101
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
102
|
Xue B, Kozlovskaya V, Kharlampieva E. Shaped stimuli-responsive hydrogel particles: syntheses, properties and biological responses. J Mater Chem B 2017; 5:9-35. [DOI: 10.1039/c6tb02746f] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review summarizes a pool of current experimental approaches and discusses perspectives in the development of the synergistic combination of shape and stimuli-response in particulate hydrogels.
Collapse
Affiliation(s)
- Bing Xue
- Chemistry Department
- University of Alabama at Birmingham
- USA
| | | | - Eugenia Kharlampieva
- Chemistry Department
- University of Alabama at Birmingham
- USA
- Center for Nanomaterials and Biointegration
- University of Alabama at Birmingham
| |
Collapse
|
103
|
Reduction-responsive release property of egg phosphatidylcholine liposomes incorporating benzyl disulfide. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
104
|
Zou Y, Fang Y, Meng H, Meng F, Deng C, Zhang J, Zhong Z. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. J Control Release 2016; 244:326-335. [DOI: 10.1016/j.jconrel.2016.05.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
|
105
|
Zhao C, Shao L, Lu J, Zhao C, Wei Y, Liu J, Li M, Wu Y. Triple Redox Responsive Poly(Ethylene Glycol)-Polycaprolactone Polymeric Nanocarriers for Fine-Controlled Drug Release. Macromol Biosci 2016; 17. [PMID: 27762492 DOI: 10.1002/mabi.201600295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)-polycaprolactone copolymer blocks to form triple-sensitive cleavable polymeric nanocarrier (tri-PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri-PESC NPs keep intact during blood circulation due to the limited cleaving of triple-disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin-loaded tri-PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri-PESC NPs with triple-sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujie Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junxing Liu
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China
| | - Mingjun Li
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
106
|
Zhong Y, Dimde M, Stöbener D, Meng F, Deng C, Zhong Z, Haag R. Micelles with Sheddable Dendritic Polyglycerol Sulfate Shells Show Extraordinary Tumor Targetability and Chemotherapy in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27530-27538. [PMID: 27669888 DOI: 10.1021/acsami.6b09204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer nanomedicines are typically stealthed by a poly(ethylene glycol) layer that is important to obtain extended blood circulation and elevated tumor accumulation. PEG stealth, however, also leads to poor tumor cell selectivity and uptake thereby reducing treatment efficacy. Here, we report that biodegradable micelles with sheddable dendritic polyglycerol sulfate (dPGS) shells show an unusual tumor targetability and chemotherapy in vivo. The self-assembly of dPGS-SS-poly(ε-caprolactone) amphiphilic block copolymer with an Mn of 4.8-3.7 kg mol-1 affords negatively charged and small sized micelles (dPGS-SS-PCL Ms). dPGS-SS-PCL Ms reveal a low cytotoxicity, decent doxorubicin (DOX) loading, and accelerated drug release under a reductive condition. Notably, DOX-loaded dPGS-SS-PCL Ms exhibit a high tolerable dosage of more than 40 mg kg-1, a long plasma half-life of ca. 2.8 h, and an extraordinary tumor accumulation. Intriguingly, therapeutic results demonstrate that DOX-loaded dPGS-SS-PCL Ms induce complete tumor suppression, significantly improved survival rate, and diminishing adverse effects as compared to free drug (DOX·HCl) in MCF-7 human mammary carcinoma models. Dendritic polyglycerol sulfate with a superior tumor homing ability appears to be an attractive alternative to PEG in formulating targeted cancer nanomedicines.
