101
|
Raugei S, Helm ML, Hammes-Schiffer S, Appel AM, O’Hagan M, Wiedner ES, Bullock RM. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen. Inorg Chem 2015; 55:445-60. [DOI: 10.1021/acs.inorgchem.5b02262] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simone Raugei
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| | - Monte L. Helm
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Aaron M. Appel
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| | - Molly O’Hagan
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| | - Eric S. Wiedner
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis,
Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2−12, Richland, Washington 99352, United States
| |
Collapse
|
102
|
Zipoli F, Car R, Cohen MH, Selloni A. Theoretical Design by First Principles Molecular Dynamics of a Bioinspired Electrode-Catalyst System for Electrocatalytic Hydrogen Production from Acidified Water. J Chem Theory Comput 2015; 6:3490-502. [PMID: 26617099 DOI: 10.1021/ct100319b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial di-iron hydrogenases produce hydrogen efficiently from water. Accordingly, we have studied by first-principles molecular-dynamics simulations (FPMD) electrocatalytic hydrogen production from acidified water by their common active site, the [FeFe]H cluster, extracted from the enzyme and linked directly to the (100) surface of a pyrite electrode. We found that the cluster could not be attached stably to the surface via a thiol link analogous to that which attaches it to the rest of the enzyme, despite the similarity of the (100) pyrite surface to the Fe4S4 cubane to which it is linked in the enzyme. We report here a systematic sequence of modifications of the structure and composition of the cluster devised to maintain the structural stability of the pyrite/cluster complex in water throughout its hydrogen production cycle, an example of the molecular design of a complex system by FPMD.
Collapse
Affiliation(s)
- Federico Zipoli
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Roberto Car
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Morrel H Cohen
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Annabella Selloni
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
103
|
|
104
|
Behnke SL, Shafaat HS. Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1108914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
105
|
Vedha SA, Velmurugan G, Jagadeesan R, Venuvanalingam P. Insights from the computational studies on the oxidized as-isolated state of [NiFeSe] hydrogenase from D. vulgaris Hildenborough. Phys Chem Chem Phys 2015. [PMID: 26205195 DOI: 10.1039/c5cp03071d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A density functional theory study of the active site structure and features of the oxygen tolerant [NiFeSe] Hase in the oxidized as-isolated state of the enzyme D. vulgaris Hildenborough (DvH) is reported here. The three conformers reported to be present in the X-ray structure (PDB ID: ) have been studied. The novel bidentate interchalcogen ligand (S-Se) in Conf-I of the [NiFeSe] Hase reported for the first time in hydrogenases (Hase) is found to be of donor-acceptor type with an uneven η(2) L → M σ-bond. The symmetry mismatch at the sp orbital of Se and at the dz(2) orbital of Ni has been identified to be the reason for the inability of Conf-II to convert to Conf-I. NBO analysis shows that the sulfinate ligand peculiar to the state stabilizes the active site through n →π* interactions. The results reveal that the isolated oxidized state of the [NiFeSe] Hase is significantly different from the well-known [NiFe] Hase.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| | | | | | | |
Collapse
|
106
|
Nakae T, Hirotsu M, Kinoshita I. Di- and Mononuclear Iron Complexes of N,C,S-Tridentate Ligands Containing an Aminopyridyl Group: Effect of the Pendant Amine Site on Catalytic Properties for Proton Reduction. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toyotaka Nakae
- Graduate School of Science and ‡The OCU Advanced
Research Institute for Natural
Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masakazu Hirotsu
- Graduate School of Science and ‡The OCU Advanced
Research Institute for Natural
Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Isamu Kinoshita
- Graduate School of Science and ‡The OCU Advanced
Research Institute for Natural
Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
107
|
Wang VCC, Islam STA, Can M, Ragsdale SW, Armstrong FA. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase. J Phys Chem B 2015; 119:13690-7. [PMID: 26176986 DOI: 10.1021/acs.jpcb.5b03098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Shams T A Islam
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| |
Collapse
|
108
|
Sakaki S. Theoretical and Computational Study of a Complex System Consisting of Transition Metal Element(s): How to Understand and Predict Its Geometry, Bonding Nature, Molecular Property, and Reaction Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University
- CREST, Japan Science and Technology Agency (JST)
| |
Collapse
|
109
|
Weber K, Weyhermüller T, Bill E, Erdem ÖF, Lubitz W. Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts. Inorg Chem 2015; 54:6928-37. [DOI: 10.1021/acs.inorgchem.5b00911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Weber
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
110
|
