stereospecific hydroxylations with formation first of 22R-hydroxycholesterol (22-HC) and then 20α,22R-dihydroxycholesterol (20,22-DHC), followed by C20-C22 bond cleavage. Herein we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the first hydroxylation step by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc-cholesterol complex. This approach is fully validated by the demonstration that the cryoreduced ternary complex of oxy-P450scc-CH is catalytically competent and hydroxylates cholesterol to form 22-HC with no detectable formation of 20-HC, just as occurs under physiological conditions. Cryoreduction of the ternary complex trapped at 77 K produces predominantly the hydroperoxy-ferriheme P450scc intermediate, along with a minor fraction of peroxo-ferriheme intermediate that converts into a new hydroperoxo-ferriheme species at 145 K. This behavior reveals that the distal pocket of the parent oxy-P450scc-cholesterol complex exhibits an efficient proton delivery network, with an ordered water molecule H-bonded to the distal oxygen of the dioxygen ligand. During annealing of the hydroperoxy-ferric P450scc intermediates at 185 K, they convert to the primary product complex in which CH has been converted to 22-HC. In this process, the hydroperoxy-ferric intermediate decays with a large solvent kinetic isotope effect, as expected when proton delivery to the terminal O leads to formation of Compound I (Cpd I). (1)H ENDOR measurements of the primary product formed in deuterated solvent show that the heme Fe(III) is coordinated to the 22R-O(1)H of 22-HC, where the (1)H is derived from substrate and exchanges to D after annealing at higher temperatures. These observations establish that Cpd I is the agent that hydroxylates CH, rather than the hydroperoxy-ferric heme.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
114
|
Abstract
The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood-Ljungdahl pathway, which involves the conversion of CO or H2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetyl-CoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni·CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 Å (1 Å=0.1 nm) channel guides CO, generated at the active site of CODH, to a CO 'cage' near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol-disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.
Collapse
|
115
|
Kamachi T, Nishimi T, Yoshizawa K. A new understanding on how heme metabolism occurs in heme oxygenase: water-assisted oxo mechanism. Dalton Trans 2012; 41:11642-50. [PMID: 22825429 DOI: 10.1039/c2dt30777d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme metabolism by heme oxygenase (HO) is investigated with quantum mechanical/molecular mechanical (QM/MM) calculations. A mechanism assisted by water is proposed: (1) an iron-oxo species and a water molecule are generated by the heterolytic cleavage of the O-O bond of an iron-hydroperoxo species in a similar way to P450-mediated reactions, (2) a hydrogen atom abstraction by the iron-oxo species from the generated water molecule and the C-O bond formation between the water molecule and the α-meso carbon take place simultaneously. The water molecule is hydrogen-bonded to the oxo ligand and to the water cluster in the active site of HO. The water cluster can control the position of the generated water molecule to ensure the regioselective oxidation of heme at the α-meso position, at the same time, can facilitate the oxidation by stabilizing a positive charge on the water molecule in the transition state. A key difference between HO and P450 is observed in the structure of the active site; Thr252 in P450 blocks the access of the water molecule to the α-meso position, and can thus suppress the undesired heme oxidation for P450.