Collapse
Affiliation(s)
- Yinan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Mathias Dimde
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin, 14195, Germany
| | - Daniel Stöbener
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin, 14195, Germany
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin, 14195, Germany
| |
Collapse
|
107
|
Mao X, Si J, Huang Q, Sun X, Zhang Q, Shen Y, Tang J, Liu X, Sui M. Self-Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Adv Healthc Mater 2016; 5:2517-2527. [PMID: 27529558 DOI: 10.1002/adhm.201600345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/24/2016] [Indexed: 01/01/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic drug to treat a range of cancers. However, its unfavorable effects, particularly the cardiotoxicity and the induction of multidrug resistance (MDR), significantly limit its clinical applications. Herein, a novel doxorubicin prodrug, PEG2K -DOX, is synthesized by conjugating a deprotonated doxorubicin molecule with the polyethylene glycol (PEG, MW: 2K) chain via pH-responsive hydrazone bond, and its potential as a better alternative than doxorubicin is evaluated. The data show that the amphiphilic PEG2K -DOX can self-assemble into stable nanoparticles with a high and fixed doxorubicin loading content (≈20 wt%), a favorable size of 91.5 nm with a narrow polydispersity (PDI = 0.14), good stability, and pH-dependent release behavior due to the acid-cleavable linkage between PEG and doxorubicin. Although doxorubicin hardly accumulates in MDR cells, PEG2K -DOX nanoparticles significantly increase the cellular uptake and cell-killing activity of doxorubicin in two MDR cancer cell lines MCF-7/ADR and KBv200, with the IC50 values dropped to 1.130% and 42.467% of doxorubicin, respectively. More impressively, PEG2K -DOX nanoparticles exhibit significantly improved plasma pharmacokinetics, increased in vivo therapeutic efficacy against MDR xenograft tumors, and better in vivo safety compared with doxorubicin. PEG2K -DOX nanoparticles hold the promise to become a better alternative than doxorubicin for cancer treatment, especially for MDR tumors.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jingxing Si
- Center for Cancer Biology and Innovative Therapeutics; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province; Clinical Research Institute; Zhejiang Provincial People's Hospital; Hangzhou 310014 China
| | - Qian Huang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
- Center for Cancer Biology and Innovative Therapeutics; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province; Clinical Research Institute; Zhejiang Provincial People's Hospital; Hangzhou 310014 China
| | - Xuanrong Sun
- Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou 310014 China
| | - Qianzhi Zhang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
- Center for Cancer Biology and Innovative Therapeutics; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province; Clinical Research Institute; Zhejiang Provincial People's Hospital; Hangzhou 310014 China
| | - Youqing Shen
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jianbin Tang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiangrui Liu
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Meihua Sui
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
- Center for Cancer Biology and Innovative Therapeutics; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province; Clinical Research Institute; Zhejiang Provincial People's Hospital; Hangzhou 310014 China
| |
Collapse
|
108
|
Wu C, Yang J, Xu X, Gao C, Lü S, Liu M. Redox-responsive core-cross-linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
109
|
Yang D, Wang T, Su Z, Xue L, Mo R, Zhang C. Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22431-22441. [PMID: 27420116 DOI: 10.1021/acsami.6b04885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A multistimuli responsive drug delivery system (DDS) based on sulfhydryl and amino-cofunctionalized mesoporous silica nanoparticles (SH/NH2-MSNs) has been developed, in which the multifunctional hyaluronic acid (HA) derivatives were grafted onto the SH/NH2-MSNs by disulfide bonds for targeting delivery, controlling drug release and reversing multidrug resistance (MDR). The doxorubicin (Dox) loaded multifunctional HA derivatives modified mesoporous silica nanoparticles (Dox/HHS-MSNs) were enzyme and redox sensitive, which could respond to the intracellular stimuli of hyaluronidase (HAase) and glutathione (GSH) successively and prevent drug leakage before reaching the tumor tissues. The cellular uptake experiments showed that Dox/HHS-MSNs were vulnerable to be endocytosed into the Dox-resistant human breast adenocarcinoma (MCF-7/ADR) cells, efficiently realized the endolysosomal escape and remained in the cytoplasm. Because of orchestrating multiple actions above including active targeting, endolysosomal escape and efficient multilevel drug release, Dox/HHS-MSNs could induce the strongest apoptosis and cytotoxicity of MCF-7/ADR cells. Furthermore, a series of in vivo studies on MCF-7/ADR tumor-bearing xenograft mouse models demonstrated that Dox/HHS-MSNs possessed the enhanced tumor-targeting capacity and the best therapeutic efficacy to reverse cancer MDR.
Collapse
Affiliation(s)
- Debin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| | - Tingfang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
110
|
Kwon K, Kim JC. Redox-responsive alginate microsphere containing cystamine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1520-33. [DOI: 10.1080/09205063.2016.1215800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kyeongnan Kwon
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
111
|
Song M, Xue Y, Chen L, Xia X, Zhou Y, Liu L, Yu B, Long S, Huang S, Yu F. Acid and reduction stimulated logic “and”-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:354-63. [DOI: 10.1016/j.msec.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
|
112
|
Giesler KE, Marengo J, Liotta DC. Reduction Sensitive Lipid Conjugates of Tenofovir: Synthesis, Stability, and Antiviral Activity. J Med Chem 2016; 59:7097-110. [PMID: 27405794 DOI: 10.1021/acs.jmedchem.6b00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The therapeutic value of numerous small molecules hinges on their ability to permeate the plasma membrane. This is particularly true for tenofovir (TFV), adefovir, and other antiviral nucleosides that demonstrate potent antiviral activity but poor bioavailability. Using TFV as a model substrate, we hybridized two disparate prodrug strategies to afford novel reduction-sensitive lipid conjugates of TFV that exhibit subnanomolar activity toward HIV-1 and are stable in human plasma for more than 24 h with a therapeutic index approaching 30000. These compounds significantly rival the clinically approved formulation of TFV and revitalize the potential of disulfide-bearing prodrugs which have seen limited in vitro and in vivo success since their debut over 20 years ago. We further demonstrate the utility of these conjugates as a tool to indirectly probe the enzymatic hydrolysis of phosphonomonoesters that may further advance the development of other prodrug strategies for nucleosides, peptides, and beyond.