DeYonker NJ, Webster CE. A Theoretical Study of Phosphoryl Transfers of Tyrosyl-DNA Phosphodiesterase I (Tdp1) and the Possibility of a "Dead-End" Phosphohistidine Intermediate. Biochemistry 2015; 54:4236-47. [PMID: 26121557 DOI: 10.1021/acs.biochem.5b00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- ‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| | - Charles Edwin Webster
- †Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States.,‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| |
Collapse
|
111
|
Murphy BJ, Hidalgo R, Roessler MM, Evans RM, Ash PA, Myers WK, Vincent KA, Armstrong FA. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate. J Am Chem Soc 2015; 137:8484-9. [PMID: 26103582 PMCID: PMC4500644 DOI: 10.1021/jacs.5b03182] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Despite extensive studies on [NiFe]-hydrogenases,
the mechanism
by which these enzymes produce and activate H2 so efficiently
remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a NiIII–FeII species with a hydrido ligand in the bridging position between
the two metals. It has long been known that low-temperature photolysis
of Ni-C yields distinctive EPR-active states, collectively termed
Ni-L, that are attributed to migration of the bridging-H species as
a proton; however, Ni-L has mainly been regarded as an artifact with
no mechanistic relevance. It is now demonstrated, based on EPR and
infrared spectroscopic studies, that the Ni-C to Ni-L interconversion
in Hydrogenase-1 (Hyd-1) from Escherichia coli is a pH-dependent process that proceeds readily in the dark—proton
migration from Ni-C being favored as the pH is increased. The persistence
of Ni-L in Hyd-1 must relate to unassigned differences in proton affinities
of metal and adjacent amino acid sites, although the unusually high
reduction potentials of the adjacent Fe–S centers in this O2-tolerant hydrogenase might also be a contributory factor,
impeding elementary electron transfer off the [NiFe] site after proton
departure. The results provide compelling evidence that Ni-L is a
true, albeit elusive, catalytic intermediate of [NiFe]-hydrogenases.
Collapse
Affiliation(s)
- Bonnie J Murphy
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Maxie M Roessler
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Rhiannon M Evans
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Philip A Ash
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - William K Myers
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Kylie A Vincent
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- †Department of Chemistry and ‡Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
112
|
Li CG, Zhu Y, Xue F, Cui MJ, Shang JY. Phenyl-functionalized diiron dithiolate complexes with one bidentate or two unidentate phosphine-containing ligands. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1050006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chang-Gong Li
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Yong Zhu
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Feng Xue
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Mao-Jin Cui
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Jing-Yan Shang
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| |
Collapse
|
113
|
Stahl T, Hrobárik P, Königs CDF, Ohki Y, Tatsumi K, Kemper S, Kaupp M, Klare HFT, Oestreich M. Mechanism of the cooperative Si-H bond activation at Ru-S bonds. Chem Sci 2015; 6:4324-4334. [PMID: 29218203 PMCID: PMC5707498 DOI: 10.1039/c5sc01035g] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/09/2015] [Indexed: 11/21/2022] Open
Abstract
The heterolytic splitting of hydrosilanes by ruthenium(ii) thiolates is illuminated by a combined spectroscopic, crystallographic, and computational analysis.
The nature of the hydrosilane activation mediated by ruthenium(ii) thiolate complexes of type [(R3P)Ru(SDmp)]+[BArF4]– is elucidated by an in-depth experimental and theoretical study. The combination of various ruthenium(ii) thiolate complexes and tertiary hydrosilanes under variation of the phosphine ligand and the substitution pattern at the silicon atom is investigated, providing detailed insight into the activation mode. The mechanism of action involves reversible heterolytic splitting of the Si–H bond across the polar Ru–S bond without changing the oxidation state of the metal, generating a ruthenium(ii) hydride and sulfur-stabilized silicon cations, i.e. metallasilylsulfonium ions. These stable yet highly reactive adducts, which serve as potent silicon electrophiles in various catalytic transformations, are fully characterized by systematic multinuclear NMR spectroscopy. The structural assignment is further verified by successful isolation and crystallographic characterization of these key intermediates. Quantum-chemical analyses of diverse bonding scenarios are in excellent agreement with the experimental findings. Moreover, the calculations reveal that formation of the hydrosilane adducts proceeds via barrierless electrophilic activation of the hydrosilane by sterically controlled η1 (end-on) or η2 (side-on) coordination of the Si–H bond to the Lewis acidic metal center, followed by heterolytic cleavage of the Si–H bond through a concerted four-membered transition state. The Ru–S bond remains virtually intact during the Si–H bond activation event and also preserves appreciable bonding character in the hydrosilane adducts. The overall Si–H bond activation process is exergonic with ΔG0r ranging from –20 to –40 kJ mol–1, proceeding instantly already at low temperatures.
