101
|
Strickler MA, Hillier W, Debus RJ. No evidence from FTIR difference spectroscopy that glutamate-189 of the D1 polypeptide ligates a Mn ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transitions in photosystem II. Biochemistry 2006; 45:8801-11. [PMID: 16846223 PMCID: PMC2515374 DOI: 10.1021/bi060583a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn(4) cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S(0) --> S(1), S(1) --> S(2), and S(2) --> S(3) transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm(-)(1)) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 A from the Mn(4) cluster and accepts a hydrogen bond from Tyr Y(D)). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn(4) cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S(0) --> S(1), S(1) --> S(2), or S(2) --> S(3) transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn(4) cluster during the S(1) --> S(2) transition be localized on the Mn ion that is ligated by the alpha-COO(-) group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn(4) cluster during the S(0) --> S(1) and S(2) --> S(3) transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn(4) cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn(4) cluster that occurred during the collection of the X-ray diffraction data.
Collapse
Affiliation(s)
- Melodie A. Strickler
- Department of Biochemistry, University of California, Riverside, California 92521−0129
| | - Warwick Hillier
- Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra ACT, Australia 2601
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521−0129
- Author to whom correspondence should be addressed. Phone: (951) 827−3483, Fax: (951) 827−4434, E-mail:
| |
Collapse
|
102
|
Iverson TM. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 2006; 10:91-100. [PMID: 16504567 DOI: 10.1016/j.cbpa.2006.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
Oxygenic photosynthesis is one example of the many bioenergetic pathways utilized by different organisms to harvest energy from the environment. These pathways revolve around a theme of coupling oxidation-reduction reactions to the formation of membrane potential and subsequent ATP synthesis. Although the basic principles underlying bioenergetics are universally conserved, the constituents of the bioenergetic pathways in different organisms have evolved unique aspects to fill an evolutionary niche. Three-dimensional structures of all of the membrane-spanning components of the electron-transfer chain of oxygenic photosynthesis have revealed those unique aspects of this fascinating process, including the unique metallocofactor for catalysis, the determinants of the uniquely high voltage cofactor, and the numerous photoprotective mechanisms that guard against radical damage.
Collapse
Affiliation(s)
- Tina M Iverson
- Department of Pharmacology, Center for Structural Biology and Vanderbilt Institute for Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
103
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
104
|
Kimura Y, Mizusawa N, Ishii A, Nakazawa S, Ono TA. Changes in Structural and Functional Properties of Oxygen-evolving Complex Induced by Replacement of D1-Glutamate 189 with Glutamine in Photosystem II. J Biol Chem 2005; 280:37895-900. [PMID: 16157592 DOI: 10.1074/jbc.m505887200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A carboxylate group of D1-Glu-189 in photosystem II has been proposed to serve as a direct ligand for the manganese cluster. Here we constructed a mutant that eliminates the carboxylate by replacing D1-Glu-189 with Gln in the cyanobacterium Synechocystis sp. PCC 6803, and we examined the resulting effects on the structural and functional properties of the oxygen-evolving complex (OEC) in photosystem II. The E189Q mutant grew photoautotrophically, and isolated photosystem II core particles evolved oxygen at approximately 70% of the rate of control wild-type particles. The E189Q OEC showed typical S(2) state electron spin resonance signals, and the spin center distance between the S(2) state manganese cluster and the Y(D) (D2-Tyr-160), detected by electron-electron double resonance spectroscopy, was not affected by this mutation. However, the redox potential of the E189Q OEC was considerably lower than that of the control OEC, as revealed by the elevated peak temperature of the S(2) state thermoluminescence bands. The mutation resulted in specific changes to bands ascribed to the putative carboxylate ligands for the manganese cluster and to a few carbonyl bands in mid-frequency (1800 to 1100 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum. Notably, the low frequency (650 to 350 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum was also uniquely changed by this mutation in the frequencies for the manganese cluster core vibrations. These results suggested that the carboxylate group of D1-Glu-189 ligates the manganese ion, which is influenced by the redox change of the oxidizable manganese ion upon the S(1) to S(2) transition.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Laboratory for Photo-Biology (1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, Aramaki, Aoba, Sendai, Japan.