Collapse
Affiliation(s)
- Kyle E Giesler
- Department of Chemistry, Emory University , 1521 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Jose Marengo
- Emory Institute for Drug Development , 954 Gatewood Road, Atlanta, Georgia 30329, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University , 1521 Dickey Drive NE, Atlanta, Georgia 30322, United States.,Emory Institute for Drug Development , 954 Gatewood Road, Atlanta, Georgia 30329, United States
| |
Collapse
|
113
|
Asadi H, Khoee S. Dual responsive nanogels for intracellular doxorubicin delivery. Int J Pharm 2016; 511:424-435. [PMID: 27444549 DOI: 10.1016/j.ijpharm.2016.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/16/2016] [Indexed: 01/13/2023]
Abstract
Nanosized polymeric delivery systems that encapsulate drug molecules and release them in response to a specific intracellular stimulus are of promising interest for cancer therapy. Here, we demonstrated a simple and fast synthetic protocol of redox-responsive nanogels with high drug encapsulation efficiency and stability. The prepared nanogels displayed narrow size distributions and versatility of surface modification. The polymer precursor of these nanogels is based on a random copolymer that contains oligoethyleneglycol (OEG) and pyridyldisulfide (PDS) units as side-chain functionalities. The nanogels were prepared through a lock-in strategy in aqueous media via self cross-linking of PDS groups. By changing polymer concentration, we could control the size of nanogels in range of 80-115nm. The formed nanogels presented high doxorubicin (DOX) encapsulation efficiency (70% (w/w)) and displayed pH and redox-controlled drug release triggered by conditions mimicking the reducible intracellular environment. The nanogels displayed an excellent cytocompatibility and were effectively endocytosed by A2780CP ovarian cancer cells, which make them promising nanomaterials for the efficient intracellular delivery of anticancer drugs.
Collapse
Affiliation(s)
- Hamed Asadi
- Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, Chemistry Department, School of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
114
|
Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J Control Release 2016; 233:29-38. [DOI: 10.1016/j.jconrel.2016.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
|
115
|
Mallick A, More P, Syed MMK, Basu S. Nanoparticle-Mediated Mitochondrial Damage Induces Apoptosis in Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13218-13231. [PMID: 27160664 DOI: 10.1021/acsami.6b00263] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Detouring of conventional DNA damaging anticancer drugs into mitochondria to damage mitochondrial DNA is evolving as a promising strategy in chemotherapy. Inhibiting single target in mitochondria would eventually lead to the emergence of drug resistance. Moreover, targeting mitochondria selectively in cancer cells, keeping them intact in healthy cells, remains a major challenge. Herein, triphenylphosphine (TPP)-coated positively charged 131.6 nm spherical nanoparticles (NPs) comprised of α-tocopheryl succinate (TOS, inhibitor of complex II in electron transport chain) and obatoclax (Obt, inhibitor of Bcl-2) were engineered. The TOS-TPP-Obt-NPs entered into acidic lysosomes via macropinocytosis, followed by lysosomal escape and finally homed into mitochondria over a period of 24 h. Subsequently, these TOS-TPP-Obt-NPs triggered mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to Cytochrome C release. These TOS-TPP-Obt-NPs mediated mitochondrial damage induced cellular apoptosis through caspase-9 and caspase-3 cleavage to show improved efficacy in HeLa cells. Moreover, TOS-TPP-Obt-NPs induced MOMP in drug-resistant triple negative breast cancer cells (MDA-MB-231), leading to remarkable efficacy, compared to the combination of free drugs in higher drug concentrations. Results presented here clearly stimulate the usage of multiple drugs to perturb simultaneously diverse targets, selectively in mitochondria, as next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Piyush More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Muhammed Muazzam Kamil Syed
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| |
Collapse
|
116
|
Yildirim T, Traeger A, Preussger E, Stumpf S, Fritzsche C, Hoeppener S, Schubert S, Schubert US. Dual Responsive Nanoparticles from a RAFT Copolymer Library for the Controlled Delivery of Doxorubicin. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Turgay Yildirim
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Elisabeth Preussger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Steffi Stumpf
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carolin Fritzsche
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Schubert
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Institute
of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Strasse 41, 07745 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
117
|
Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
|
118
|
Liu J, Ma X, Jin S, Xue X, Zhang C, Wei T, Guo W, Liang XJ. Zinc Oxide Nanoparticles as Adjuvant To Facilitate Doxorubicin Intracellular Accumulation and Visualize pH-Responsive Release for Overcoming Drug Resistance. Mol Pharm 2016; 13:1723-30. [DOI: 10.1021/acs.molpharmaceut.6b00311] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juan Liu
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaowei Ma
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Shubin Jin
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiangdong Xue
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunqiu Zhang
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tuo Wei
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Weisheng Guo
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
and Laboratory of Controllable Nanopharmaceuticals, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
119
|
Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond) 2016; 10:1941-58. [PMID: 26139127 DOI: 10.2217/nnm.15.38] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PEGylation in polymeric nanomedicine has gained substantial predominance in biomedical applications due to its resistance to protein absorption, which is critically important for a therapeutic delivery system in blood circulation. The shielding layer of PEGylation, however, creates significant steric hindrance that negatively impacts cellular uptake and intracellular distribution at the target site. This unexpected effect compromises the biological efficacy of the encapsulated payload. To address this issue, one of the key strategies is to tether the disulfide bond to PEG for constructing a disulfide-bridged cleavable PEGylation. The reversible disulfide bond can be cleaved to enable selective PEG detachment. This article provides an overview on the strategy, method and progress of PEGylation nanosystem with the cleavable disulfide bond.