Collapse
Affiliation(s)
- Timo Stahl
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| | - Peter Hrobárik
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| | - C David F Königs
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ; .,Department of Chemistry , Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Yasuhiro Ohki
- Department of Chemistry , Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Kazuyuki Tatsumi
- Department of Chemistry , Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Sebastian Kemper
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| | - Martin Kaupp
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| | - Hendrik F T Klare
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| | - Martin Oestreich
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 115 , 10623 Berlin , Germany . ; ;
| |
Collapse
|
114
|
Greene BL, Wu CH, McTernan PM, Adams MWW, Dyer RB. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase. J Am Chem Soc 2015; 137:4558-66. [PMID: 25790178 DOI: 10.1021/jacs.5b01791] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR(-). The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.
Collapse
Affiliation(s)
- Brandon L Greene
- †Chemistry Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick M McTernan
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W W Adams
- ‡Department of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R Brian Dyer
- †Chemistry Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
115
|
Chu KT, Liu YC, Huang YL, Lee GH, Tseng MC, Chiang MH. Redox Communication within Multinuclear Iron-Sulfur Complexes Related to Electronic Interplay in the Active Site of [FeFe]Hydrogenase. Chemistry 2015; 21:6852-61. [DOI: 10.1002/chem.201406101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 11/08/2022]
|
116
|
Murray KA, Wodrich MD, Hu X, Corminboeuf C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chemistry 2015; 21:3987-96. [PMID: 25649221 DOI: 10.1002/chem.201405619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/06/2022]
Abstract
The chemistry of [Fe]-hydrogenase has attracted significant interest due to its ability to activate molecular hydrogen. The intriguing properties of this enzyme have prompted the synthesis of numerous small molecule mimics aimed at activating H2. Despite considerable effort, a majority of these compounds remain nonfunctional for hydrogenation reactions. By using a recently synthesized model as an entry point, seven biomimetic complexes have been examined through DFT computations to probe the influence of ligand environment on the ability of a mimic to bind and split H2. One mimic, featuring a bidentate diphosphine group incorporating an internal nitrogen base, was found to have particularly attractive energetics, prompting a study of the role played by the proton/hydride acceptor necessary to complete the catalytic cycle. Computations revealed an experimentally accessible energetic pathway involving a benzaldehyde proton/hydride acceptor and the most promising catalyst.
Collapse
Affiliation(s)
- Kevin A Murray
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | | | | | | |
Collapse
|
117
|
Gan L, Groy TL, Tarakeshwar P, Mazinani SKS, Shearer J, Mujica V, Jones AK. A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. J Am Chem Soc 2015; 137:1109-15. [DOI: 10.1021/ja509779q] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lu Gan
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Pilarisetty Tarakeshwar
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Shobeir K. S. Mazinani
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason Shearer
- Department
of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Vladimiro Mujica
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Anne K. Jones
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
118
|
Ochi N, Matsumoto T, Dei T, Nakao Y, Sato H, Tatsumi K, Sakaki S. Heterolytic activation of dihydrogen molecule by hydroxo-/sulfido-bridged ruthenium-germanium dinuclear complex. Theoretical insights. Inorg Chem 2015; 54:576-85. [PMID: 25559259 DOI: 10.1021/ic502463y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heterolytic activation of dihydrogen molecule (H2) by hydroxo-/sulfido-bridged ruthenium-germanium dinuclear complex [Dmp(Dep)Ge(μ-S)(μ-OH)Ru(PPh3)](+) (1) (Dmp = 2,6-dimesitylphenyl, Dep = 2,6-diethylphenyl) is theoretically investigated with the ONIOM(DFT:MM) method. H2 approaches 1 to afford an intermediate [Dmp(Dep)(HO)Ge(μ-S)Ru(PPh3)](+)-(H2) (2). In 2, the Ru-OH coordinate bond is broken but H2 does not yet coordinate with the Ru center. Then, the H2 further approaches the Ru center through a transition state TS2-3 to afford a dihydrogen σ-complex [Dmp(Dep)(HO)Ge(μ-S)Ru(η(2)-H2)(PPh3)](+) (3). Starting from 3, the H-H σ-bond is cleaved by the Ru and Ge-OH moieties to form [Dmp(Dep)(H2O)Ge(μ-S)Ru(H)(PPh3)](+) (4). In 4, hydride and H2O coordinate with the Ru and Ge centers, respectively. Electron population changes clearly indicate that this H-H σ-bond cleavage occurs in a heterolytic manner like H2 activation