| | | | | | | | | |
Collapse
|
105
|
Barry BA, Hicks C, De Riso A, Jenson DL. Calcium ligation in photosystem II under inhibiting conditions. Biophys J 2005; 89:393-401. [PMID: 15985425 PMCID: PMC1366539 DOI: 10.1529/biophysj.105.059667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In oxygenic photosynthesis, PSII carries out the oxidation of water and reduction of plastoquinone. The product of water oxidation is molecular oxygen. The water splitting complex is located on the lumenal side of the PSII reaction center and contains manganese, calcium, and chloride. Four sequential photooxidation reactions are required to generate oxygen from water; the five sequentially oxidized forms of the water splitting complex are known as the Sn states, where n refers to the number of oxidizing equivalents stored. Calcium plays a role in water oxidation; removal of calcium is associated with an inhibition of the S state cycle. Although calcium can be replaced by other cations in vitro, only strontium maintains activity, and the steady-state rate of oxygen evolution is decreased in strontium-reconstituted PSII. In this article, we study the role of calcium in PSII that is limited in water content. We report that strontium substitution or 18OH2 exchange causes conformational changes in the calcium ligation shell. The conformational change is detected because of a perturbation to calcium ligation during the S1 to S2 and S2 to S3 transition under water-limited conditions.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|
106
|
Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK. X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci U S A 2005; 102:12047-52. [PMID: 16103362 PMCID: PMC1186027 DOI: 10.1073/pnas.0505207102] [Citation(s) in RCA: 464] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray absorption spectroscopy was used to measure the damage caused by exposure to x-rays to the Mn(4)Ca active site in single crystals of photosystem II as a function of dose and energy of x-rays, temperature, and time. These studies reveal that the conditions used for structure determination by x-ray crystallography cause serious damage specifically to the metal-site structure. The x-ray absorption spectra show that the structure changes from one that is characteristic of a high-valent Mn(4)(III(2),IV(2)) oxo-bridged Mn(4)Ca cluster to that of Mn(II) in aqueous solution. This damage to the metal site occurs at a dose that is more than one order of magnitude lower than the dose that results in loss of diffractivity and is commonly considered safe for protein crystallography. These results establish quantitative x-ray dose parameters that are applicable to redox-active metalloproteins. This case study shows that a careful evaluation of the structural intactness of the active site(s) by spectroscopic techniques can validate structures derived from crystallography and that it can be a valuable complementary method before structure-function correlations of metalloproteins can be made on the basis of high-resolution x-ray crystal structures.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Eaton-Rye JJ. Requirements for different combinations of the extrinsic proteins in specific cyanobacterial photosystem II mutants. PHOTOSYNTHESIS RESEARCH 2005; 84:275-81. [PMID: 16049786 DOI: 10.1007/s11120-005-0748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/17/2005] [Indexed: 05/03/2023]
Abstract
The crystallographic data available for Photosystem II (PS II) in cyanobacteria has now provided complete structures for loop E from CP43 and CP47 as well as the extrinsic subunits PsbO, PsbU and PsbV. Protein interactions between these subunits are essential for stable water splitting and there is evidence that the binding of PsbU facilitates optimal energy transfer from the phycobilisome. Interactions between PsbO and CP47 may also play a role in dimer stabilization while loop E of CP43 contributes directly to the water-splitting reaction. Recent evidence also suggests that homologs of PsbP and PsbQ play key roles in cyanobacterial PS II, and under nutrient-deficient conditions PsbQ appears essential for photoautotrophic growth.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