Collapse
Affiliation(s)
- Haiqing Dong
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Min Tang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Yongyong Li
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, TX 75080, USA
| | - Donglu Shi
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science (iNANO), Tongji University School of Medicine, Shanghai, China.,The Materials Science & Engineering Program, Department of Mechanical & Materials Engineering, College of Engineering & Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
120
|
Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials 2016; 94:9-19. [PMID: 27088406 DOI: 10.1016/j.biomaterials.2016.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 01/23/2023]
Abstract
Chemotherapy resistance has become a major challenge in the clinical treatment of lung cancer which is the leading cancer type for the estimated deaths. Recent studies have shown that nanoparticles as drug carriers can raise intracellular drug concentration by achieving effectively cellular uptake and rapid drug release, and therefore reverse the acquired chemoresistance of tumors. In this context, nanoparticles-based chemotherapy represents a promising strategy for treating malignancies with chemoresistance. In the present study, we developed cationic lipid assisted nanoparticles (CLAN) to deliver polylactide-cisplatin prodrugs to drug resistant lung cancer cells. The nanoparticles were formulated through self-assembly of a biodegradable poly(ethylene glycol)-block-poly(lactide) (PEG-PLA), a hydrophobic polylactide-cisplatin prodrug, and a cationic lipid. The cationic nanoparticles were proven to significantly improve cell uptake of cisplatin, leading to an increased DNA-Pt adduct and significantly promoted DNA damage in vitro. Moreover, our study reveals that cationic nanoparticles, although are slightly inferior in blood circulation and tumor accumulation, are more effective in blood vessel extravasation. The CLANs ultimately enhances the cellular drug availability and leads to the reversal of cisplatin resistance.
Collapse
|
121
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
122
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
123
|
Li SX, Liu L, Zhang LJ, Wu B, Wang CX, Zhou W, Zhuo RX, Huang SW. Synergetic enhancement of antitumor efficacy with charge-reversal and reduction-sensitive polymer micelles. Polym Chem 2016. [DOI: 10.1039/c6py00874g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An amphiphilic block copolymer PLA-SS-PAEMA/DMMA was used to encapsulate and deliver Doxorubicin for synergetic enhancement of antitumor efficacy by the combinational effect of charge-reversal on cellular uptake and reduction-sensitivity on intracellular DOX release.
Collapse
Affiliation(s)
- Shi-Xi Li
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Lei Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Liu-Jie Zhang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Bo Wu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Wei Zhou
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072
| |
Collapse
|
124
|
Chen C, Zheng P, Cao Z, Ma Y, Li J, Qian H, Tao W, Yang X. PEGylated hyperbranched polyphosphoester based nanocarriers for redox-responsive delivery of doxorubicin. Biomater Sci 2016; 4:412-7. [DOI: 10.1039/c5bm00440c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A PEGylated hyperbranched polyphosphoester containing multiple disulfide bonds (ss-hbPPE) was used and evaluated as a redox-responsive delivery system.
Collapse
Affiliation(s)
- Chao Chen
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Pan Zheng
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Ziyang Cao
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Yinchu Ma
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Jie Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Haisheng Qian
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Wei Tao
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Xianzhu Yang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| |
Collapse
|
125
|
Wang Y, Luo Q, Zhu W, Li X, Shen Z. Reduction/pH dual-responsive nano-prodrug micelles for controlled drug delivery. Polym Chem 2016. [DOI: 10.1039/c6py00168h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We provided a facile strategy to fabricate reduction/pH dual-responsive nano-prodrug micelles for controlled drug delivery.