by hydrogenase. Finally, the H2O dissociates from the Ge center to afford [Dmp(Dep)Ge(μ-S)Ru(H)(PPh3)](+) (PRD). This step is rate-determining. The activation energy of the backward reaction is moderately smaller than that of the forward reaction, which is consistent with the experimental result that PRD reacts with H2O to form 1 and H2. In the Si analogue [Dmp(Dep)Si(μ-S)(μ-OH)Ru(PPh3)](+) (1Si), the isomerization of 1Si to 2Si easily occurs with a small activation energy, while the dissociation of H2O from the Si center needs a considerably large activation energy. Based on these computational findings, it is emphasized that the reaction of 1 resembles well that of hydrogenase and the use of Ge in 1 is crucial for this heterolytic H-H σ-bond activation.
Collapse
Affiliation(s)
- Noriaki Ochi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 610-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
|
120
|
Kochem A, Bill E, Neese F, van Gastel M. Mössbauer and computational investigation of a functional [NiFe] hydrogenase model complex. Chem Commun (Camb) 2015; 51:2099-102. [DOI: 10.1039/c4cc09035g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen splitting in a NiFe hydrogenase model has been investigated by Mössbauer spectroscopy to gain insight into the catalytic mechanism.
Collapse
Affiliation(s)
- A. Kochem
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - E. Bill
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - F. Neese
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - M. van Gastel
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
121
|
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015; 17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Challenges and chances in bio-molecular spectroscopy are exemplified by vibrational case studies on metalloenzymes.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| |
Collapse
|
122
|
Liao RZ, Wang M, Sun L, Siegbahn PEM. The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Trans 2015; 44:9736-9. [DOI: 10.1039/c5dt01008j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations suggest that hydrogen evolution proceeds via coupling of a Cu(ii)-hydride and a pendant pyridinium.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Mei Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024
- China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024
- China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-10691 Stockholm
- Sweden
| |
Collapse
|
123
|
Sode O, Voth GA. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase. J Chem Phys 2014; 141:22D527. [DOI: 10.1063/1.4902236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Olaseni Sode
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA and Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA and Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
124
|
Dance I. What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases? Chem Sci 2014; 6:1433-1443. [PMID: 29560232 PMCID: PMC5811149 DOI: 10.1039/c4sc03223c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022] Open
Abstract
A new mechanistic model is developed for the sequence of events by which oxygen-tolerant [NiFe] hydrogenase enzymes respond to O2.
The [NiFe] hydrogenases use an electron transfer relay of three FeS clusters – proximal, medial and distal – to release the electrons from the principal reaction, H2 → 2H+ + 2e–, that occurs at the Ni–Fe catalytic site. This site is normally inactivated by O2, but the subclass of O2-tolerant [NiFe] hydrogenases are able to counter this inactivation through the agency of an unusual and unprecedented proximal cluster, with composition [Fe4S3(Scys)6], that is able to transfer two electrons back to the Ni–Fe site and effect crucial reduction of O2-derived species and thereby reactivate the Ni–Fe site. This proximal cluster gates both the direction and the number of electrons flowing through it, and can reverse the normal flow during O2 attack. The unusual structures and redox potentials of the proximal cluster are known: a structural change in the proximal cluster causes changes in its electron-transfer potentials. Using protein structure analysis and density functional simulations, this paper identifies a closed protonic system comprising the proximal cluster, some contiguous residues, and a proton reservoir, and proposes that it is activated by O2-induced conformational change at the Ni–Fe site. This change is linked to a key histidine residue which then causes protonation of the proximal cluster, and migration of this proton to a key μ3-S atom. The resulting SH group causes the required structural change at the proximal cluster, modifying its redox potentials, and leads to the reversed electron flow back to the Ni–Fe site. This cycle is reversible, and the protons involved are independent of those used or produced in reactions at the active site. Existing experimental support for this model is cited, and new testing experiments are suggested.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry , University of New South Wales , Sydney 2052 , Australia .