108
|
Berthomieu C, Hienerwadel R. Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:51-66. [PMID: 15721606 DOI: 10.1016/j.bbabio.2004.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 03/31/2004] [Indexed: 11/27/2022]
Abstract
Tyrosine radicals play catalytic roles in essential metalloenzymes. Their properties--midpoint potential, stability...--or environment varies considerably from one enzyme to the other. To understand the origin of these properties, the redox tyrosines are studied by a number of spectroscopic techniques, including Fourier transform infrared (FTIR) and resonance Raman (RR) spectroscopy. An increasing number of vibrational data are reported for the (modified-) redox active tyrosines in ribonucleotide reductases, photosystem II, heme catalase and peroxidases, galactose and glyoxal oxidases, and cytochrome oxidase. The spectral markers for the tyrosinyl radicals have been recorded on models of (substituted) phenoxyl radicals, free or coordinated to metals. We review these vibrational data and present the correlations existing between the vibrational modes of the radicals and their properties and interactions formed with their environment: we present that the nu7a(C-O) mode of the radical, observed both by RR and FTIR spectroscopy at 1480-1515 cm(-1), is a sensitive marker of the hydrogen bonding status of (substituted)-phenoxyl and Tyr*, while the nu8a(C-C) mode may probe coordination of the Tyr* to a metal. For photosystem II, the information obtained by light-induced FTIR difference spectroscopy for the two redox tyrosines TyrD and TyrZ and their hydrogen bonding partners is discussed in comparison with those obtained by other spectroscopic methods.
Collapse
Affiliation(s)
- Catherine Berthomieu
- CEA-Cadarache, Laboratoire de Bioénergétique Cellulaire, UMR 6191 CNRS-CEA-Aix-Marseille II, Univ.-Méditerranée CEA 1000, Bât. 156, F-13108 Saint-Paul-lez-Durance, Cedex, France.
| | | |
Collapse
|
109
|
Cser K, Diner BA, Nixon PJ, Vass I. The role of D1-Ala344 in charge stabilization and recombination in Photosystem II. Photochem Photobiol Sci 2005; 4:1049-54. [PMID: 16307121 DOI: 10.1039/b512354m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ala344 residue of the D1 protein has been identified as a crucial residue of the catalytic cluster of the water-oxidizing complex, however, its function has not been fully clarified. Here we have used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-Ala344stop mutation on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutant cannot grow photoautotrophically it shows flash-induced thermoluminescence and chlorophyll fluorescence signals reflecting the stabilization of negative and positive charges on the Q(A) and Q(B) quinone electron acceptors, and stable Photosystem II donors, respectively. Decay of flash induced chlorophyll fluorescence yield is multiphasic in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with 6 ms, 350 ms, and 26 s time constants. When cells are illuminated with repetitive flashes, fired at 1 ms intervals, the 6 ms phase is gradually decreased with the concomitant increase of the 350 ms phase. After 45 min dark adaptation of mutant cells the 6 ms and 350 ms phases were significantly decreased and a very slow decaying component was formed. Flash induced oscillation of the thermoluminescence B band, which reflects the redox cycling of the water-oxidizing complex in the wild-type cells, was completely abolished in the D1-Ala344stop mutant. The results demonstrate that low efficiency photooxidation of Mn occurs in about 60% of the PSII centers. The photooxidizable Mn is unstable in the dark, and formation of higher S states is inhibited. In addition, the Q(A) to Q(B) electron transfer step is slowed down as an indirect consequence of the donor side modification. Our data indicate that the stabilization of a Mn ion by the alpha-carboxylate chain of the D1-Ala344 residue might represent one of the final steps in the assembly of functional catalytic sites for water oxidation.