Collapse
Affiliation(s)
- Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Qiaojie Luo
- The First Affiliated Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310003
- P. R. China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
126
|
Yang J, Duan Y, Zhang X, Wang Y, Yu A. Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. J Mater Chem B 2016; 4:3868-3873. [DOI: 10.1039/c6tb00847j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disulfide-containing nanoparticles modulate cellular redox microenvironment when deliver drug into cells, and have significant influence on therapeutic response and efficacy.
Collapse
Affiliation(s)
- Jingmei Yang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Yongchao Duan
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Ao Yu
- Central Laboratory
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
127
|
Zhang S, Chen H, Kong J. Disulfide bonds-containing amphiphilic conetworks with tunable reductive-cleavage. RSC Adv 2016. [DOI: 10.1039/c6ra02824a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disulfide bonds-containing amphiphilic conetworks were presented with tunable reduction-cleavage via click reaction of azide terminated poly(ε-caprolactone) and alkyne-terminated polyethylene glycol.
Collapse
Affiliation(s)
- Shan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Heng Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| |
Collapse
|
128
|
Jia H, Huang Z, Li Z, Zheng Z, Wang X. One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Adv 2016. [DOI: 10.1039/c6ra04320h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of tetra-PEG polyurethane hydrogels with tunable redox-degradability and a high compressive fracture strength has been synthesized by a one-pot method.
Collapse
Affiliation(s)
- Haiyan Jia
- School of Chemistry and Chemical Engineering (SCCE)
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhangjun Huang
- School of Chemistry and Chemical Engineering (SCCE)
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhao Li
- School of Chemistry and Chemical Engineering (SCCE)
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering (SCCE)
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering (SCCE)
- The State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
129
|
Yan L, Li X. Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy. Curr Pharm Biotechnol 2016; 17:227-36. [PMID: 26873075 PMCID: PMC5973479 DOI: 10.2174/138920101703160206142821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/10/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023]
Abstract
In the past decade, drug delivery systems that can respond to the tumor microenvironment or external stimuli have emerged as promising platforms for treating malignancies due to their improved antitumor efficacy and reduced side effects. In particular, biodegradable polymeric micelles have attracted increasing attention and been rapidly developed as a distinct therapeutic to overcome limitations of conventional chemotherapeutic anticancer drugs. Because of their advantages with respect to biocompatibility, degradability, circulation time, and tumor accumulation, considerable effort has been dedicated to the developing and optimizing micellar systems during the past few years. This review highlights recent advances concerning stimuli-responsive micelles made of biodegradable polypeptide and polyester as nanocarries for drug delivery, and especially limits the content to pH sensitive, redox sensitive, and photo-sensitive micellar systems for safe and efficient cancer chemotherapy.
Collapse
Affiliation(s)
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
130
|
Miao C, Li F, Zuo Y, Wang R, Xiong Y. Novel redox-responsive nanogels based on poly(ionic liquid)s for the triggered loading and release of cargos. RSC Adv 2016. [DOI: 10.1039/c5ra21820a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A redox-responsive nanogel matrix was fabricated by one-step synthesis for the controlled loading and release of cargos.
Collapse
Affiliation(s)
- Congcong Miao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Feng Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Yong Zuo
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Rongmin Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Yubing Xiong
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|
131
|
Yuan Y, Xu S, Zhang CJ, Liu B. Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells. Polym Chem 2016. [DOI: 10.1039/c6py00449k] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A photo-active amphiphilic polymer containing a photosensitizer with aggregation-induced emission (AIE) characteristics was developed for light-responsive cytosolic drug release to overcome drug resistance.
Collapse
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of Materials Research and Engineering
| |
Collapse
|
132
|
Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, Liang XJ. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:269-86. [PMID: 26707818 DOI: 10.1016/j.nano.2015.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Multidrug resistance is one of the biggest obstacles in the treatment of cancer. Recent research studies highlight that tumor microenvironment plays a predominant role in tumor cell proliferation, metastasis, and drug resistance. Hence, targeting the tumor microenvironment provides a novel strategy for the evolution of cancer nanomedicine. The blooming knowledge about the tumor microenvironment merging with the design of PEG-based amphiphilic nanoparticles can provide an effective and promising platform to address the multidrug resistant tumor cells. This review describes the characteristic features of tumor microenvironment and their targeting mechanisms with the aid of PEG-based amphiphilic nanoparticles for the development of newer drug delivery systems to overcome multidrug resistance in cancer cells. FROM THE CLINICAL EDITOR Cancer is a leading cause of death worldwide. Many cancers develop multidrug resistance towards chemotherapeutic agents with time and strategies are urgently needed to combat against this. In this review article, the authors discuss the current capabilities of using nanomedicine to target the tumor microenvironments, which would provide new insight to the development of novel delivery systems for the future.