| |
Collapse
|
125
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
126
|
Liu C, Liu T, Hall MB. Influence of the Density Functional and Basis Set on the Relative Stabilities of Oxygenated Isomers of Diiron Models for the Active Site of [FeFe]-Hydrogenase. J Chem Theory Comput 2014; 11:205-14. [DOI: 10.1021/ct500594z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Caiping Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- State
Key Laboratory of Structure Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China, 350002
| | - Tianbiao Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Energy
Processes and Materials Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
127
|
Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1350-69. [PMID: 25461840 DOI: 10.1016/j.bbamcr.2014.11.021] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Abstract
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
128
|
Kalz KF, Brinkmeier A, Dechert S, Mata RA, Meyer F. Functional Model for the [Fe] Hydrogenase Inspired by the Frustrated Lewis Pair Concept. J Am Chem Soc 2014; 136:16626-34. [DOI: 10.1021/ja509186d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kai F. Kalz
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Alexander Brinkmeier
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute
of Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse
6, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| |
Collapse
|
129
|
Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW. Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 2014; 136:15394-402. [PMID: 25286239 DOI: 10.1021/ja508629m] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton-coupled electron transfer (PCET) is a fundamental process at the core of oxidation-reduction reactions for energy conversion. The [FeFe]-hydrogenases catalyze the reversible activation of molecular H2 through a unique metallocofactor, the H-cluster, which is finely tuned by the surrounding protein environment to undergo fast PCET transitions. The correlation of electronic and structural transitions at the H-cluster with proton-transfer (PT) steps has not been well-resolved experimentally. Here, we explore how modification of the conserved PT network via a Cys → Ser substitution at position 169 proximal to the H-cluster of Chlamydomonas reinhardtii [FeFe]-hydrogenase (CrHydA1) affects the H-cluster using electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Despite a substantial decrease in catalytic activity, the EPR and FTIR spectra reveal different H-cluster catalytic states under reducing and oxidizing conditions. Under H2 or sodium dithionite reductive treatments, the EPR spectra show signals that are consistent with a reduced [4Fe-4S]H(+) subcluster. The FTIR spectra showed upshifts of νCO modes to energies that are consistent with an increase in oxidation state of the [2Fe]H subcluster, which was corroborated by DFT analysis. In contrast to the case for wild-type CrHydA1, spectra associated with Hred and Hsred states are less populated in the Cys → Ser variant, demonstrating that the exchange of -SH with -OH alters how the H-cluster equilibrates among different reduced states of the catalytic cycle under steady-state conditions.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | | | | | | | | | | | | |
Collapse
|
130
|
Smith DMA, Raugei S, Squier TC. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity. Phys Chem Chem Phys 2014; 16:24026-33. [PMID: 25285653 DOI: 10.1039/c4cp03518f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.
Collapse
Affiliation(s)
- Dayle M A Smith
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, USA.
| | | | | |
Collapse
|
131
|
Huynh MT, Wang W, Rauchfuss TB, Hammes-Schiffer S. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Inorg Chem 2014; 53:10301-11. [PMID: 25207842 PMCID: PMC4186672 DOI: 10.1021/ic5013523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The [FeFe]-hydrogenase enzymes catalyze
hydrogen oxidation and production efficiently with binuclear Fe metal
centers. Recently the bioinspired H2-producing model system
Fe2(adt)(CO)2(dppv)2 (adt=azadithiolate
and dppv=diphosphine) was synthesized and studied experimentally.
In this system, the azadithiolate bridge facilitates the formation
of a doubly protonated ammonium-hydride species through a proton relay.