Collapse
Affiliation(s)
- Krisztián Cser
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | | | | | | |
Collapse
|
110
|
Kimura Y, Mizusawa N, Yamanari T, Ishii A, Ono TA. Structural Changes of D1 C-terminal α-Carboxylate during S-state Cycling in Photosynthetic Oxygen Evolution. J Biol Chem 2005; 280:2078-83. [PMID: 15542597 DOI: 10.1074/jbc.m410627200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in the chemical structure of alpha-carboxylate of the D1 C-terminal Ala-344 during S-state cycling of photosynthetic oxygen-evolving complex were selectively measured using light-induced Fourier transform infrared (FTIR) difference spectroscopy in combination with specific [(13)C]alanine labeling and site-directed mutagenesis in photosystem II core particles from Synechocystis sp. PCC 6803. Several bands for carboxylate symmetric stretching modes in an S(2)/S(1) FTIR difference spectrum were affected by selective (13)C labeling of the alpha-carboxylate of Ala with l-[1-(13)C]alanine, whereas most of the isotopic effects failed to be induced in a site-directed mutant in which Ala-344 was replaced with Gly. Labeling of the alpha-methyl of Ala with l-[3-(13)C]alanine had much smaller effects on the spectrum to induce isotopic bands due to a symmetric CH(3) deformation coupled with the alpha-carboxylate. The isotopic bands for the alpha-carboxylate of Ala-344 showed characteristic changes during S-state cycling. The bands appeared prominently upon the S(1)-to-S(2) transition and to a lesser extent upon the S(2)-to-S(3) transition but reappeared at slightly upshifted frequencies with the opposite sign upon the S(3)-to-S(0) transition. No obvious isotopic band appeared upon the S(0)-to-S(1) transition. These results indicate that the alpha-carboxylate of C-terminal Ala-344 is structurally associated with a manganese ion that becomes oxidized upon the S(1)-to-S(2) transition and reduced reversely upon the S(3)-to-S(0) transition but is not associated with manganese ion(s) oxidized during the S(0)-to-S(1) (and S(2)-to-S(3)) transition(s). Consistently, l-[1-(13)C]alanine labeling also induced spectral changes in the low frequency (670-350 cm(-1)) S(2)/S(1) FTIR difference spectrum.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Laboratory for Photo-Biology (1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan
| | | | | | | | | |
Collapse
|
111
|
Siegbahn PEM, Lundberg M. The mechanism for dioxygen formation in PSII studied by quantum chemical methods. Photochem Photobiol Sci 2005; 4:1035-43. [PMID: 16307119 DOI: 10.1039/b506746b] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The availability of an X-ray structure for PSII including the water-oxidizing cluster, where the metal atoms and the amino acids are assigned, has opened up new possibilities to study the mechanism for dioxygen formation. In the present paper the main results of an ongoing hybrid DFT study are presented. The model used follows the structure suggested by the X-ray analysis as closely as possible. After nearly one thousand optimizations of different structures, each one with about 70 atoms, the main features of a water oxidizing mechanism start to emerge. The key intermediate is an oxyl radical state in S(3), stabilized by a weak trans effect to a bridging oxo in the cube. To reach this radical state a structural rearrangement appears necessary, in which one additional bridging oxo is formed between the dangling manganese and a manganese in the cube. The calculated energetics is reasonable but still not fully consistent with a correct mechanism. It is suggested that some part of the structure is not correct, probably the presence of the bicarbonate.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Physics, Stockholm University, AlbaNova University Center, Stockholm Center for Physics, Astronomy and Biotechnology, SE-106 91, Stockholm, Sweden.
| | | |
Collapse
|
112
|
McEvoy JP, Gascon JA, Batista VS, Brudvig GW. The mechanism of photosynthetic water splitting. Photochem Photobiol Sci 2005; 4:940-9. [PMID: 16307106 DOI: 10.1039/b506755c] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygenic photosynthesis, which provides the biosphere with most of its chemical energy, uses water as its source of electrons. Water is photochemically oxidized by the protein complex photosystem II (PSII), which is found, along with other proteins of the photosynthetic light reactions, in the thylakoid membranes of cyanobacteria and of green plant chloroplasts. Water splitting is catalyzed by the oxygen-evolving complex (OEC) of PSII, producing dioxygen gas, protons and electrons. O(2) is released into the atmosphere, sustaining all aerobic life on earth; product protons are released into the thylakoid lumen, augmenting a proton concentration gradient across the membrane; and photo-energized electrons pass to the rest of the electron-transfer pathway. The OEC contains four manganese ions, one calcium ion and (almost certainly) a chloride ion, but its precise structure and catalytic mechanism remain unclear. In this paper, we develop a chemically complete structure of the OEC and its environment by using molecular mechanics calculations to extend and slightly adjust the recently-obtained X-ray crystallographic model with reference to this structure and to some important recent experimental results.