Collapse
Affiliation(s)
- Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China
| | - Keni Yang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Ruslan G Tuguntaev
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Anbu Mozhi
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, PR China.
| | - Paul C Wang
- Fu Jen Catholic University, Taipei, Taiwan; Laboratory of Molecular Imaging, Department of Radiology, Howard University, WA, DC, USA
| | - Xing-Jie Liang
- CAS Key Lab of Nanomaterials Bioeffects and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, PR China.
| |
Collapse
|
133
|
Ma YC, Wang JX, Tao W, Sun CY, Wang YC, Li DD, Fan F, Qian HS, Yang XZ. Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26315-26325. [PMID: 26552849 DOI: 10.1021/acsami.5b09195] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multidrug resistance (MDR) has been recognized as a key factor contributing to the failure of chemotherapy for cancer in the clinic, often due to insufficient delivery of anticancer drugs to target cells. For addressing this issue, a redox-responsive polyphosphoester-based micellar nanomedicine, which can be triggered to release transported drugs in tumor cells, has been developed. The micelles are composed of diblock copolymers with a hydrophilic PEG block and a hydrophobic polyphosphoester (PPE) block bearing a disulfide bond in a side group. After incubating the redox-responsive micelles with drug-resistant tumor cells, the intracellular accumulation and retention of DOX were significantly enhanced. Moreover, after internalization by MDR cancer cells, the disulfide bond in the side group was cleaved by the high intracellular glutathione levels, resulting in a hydrophobic to hydrophilic transition of the PPE block and subsequent disassembly of the micelles. Thus, the encapsulated DOX was rapidly released, and abrogation of drug resistance in the cancer cells was observed in vitro. Moreover, the DOX-loaded redox-responsive micelles exhibited significantly enhanced inhibition of tumor growth in nude mice bearing MCF-7/ADR xenograft tumors via tail vein injection, indicating that such micelles have great potential in overcoming MDR for cancer therapy.
Collapse
Affiliation(s)
- Yin-Chu Ma
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Jun-Xia Wang
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Wei Tao
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Chun-Yang Sun
- School of Life Sciences and Medical Center, University of Science & Technology of China , Hefei, Anhui 230027, P.R. China
| | - Yu-Cai Wang
- School of Life Sciences and Medical Center, University of Science & Technology of China , Hefei, Anhui 230027, P.R. China
| | - Dong-Dong Li
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Feng Fan
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Hai-Sheng Qian
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Xian-Zhu Yang
- School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| |
Collapse
|
134
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
135
|
Bioreducible Micelles Self-Assembled from Poly(ethylene glycol)-Cholesteryl Conjugate As a Drug Delivery Platform. Polymers (Basel) 2015. [DOI: 10.3390/polym7111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
136
|
Wang L, Wang Y, Jin Q, Jia F, Wang H, Ji J. Biomimic pH/reduction dual-sensitive reversibly cross-linked hyaluronic acid prodrug micelles for targeted intracellular drug delivery. POLYMER 2015; 76:237-244. [DOI: 10.1016/j.polymer.2015.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
137
|
Ji W, Liu GF, Xu MX, Feng CL. A Redox-Responsive Supramolecular Hydrogel for Controllable Dye Release. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Ji
- School of Materials Science and Engineering; State Key Lab of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Guo Feng Liu
- School of Materials Science and Engineering; State Key Lab of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Ming Xin Xu
- School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Liang Feng
- School of Materials Science and Engineering; State Key Lab of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
138
|
Nam JP, Lee KJ, Choi JW, Yun CO, Nah JW. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2015; 133:254-62. [DOI: 10.1016/j.colsurfb.2015.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/08/2015] [Indexed: 01/15/2023]
|
139
|
Xiao H, Wang L. Effects of X-shaped reduction-sensitive amphiphilic block copolymer on drug delivery. Int J Nanomedicine 2015; 10:5309-25. [PMID: 26346880 PMCID: PMC4554410 DOI: 10.2147/ijn.s85230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To study the effects of X-shaped amphiphilic block copolymers on delivery of docetaxel (DTX) and the reduction-sensitive property on drug release, a novel reduction-sensitive amphiphilic copolymer, (PLGA)2-SS-4-arm-PEG2000 with a Gemini-like X-shape, was successfully synthesized. The formation of nanomicelles was proved with respect to the blue shift of the emission fluorescence as well as the fluorescent intensity increase of coumarin 6-loaded particles. The X-shaped polymers exhibited a smaller critical micelle concentration value and possessed higher micellar stability in comparison with those of linear ones. The size of X-shaped (PLGA)2-SS-4-arm-PEG2000 polymer nanomicelles (XNMs) was much smaller than that of nanomicelles prepared with linear polymers. The reduction sensitivity of polymers was confirmed by the increase of micellar sizes as well as the in vitro drug release profile of DTX-loaded XNMs (DTX/XNMs). Cytotoxicity assays in vitro revealed that the blank XNMs were nontoxic against A2780 cells up to a concentration of 50 µg/mL, displaying good biocompatibility. DTX/XNMs were more toxic against A2780 cells than other formulations in both dose- and time-dependent manners. Cellular uptake assay displayed a higher intracellular drug delivery efficiency of XNMs than that of nanomicelles prepared with linear polymers. Besides, the promotion of tubulin polymerization induced by DTX was visualized by immunofluorescence analysis, and the acceleration of apoptotic process against A2780 cells was also imaged using a fluorescent staining method. Therefore, this X-shaped reduction-sensitive (PLGA)2-SS-4-arm-PEG2000 copolymer could effectively improve the micellar stability and significantly enhance the therapeutic efficacy of DTX by increasing the cellular uptake and selectively accelerating the drug release inside cancer cells.