Herein computational methods are utilized to examine this system in
the various oxidation states and protonation states along proposed
mechanistic pathways for H2 production. The calculated
results agree well with the experimental data for the geometries,
CO vibrational stretching frequencies, and reduction potentials. The
calculations illustrate that the NH···HFe dihydrogen
bonding distance in the doubly protonated species is highly sensitive
to the effects of ion-pairing between the ammonium and BF4– counterions, which are present in the crystal
structure, in that the inclusion of BF4– counterions leads to a significantly longer dihydrogen bond. The
non-hydride Fe center was found to be the site of reduction for terminal
hydride species and unsymmetric bridging hydride species, whereas
the reduced symmetric bridging hydride species exhibited spin delocalization
between the Fe centers. According to both experimental measurements
and theoretical calculations of the relative pKa values, the Fed center of the neutral species
is more basic than the amine, and the bridging hydride species is
more thermodynamically stable than the terminal hydride species. The
calculations implicate a possible pathway for H2 evolution
that involves an intermediate with H2 weakly bonded to
one Fe, a short H2 distance similar to the molecular bond
length, the spin density delocalized over the two Fe centers, and
a nearly symmetrically bridged CO ligand. Overall, this study illustrates
the mechanistic roles of the ammonium-hydride interaction, flexibility
of the bridging CO ligand, and intramolecular electron transfer between
the Fe centers in the catalytic cycle. Such insights will assist in
the design of more effective bioinspired catalysts for H2 production. Theoretical calculations
in conjunction with supporting experimental data are used to analyze
the mechanistic pathway for hydrogen evolution catalyzed by the bioinspired
model Fe2(adt)(CO)2(dppv)2. This
study elucidates the site of reduction and the pKa values associated with formation of the singly and doubly
protonated species, as well as the roles of the ammonium-hydride interaction,
flexibility of the bridging CO ligand, and intramolecular electron
transfer between the Fe centers in the catalytic cycle for H2 production.
Collapse
Affiliation(s)
- Mioy T Huynh
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
132
|
Newman GL, Rahman JMA, Gluyas JBG, Yufit DS, Howard JAK, Low PJ. Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
133
|
Huynh MT, Schilter D, Hammes-Schiffer S, Rauchfuss TB. Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel. J Am Chem Soc 2014; 136:12385-95. [PMID: 25094041 PMCID: PMC4156870 DOI: 10.1021/ja505783z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Theory
and experiment indicate that the protonation of reduced
NiFe dithiolates proceeds via a previously undetected isomer with
enhanced basicity. In particular, it is proposed that protonation
of (OC)3Fe(pdt)Ni(dppe) (1; pdt2– = –S(CH2)3S–; dppe = Ph2P(CH2)2PPh2) occurs at the Fe site of the two-electron mixed-valence Fe(0)Ni(II)
species, not the Fe(I)-Ni(I) bond for the homovalence isomer of 1. The new pathway, which may have implications for protonation
of other complexes and clusters, was uncovered through studies on
the homologous series L(OC)2Fe(pdt)M(dppe), where M = Ni,
Pd (2), and Pt (3) and L = CO, PCy3. Similar to 1, complexes 2 and 3 undergo both protonation and 1e– oxidation to
afford well-characterized hydrides ([2H]+ and
[3H]+) and mixed-valence derivatives ([2]+ and [3]+), respectively.
Whereas the Pd site is tetrahedral in 2, the Pt site
is square-planar in 3, indicating that this complex is
best described as Fe(0)Pt(II). In view of the results on 2 and 3, the potential energy surface of 1 was reinvestigated with density functional theory. These calculations
revealed the existence of an energetically accessible and more basic
Fe(0)Ni(II) isomer with a square-planar Ni site.