Collapse
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | |
Collapse
|
113
|
Roose JL, Pakrasi HB. Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J Biol Chem 2004; 279:45417-22. [PMID: 15308630 DOI: 10.1074/jbc.m408458200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated DeltactpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor Y(Z) was accessible to exogenous Mn(2+) ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in DeltactpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.
Collapse
Affiliation(s)
- Johnna L Roose
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
114
|
Iwata S, Barber J. Structure of photosystem II and molecular architecture of the oxygen-evolving centre. Curr Opin Struct Biol 2004; 14:447-53. [PMID: 15313239 DOI: 10.1016/j.sbi.2004.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Photosynthesis utilizes light energy to oxidize water molecules to molecular oxygen at the oxygen-evolving centre of photosystem II. The structure of photosystem II from the cyanobacterium Thermosynechococcus elongatus has been reported at 3.5A resolution and, for the first time, the complete molecular structure of this 650 kDa complex, including the oxygen-evolving centre, has been revealed.
Collapse
Affiliation(s)
- So Iwata
- Division of Biomedical Sciences and Department of Biological Sciences, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
115
|
Mizusawa N, Kimura Y, Ishii A, Yamanari T, Nakazawa S, Teramoto H, Ono TA. Impact of Replacement of D1 C-terminal Alanine with Glycine on Structure and Function of Photosynthetic Oxygen-evolving Complex. J Biol Chem 2004; 279:29622-7. [PMID: 15123635 DOI: 10.1074/jbc.m402397200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal alanine 344 (Ala-344) in the D1 protein of photosystem II is conserved in all of the organisms performing oxygenic photosynthesis. A free alpha-COO(-) of Ala-344 has been proposed to be responsible for ligating the Mn cluster. Here, we constructed a mutant having D1 in which D1-Ala-344 was replaced with glycine (Gly) in cyanobacterium Synechocystis sp. PCC 6803. The effects of this minimal change in the side group from methyl to hydrogen on the properties of the oxygen-evolving complex were comprehensively investigated using purified core particles. The mutant grew photoautotrophically, and little change was observed in the protein composition of the oxygen-evolving core particles. The Gly-substituted oxygen-evolving complex showed small but normal S(2) multiline and enhanced g = 4.1 electron spin resonance signals and S(2)-state thermoluminescence bands with slightly elevated peak temperature. The Gly substitution resulted in distinct but relatively small changes in a few bands arising from the putative carboxylate ligand for the Mn cluster in the mid-frequency (1800-1000 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum. In contrast, the low frequency (670-350 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum was markedly changed by the substitution. The results indicate that the internal structure of the Mn cluster and/or the interaction between the Mn cluster and its ligand are considerably altered by a simple change in the side group, from methyl to hydrogen, at the C-terminal of the D1 protein.
Collapse
Affiliation(s)
- Naoki Mizusawa
- Laboratory for Photo-Biology (1), RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan
| | | | | | | | | | | | | |
Collapse
|
116
|
Burnap RL. D1 protein processing and Mn cluster assembly in light of the emerging Photosystem II structure. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407094a] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
117
|
Lundberg M, Siegbahn PEM. Theoretical investigations of structure and mechanism of the oxygen-evolving complex in PSII. Phys Chem Chem Phys 2004. [DOI: 10.1039/b406552b] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
118
|
DasguptaThese authors contributed e J, van Willigen RT, Dismukes GC. Consequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonate. Phys Chem Chem Phys 2004. [DOI: 10.1039/b408270b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
119
|
Barber J, Ferreira K, Maghlaoui K, Iwata S. Structural model of the oxygen-evolving centre of photosystem II with mechanistic implications. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407981g] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|