Collapse
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
116
|
Kakeya K, Nakagawa A, Mizutani T, Hitomi Y, Kodera M. Synthesis, Reactivity, and Spectroscopic Properties of meso-Triaryl-5-oxaporphyrins. J Org Chem 2012; 77:6510-9. [DOI: 10.1021/jo3010342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Aya Nakagawa
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tadashi Mizutani
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
117
|
Gheidi M, Safari N, Zahedi M. Effect of Axial Ligand on the Electronic Configuration, Spin States, and Reactivity of Iron Oxophlorin. Inorg Chem 2012; 51:7094-102. [DOI: 10.1021/ic202527u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahin Gheidi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G.C., Evin, 19839-63113, Tehran, Iran
| | - Nasser Safari
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G.C., Evin, 19839-63113, Tehran, Iran
| | - Mansour Zahedi
- Department
of Chemistry, Faculty of Sciences, Shahid
Beheshti University, G.C., Evin, 19839-63113, Tehran, Iran
| |
Collapse
|
118
|
Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Significant Increase of Oxidase Activity through the Genetic Incorporation of a Tyrosine-Histidine Cross-Link in a Myoglobin Model of Heme-Copper Oxidase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
119
|
Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew Chem Int Ed Engl 2012; 51:4312-6. [PMID: 22411709 DOI: 10.1002/anie.201108756] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaohong Liu
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | |
Collapse
|
120
|
Usharani D, Zazza C, Lai W, Chourasia M, Waskell L, Shaik S. A single-site mutation (F429H) converts the enzyme CYP 2B4 into a heme oxygenase: a QM/MM study. J Am Chem Soc 2012; 134:4053-6. [PMID: 22356576 DOI: 10.1021/ja211905e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intriguing deactivation of the cytochrome P450 (CYP) 2B4 enzyme induced by mutation of a single residue, Phe429 to His, is explored by quantum mechanical/molecular mechanical calculations of the O-OH bond activation of the (Fe(3+)OOH)(-) intermediate. It is found that the F429H mutant of CYP 2B4 undergoes homolytic instead of heterolytic O-OH bond cleavage. Thus, the mutant acquires the following characteristics of a heme oxygenase enzyme: (a) donation by His429 of an additional NH---S H-bond to the cysteine ligand combined with the presence of the substrate retards the heterolytic cleavage and gives rise to homolytic O-OH cleavage, and (b) the Thr302/water cluster orients nascent OH(•) and ensures efficient meso hydroxylation.
Collapse
Affiliation(s)
- Dandamudi Usharani
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
121
|
Gisk B, Wiethaus J, Aras M, Frankenberg-Dinkel N. Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Arch Microbiol 2012; 194:597-606. [DOI: 10.1007/s00203-012-0796-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 01/20/2023]
|
122
|
Schatzschneider U. PhotoCORMs: Light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.068] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
123
|
Electronic properties of the highly ruffled heme bound to the heme degrading enzyme IsdI. Proc Natl Acad Sci U S A 2011; 108:13071-6. [PMID: 21788475 DOI: 10.1073/pnas.1101459108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IsdI, a heme-degrading protein from Staphylococcus aureus, binds heme in a manner that distorts the normally planar heme prosthetic group to an extent greater than that observed so far for any other heme-binding protein. To understand better the relationship between this distinct structural characteristic and the functional properties of IsdI, spectroscopic, electrochemical, and crystallographic results are reported that provide evidence that this heme ruffling is essential to the catalytic activity of the protein and eliminates the need for the water cluster in the distal heme pocket that is essential for the activity of classical heme oxygenases. The lack of heme orientational disorder in (1)H-NMR spectra of the protein argues that the catalytic formation of β- and δ-biliverdin in nearly equal yield results from the ability of the protein to attack opposite sides of the heme ring rather than from binding of the heme substrate in two alternative orientations.
Collapse
|
124
|
Chen H, Lai W, Shaik S. Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J Phys Chem B 2011; 115:1727-42. [PMID: 21344948 DOI: 10.1021/jp110016u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work reviews the recent applications of ab initio multireference/multiconfiguration (MR/MC) electronic structure methods to heme-related systems, involving tetra-, penta-, and hexa-coordinate species, as well as the high-valent iron-oxo species. The current accuracy of these methods in the various systems is discussed, with special attention to potential sources of systematic errors. Thus, the review summarizes and tries to rationalize the key elements of MR/MC calculations, namely, the choice of the employed active space, especially the so-called double-shell effect that has already been recognized to be important in transition-metal-containing systems, and the impact of these elements on the spin-state energetics of heme species, as well as on the bonding mechanism of small molecules to the heme. It is shown that expansion of the MC wave function into one based on localized orbitals provides a compact and insightful view on some otherwise complex electronic structures. The effects of protein environment on the MR/MC results are summarized for the few available quantum mechanical/molecular mechanical (QM/MM) studies. Comparisons with corresponding DFT results are also made wherever available. Potential future directions are proposed.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
125
|
Yamanishi K, Miyazawa M, Yairi T, Sakai S, Nishina N, Kobori Y, Kondo M, Uchida F. Conversion of cobalt(II) porphyrin into a helical cobalt(III) complex of acyclic pentapyrrole. Angew Chem Int Ed Engl 2011; 50:6583-6. [PMID: 21648042 DOI: 10.1002/anie.201102144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Indexed: 11/09/2022]
|
126
|
Yamanishi K, Miyazawa M, Yairi T, Sakai S, Nishina N, Kobori Y, Kondo M, Uchida F. Conversion of Cobalt(II) Porphyrin into a Helical Cobalt(III) Complex of Acyclic Pentapyrrole. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
127
|
Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL. Structure and reaction mechanism in the heme dioxygenases. Biochemistry 2011; 50:2717-24. [PMID: 21361337 PMCID: PMC3092302 DOI: 10.1021/bi101732n] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.