Collapse
Affiliation(s)
- Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
134
|
Roy S, Mazinani SKS, Groy TL, Gan L, Tarakeshwar P, Mujica V, Jones AK. Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine. Inorg Chem 2014; 53:8919-29. [DOI: 10.1021/ic5012988] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Souvik Roy
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Shobeir K. S. Mazinani
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Lu Gan
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Pilarisetty Tarakeshwar
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Vladimiro Mujica
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| | - Anne K. Jones
- Department of Chemistry and Biochemistry and ‡Center for Bio-Inspired Solar Fuel
Production, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
135
|
Adamska-Venkatesh A, Krawietz D, Siebel J, Weber K, Happe T, Reijerse E, Lubitz W. New Redox States Observed in [FeFe] Hydrogenases Reveal Redox Coupling Within the H-Cluster. J Am Chem Soc 2014; 136:11339-46. [DOI: 10.1021/ja503390c] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Danuta Krawietz
- Fakultät
für Biologie und Biotechnologie, Lehrstuhl für Biochemie
der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Judith Siebel
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Katharina Weber
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Happe
- Fakultät
für Biologie und Biotechnologie, Lehrstuhl für Biochemie
der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Edward Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
136
|
Hexter SV, Chung MW, Vincent KA, Armstrong FA. Unusual Reaction of [NiFe]-Hydrogenases with Cyanide. J Am Chem Soc 2014; 136:10470-7. [DOI: 10.1021/ja504942h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Suzannah V. Hexter
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks
Road, Oxford OX1 3QR, United Kingdom
| | - Min-Wen Chung
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks
Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks
Road, Oxford OX1 3QR, United Kingdom
| | - Fraser A. Armstrong
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks
Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
137
|
De Gioia L, Elleouet C, Munery S, Pétillon FY, Schollhammer P, Talarmin J, Zampella G. Reductive Behavior of [Fe
2
(CO)
4
(κ
2
‐dmpe){μ‐(SCH
2
)
2
NBn}]: Effect of Symmetrization on the Rotated Conformation in Fe
I
‐Fe
I
Models of [2Fe]
H
Subsite of [Fe‐Fe]H
2
ases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano‐Bicocca, 20126 Milan, Italy, http://www.unimib.it
| | - Catherine Elleouet
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Sabrina Munery
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - François Y. Pétillon
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Philippe Schollhammer
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Jean Talarmin
- Université de Bretagne Occidentale; CNRS, UMR 6521 “Chimie, Electrochimie Moléculaires et Chimie Analytique”, CS 93837, 29238 Brest‐Cedex 3, France, http://www.univ‐brest.fr/
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano‐Bicocca, 20126 Milan, Italy, http://www.unimib.it
| |
Collapse
|
138
|
|
139
|
Vedha SA, Solomon RV, Venuvanalingam P. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding. Phys Chem Chem Phys 2014; 16:10698-707. [PMID: 24756140 DOI: 10.1039/c4cp00526k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility of simultaneous addition of η(2)-H2 to both the metals (Ni and Fe) in the active site of the as isolated state of the enzyme (Ni-SI) is examined here by an atom-by-atom electronic energy partitioning based on the QTAIM method. Results show that the 4LS state prefers H2 removal than addition. Destabilization of the atomic basins of the thiolate bridges and decrease of the electrophilicity of the Fe and Ni, resulting in poor back donation to the CO ligand, are the bottlenecks that hamper dihydrogen activation simultaneously. The study helps to understand why such states are seldom accessed in the activation of dihydrogen. Moreover, Ni has been found to be the natural choice for the dihydrogen binding.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical & Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 24, India.
| | | | | |
Collapse
|
140
|
Ogo S. H2and O2Activation-A Remarkable Insight into Hydrogenase. CHEM REC 2014; 14:397-409. [DOI: 10.1002/tcr.201402010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER); Kyushu University; 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency (JST); Kawaguchi Center Building; 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan
| |
Collapse
|
141
|
Crouthers DJ, Denny JA, Bethel RD, Munoz DG, Darensbourg MY. Conformational Mobility and Pendent Base Effects on Electrochemistry of Synthetic Analogues of the [FeFe]-Hydrogenase Active Site. Organometallics 2014. [DOI: 10.1021/om500023j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Danielle J. Crouthers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jason A. Denny
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan D. Bethel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David G. Munoz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
142
|
Hsieh CH, Ding S, Erdem ÖF, Crouthers DJ, Liu T, McCrory CCL, Lubitz W, Popescu CV, Reibenspies JH, Hall MB, Darensbourg MY. Redox active iron nitrosyl units in proton reduction electrocatalysis. Nat Commun 2014; 5:3684. [DOI: 10.1038/ncomms4684] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/18/2014] [Indexed: 11/09/2022] Open
|
143
|
Guan W, Sayyed FB, Zeng G, Sakaki S. σ-Bond Activation of Small Molecules and Reactions Catalyzed by Transition-Metal Complexes: Theoretical Understanding of Electronic Processes. Inorg Chem 2014; 53:6444-57. [DOI: 10.1021/ic5003429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wei Guan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishi-hiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Fareed Bhasha Sayyed
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishi-hiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Guixiang Zeng
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishi-hiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishi-hiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
144
|
Wang W, Rauchfuss TB, Zhu L, Zampella G. New reactions of terminal hydrides on a diiron dithiolate. J Am Chem Soc 2014; 136:5773-82. [PMID: 24661238 DOI: 10.1021/ja501366j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mechanisms for biological and bioinspired dihydrogen activation and production often invoke the intermediacy of diiron dithiolato dihydrides. The first example of such a Fe2(SR)2H2 species is provided by the complex [(term-H)(μ-H)Fe2(pdt)(CO)(dppv)2] ([H1H](0)). Spectroscopic and computational studies indicate that [H1H](0) contains both a bridging hydride and a terminal hydride, which, notably, occupies a basal site. The synthesis begins with [(μ-H)Fe2(pdt)(CO)2(dppv)2](+) ([H1(CO)](+)), which undergoes substitution to afford [(μ-H)Fe2(pdt)(CO)(NCMe)(dppv)2](+) ([H1(NCMe)](+)). Upon treatment of [H1(NCMe)](+) with borohydride salts, the MeCN ligand is displaced to afford [H1H](0). DNMR (EXSY, SST) experiments on this complex show that the terminal and bridging hydride ligands interchange intramolecularly at a rate of 1 s(-1) at -40 °C. The compound reacts with D2 to afford [D1D](0), but not mixed isotopomers such as [H1D](0). The dihydride undergoes oxidation with Fc(+) under CO to give [1(CO)](+) and H2. Protonation in MeCN solution gives [H1(NCMe)](+) and H2. Carbonylation converts [H1H](0) into [1(CO)](0).