Collapse
Affiliation(s)
- Haijun Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
140
|
Abstract
Multidrug resistance (MDR) among cancer cells is a serious impediment to the success of conventional chemotherapy. The emergence of nanomedicine demonstrates great promise in overcoming MDR through multiple mechanisms. Nanoparticles have been shown to overcome the MDR at the tissue level through increased intratumoral accumulation resulting from enhanced permeation and retention, neovascular cell targeting, and externally triggered local drug release. Nanoparticles have also demonstrated the ability to overcome the MDR at the cellular/subcellular level by enhancing intracellular drug accumulation, improving drug-target accessibility, or even interfering with existing MDR mechanisms.
Collapse
|
141
|
Sarvašová N, Ulbrich P, Tokárová V, Zadražil A, Štěpánek F. Artificial swarming: Towards radiofrequency control of reversible micro-particle aggregation and deposition. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
142
|
Chen H, Jia J, Duan X, Yang Z, Kong J. Reduction-cleavable hyperbranched polymers with limited intramolecular cyclization via click chemistry. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Heng Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Jiqiong Jia
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Zhen Yang
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| |
Collapse
|
143
|
Yu J, Chu X, Hou Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun (Camb) 2015; 50:11614-30. [PMID: 25058003 DOI: 10.1039/c4cc03984j] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticles (NPs) have recently been well investigated for cancer therapy. Among them, those that are responsive to internal or external stimuli are promising due to their flexibility. In this feature article, we provide an overview on stimuli-sensitive cancer therapy, using pH- and reduction-sensitive NPs, as well as light- and magnetic field-responsive NPs.
Collapse
Affiliation(s)
- Jing Yu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
144
|
Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 2015; 205:144-54. [DOI: 10.1016/j.jconrel.2015.01.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 12/25/2022]
|
145
|
Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Adv Healthc Mater 2015; 4:844-55. [PMID: 25645303 DOI: 10.1002/adhm.201400736] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/13/2015] [Indexed: 01/20/2023]
Abstract
The reversible PEGylation endows antitumor drugs with various fascinating advantages, including prolonged circulation time in blood, enhanced accumulation in tumor tissue, increased cellular uptake, and promoted intracellular drug release, to improve the therapeutic efficacy and security. Here, the obtained succinic anhydride (SA)-functionalized DOX (SAD) (i.e., insensitive succinic anhydride-functionalized doxorubicin (DOX)) and aconitic anhydride (CA)-modified DOX (CAD) (i.e., acid-sensitive cis-aconitic anhydride-modified DOX) are conjugated to the terminal of poly(ethylene glycol) (PEG) yielding the unresponsive SAD-PEG-SAD and pH-responsive CAD-PEG-CAD prodrugs, respectively. The prepared prodrugs can self-assemble into micelles in aqueous solution. Both micelles are sufficiently stable at normal physiological pH (i.e., 7.4), while CAD-PEG-CAD micelle gradually swells and finally disassembles at intratumoral (i.e., 6.8) and especially endosomal pHs (i.e., 5.5). DOX release from CAD-PEG-CAD at pH 7.4 is efficiently inhibited, whereas it is significantly accelerated by the rapid cleavage of amide bond at pH 5.5. In addition, CAD-PEG-CAD exhibits more efficient cellular uptake and potent cytotoxicity in vitro, as well as improved tissue distribution and superior tumor suppression in vivo than free DOX and SAD-PEG-SAD. More importantly, the PEGylated DOX exhibits favorable security in vivo. In brief, the smart CAD-PEG-CAD with enhanced antitumor efficacy and decreased side effects shows as a promising powerful platform for the clinical chemotherapy of malignancy.