Collapse
Affiliation(s)
- Igor Efimov
- Department of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
128
|
Lessons on O2 and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. J Biol Inorg Chem 2011; 16:841-55. [DOI: 10.1007/s00775-011-0763-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/29/2022]
|
129
|
Shoji O, Watanabe Y. Design of H2O2-dependent oxidation catalyzed by hemoproteins. Metallomics 2011; 3:379-88. [DOI: 10.1039/c0mt00090f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
130
|
Atkin AJ, Lynam JM, Moulton BE, Sawle P, Motterlini R, Boyle NM, Pryce MT, Fairlamb IJS. Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes. Dalton Trans 2011; 40:5755-61. [DOI: 10.1039/c0dt01809k] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
131
|
Gisk B, Brégier F, Krüger RA, Bröring M, Frankenberg-Dinkel N. Enzymatic Ring Opening of an Iron Corrole by Plant-Type Heme Oxygenases: Unexpected Substrate and Protein Selectivities. Biochemistry 2010; 49:10042-4. [DOI: 10.1021/bi1014369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Björn Gisk
- Physiology of Microorganisms, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Robin A. Krüger
- Fachbereich Chemie, Philipps-University Marburg, 35032 Marburg, Germany
| | - Martin Bröring
- Fachbereich Chemie, Philipps-University Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
132
|
Crystallographic snapshots of the reaction of aromatic C-H with O(2) catalysed by a protein-bound iron complex. Nat Chem 2010; 2:1069-76. [PMID: 21107372 DOI: 10.1038/nchem.841] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/16/2010] [Indexed: 01/10/2023]
Abstract
Chemical reactions inside single crystals are quite rare because crystallinity is difficult to retain owing to atomic rearrangements. Protein crystals in general have a high solvent content. This allows for some molecular flexibility, which makes it possible to trap reaction intermediates of enzymatic reactions without disrupting the crystal lattice. A similar approach has not yet been fully implemented in the field of inorganic chemistry. Here, we have combined model chemistry and protein X-ray crystallography to study the intramolecular aromatic dihydroxylation by an arene-containing protein-bound iron complex. The bound complex was able to activate dioxygen in the presence of a reductant, leading to the formation of catechol as the sole product. The structure determination of four of the catalytic cycle intermediates and the end product showed that the hydroxylation reaction implicates an iron peroxo, generated by reductive O(2) activation, an intermediate already observed in iron monooxygenases. This strategy also provided unexpected mechanistic details such as the rearrangement of the iron coordination sphere on metal reduction.
Collapse
|
133
|
Zhang WQ, Whitwood AC, Fairlamb IJS, Lynam JM. Group 6 Carbon Monoxide-Releasing Metal Complexes with Biologically-Compatible Leaving Groups. Inorg Chem 2010; 49:8941-52. [DOI: 10.1021/ic101230j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei-Qiang Zhang
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Adrian C. Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Jason M. Lynam
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
134
|
Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S. Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study. J Am Chem Soc 2010; 132:12960-70. [DOI: 10.1021/ja104674q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenzhen Lai
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Hui Chen
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Kohei Omori
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Masaki Unno
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Masao Ikeda-Saito
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
135
|
Orner B. The first Asian Chemical Biology conference meets at Seoul National University. ACS Chem Biol 2010; 5:725-7. [PMID: 20722456 DOI: 10.1021/cb100206k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brendan Orner
- Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
136
|
Chung LW, Li X, Sugimoto H, Shiro Y, Morokuma K. ONIOM Study on a Missing Piece in Our Understanding of Heme Chemistry: Bacterial Tryptophan 2,3-Dioxygenase with Dual Oxidants. J Am Chem Soc 2010; 132:11993-2005. [DOI: 10.1021/ja103530v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
137
|
Saga Y, Hojo S, Hirai Y. Comparison of demetalation properties between zinc chlorin and zinc porphyrin derivatives: Effect of macrocyclic structures. Bioorg Med Chem 2010; 18:5697-700. [DOI: 10.1016/j.bmc.2010.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
|
138
|
|