Collapse
Affiliation(s)
- Wenguang Wang
- School of Chemical Sciences University of Illinois - Urbana , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
145
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
146
|
Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation. J Am Chem Soc 2014; 136:4316-24. [PMID: 24564271 DOI: 10.1021/ja413001p] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Article describes the electron transfer (ET) kinetics in complexes of CdS nanorods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI). In the presence of an electron donor, these complexes produce H2 photochemically with quantum yields of up to 20%. Kinetics of ET from CdS NRs to CaI play a critical role in the overall photochemical reactivity, as the quantum efficiency of ET defines the upper limit on the quantum yield of H2 generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS NRs by directly measuring the rate and quantum efficiency of ET from photoexcited CdS NRs to CaI using transient absorption spectroscopy. This technique is uniquely suited to decouple CdS→CaI ET from the processes occurring in the enzyme during H2 production. We found that the ET rate constant (k(ET)) and the electron relaxation rate constant in CdS NRs (k(CdS)) were comparable, with values of 10(7) s(-1), resulting in a quantum efficiency of ET of 42% for complexes with the average CaI:CdS NR molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H2 production could be achieved by increasing k(ET) and/or decreasing k(CdS) through structural modifications of the nanocrystals. When catalytically inactive forms of CaI were used in CdS-CaI complexes, ET behavior was akin to that observed with active CaI, demonstrating that electron injection occurs at a distal iron-sulfur cluster and is followed by transport through a series of accessory iron-sulfur clusters to the active site of CaI. Using insights from this time-resolved spectroscopic study, we discuss the intricate kinetic pathways involved in photochemical H2 generation in CdS-CaI complexes, and we examine how the relationship between the electron injection rate and the other kinetic processes relates to the overall H2 production efficiency.
Collapse
Affiliation(s)
- Molly B Wilker
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | | | |
Collapse
|
147
|
Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 2014; 114:4041-62. [PMID: 24467365 PMCID: PMC4012840 DOI: 10.1021/cr400641x] [Citation(s) in RCA: 1017] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Brian M Hoffman
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | | | | | | | | |
Collapse
|
148
|
Bruschi M, Tiberti M, Guerra A, De Gioia L. Disclosure of Key Stereoelectronic Factors for Efficient H2 Binding and Cleavage in the Active Site of [NiFe]-Hydrogenases. J Am Chem Soc 2014; 136:1803-14. [DOI: 10.1021/ja408511y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maurizio Bruschi
- Department
of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza
della Scienza 1, 20126-Milan, Italy
| | - Matteo Tiberti
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| | - Alessandro Guerra
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| | - Luca De Gioia
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| |
Collapse
|
149
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
150
|
Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M. Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem Sci 2014. [DOI: 10.1039/c3sc52703d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Site-selective X-ray spectroscopy discriminated the cubane and diiron units in the H-cluster of [FeFe]-hydrogenase revealing its electronic and structural configurations.
Collapse
Affiliation(s)
- Camilla Lambertz
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Petko Chernev
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Katharina Klingan
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Nils Leidel
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | | | - Thomas Happe
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Michael Haumann
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| |
Collapse
|