Collapse
Affiliation(s)
- Diankui Sun
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
146
|
Giménez C, de la Torre C, Gorbe M, Aznar E, Sancenón F, Murguía JR, Martínez-Máñez R, Marcos MD, Amorós P. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3753-62. [PMID: 25742160 DOI: 10.1021/acs.langmuir.5b00139] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, mesoporous silica nanoparticles (MSNs) have been used as effective supports for the development of controlled-release nanodevices that are able to act as multifunctional delivery platforms for the encapsulation of therapeutic agents, enhancing their bioavailability and overcoming common issues such as poor water solubility and poor stability of some drugs. In particular, redox-responsive delivery systems have attracted the attention of scientists because of the intracellular reductive environment related to a high concentration of glutathione (GSH). In this context, we describe herein the development of a GSH-responsive delivery system based on poly(ethylene glycol)- (PEG-) capped MSNs that are able to deliver safranin O and doxorubicin in a controlled manner. The results showed that the PEG-capped systems designed in this work can be maintained closed at low GSH concentrations, yet the cargo can be delivered when the concentration of GSH is increased. Moreover, the efficacy of the PEG-capped system in delivering the cytotoxic agent doxorubicin in cells was also demonstrated.
Collapse
Affiliation(s)
- Cristina Giménez
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Cristina de la Torre
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Mónica Gorbe
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Elena Aznar
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Félix Sancenón
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Jose R Murguía
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Ramón Martínez-Máñez
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - M Dolores Marcos
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Pedro Amorós
- ⊥Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 2085, E-46071 Valencia, Spain
| |
Collapse
|
147
|
Chen P, Qiu M, Deng C, Meng F, Zhang J, Cheng R, Zhong Z. pH-Responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride. Biomacromolecules 2015; 16:1322-30. [PMID: 25759951 DOI: 10.1021/acs.biomac.5b00113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
pH-Responsive chimaeric polypeptide-based polymersomes (refer to as pepsomes) were designed and developed from asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) (PEG-PLeu-PGA, PEG is longer than PGA) triblock copolymers for efficient encapsulation and triggered intracellular delivery of doxorubicin hydrochloride (DOX·HCl). PEG-PLeu-PGA was conveniently prepared by sequential ring-opening polymerization of l-leucine N-carboxyanhydride and γ-benzyl-l-glutamate N-carboxyanhydride using PEG-NH2 as an initiator followed by deprotection. Pepsomes formed from PEG-PLeu-PGA had unimodal distribution and small sizes of 64-71 nm depending on PLeu block lengths. Interestingly, these chimaeric pepsomes while stable at pH 7.4 were quickly disrupted at pH 5.0, likely due to alternation of ionization state of the carboxylic groups in PGA that shifts PGA blocks from hydrophilic and random coil structure into hydrophobic and α-helical structure. DOX·HCl could be actively loaded into the watery core of pepsomes with a high loading efficiency. Remarkably, the in vitro release studies revealed that release of DOX·HCl was highly dependent on pH, in which about 24.0% and 75.7% of drug was released at pH 7.4 and 5.0, respectively, at 37 °C in 24 h. MTT assays demonstrated that DOX·HCl-loaded pepsomes exhibited high antitumor activity, similar to free DOX·HCl in RAW 264.7 cells. Moreover, they were also potent toward drug-resistant MCF-7 cancer cells (MCF-7/ADR). Confocal microscopy studies showed that DOX·HCl-loaded pepsomes delivered and released drug into the cell nuclei of MCF-7/ADR cells in 4 h, while little DOX·HCl fluorescence was observed in MCF-7/ADR cells treated with free drug under otherwise the same conditions. These chimaeric pepsomes with facile synthesis, efficient drug loading, and pH-triggered drug release behavior are an attractive alternative to liposomes for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Peipei Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
148
|
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional chemotherapy for the treatment of cancer has limited specificity when administered systemically and is often associated with toxicity issues. Enhanced accumulation of polymeric nanocarriers at a tumor site may be achieved by passive and active targeting. Incorporation of trigger responsiveness into these polymeric nanocarriers improves the anticancer efficacy of such systems by modulating the release of the drug according to the tumor environment. Triggers used for tumor targeting include internal triggers such as pH, redox and enzymes and external triggers such as temperature, magnetic field, ultrasound and light. While internal triggers are specific cues of the tumor microenvironment, external triggers are those which are applied externally to control the release. This review highlights the various strategies employed for the preparation of such trigger responsive polymeric nanocarriers for cancer therapy and provides an overview of the state of the art in this field.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | | | | | | |
Collapse
|
149
|
Sun H, Cheng R, Deng C, Meng F, Dias AA, Hendriks M, Feijen J, Zhong Z. Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules 2015; 16:597-605. [DOI: 10.1021/bm501652d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huanli Sun
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ru Cheng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Chao Deng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Aylvin A. Dias
- DSM Biomedical, Koestraat 1, Geleen 6167 RA, The Netherlands
| | - Marc Hendriks
- DSM Biomedical, Koestraat 1, Geleen 6167 RA, The Netherlands
| | - Jan Feijen
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
- Department
of Polymer Chemistry and Biomaterials, Institute for Biomedical Technology
and Technical Medicine (MIRA), Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
150
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|