101
|
VAN DER MAELEN URÍA JUANF, RUIZ JAVIER, GARCÍA-GRANDA SANTIAGO. THEORETICAL CHARACTERIZATION OF A HIGHLY ELECTROPHILIC CARBENE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The experimental geometry obtained from single-crystal X-ray diffraction data for a metalladiphosphanyl carbene precursor is compared with the results of theoretical calculations made at the ab initio level by using Hartree–Fock (HF) and Density Functional Theory (DFT) methods over the carbene itself. Theoretical geometry optimizations for the singlet ground state of [ Mn(CO)4(PH2)2C: ]+ have been performed with several hybrid functionals and basis sets. Calculated geometries showed a perfect C 2v symmetry in the highest levels of calculation and were somewhat relaxed when compared with the experimental ones; for instance, with the largest basis set, the P–C–P angle found was 124.8°, whereas C–P bond distances were both 1.667 Å, compared to 103.5(3)° and 1.718(5) Å, respectively, from the experimental data. The absence of a ligand attached to the C : atom in the calculated structure, which is present in the form of iodine in the experimental complex, is probably responsible, to a certain extent, for the discrepancies. In addition to the structural computations, in order to theoretically quantify the highly electrophilic character expected for the carbene, electron affinities were calculated and found to be between 6.24 eV and 6.97 eV at different DFT levels of calculation, which confirmed the expectations. In this respect, a comparison with the analogous [Ru(CNH)4(PH2)2C:]2+ carbene is also made, showing the possibility of experimentally trapping the manganese carbene.
Collapse
Affiliation(s)
- JUAN F. VAN DER MAELEN URÍA
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain
| | - JAVIER RUIZ
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain
| | - SANTIAGO GARCÍA-GRANDA
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain
| |
Collapse
|
102
|
Ghosh S, Hogarth G, Holt KB, Kabir SE, Rahaman A, Unwin DG. Bio-inspired hydrogenase models: mixed-valence triion complexes as proton reduction catalysts. Chem Commun (Camb) 2011; 47:11222-4. [PMID: 21912795 DOI: 10.1039/c1cc13249k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed-valence triiron complexes Fe(3)(CO)(7-x)(PPh(3))(x)(μ-edt)(2) (x = 0-2) have been prepared and are shown to act as proton reduction catalysts. Catalysis takes place via an ECEC mechanism with a reduced overpotential of ca. 0.45 V for Fe(3)(CO)(7)(μ-edt)(2) as compared to the corresponding diiron complex.
Collapse
Affiliation(s)
- Shishir Ghosh
- Department of Chemistry, Jahangirnager University, Savar, Dhaka-1342, Bangladesh
| | | | | | | | | | | |
Collapse
|
103
|
Gao W, Song LC, Yin BS, Zan HN, Wang DF, Song HB. Synthesis and Characterization of Single, Double, and Triple Butterfly [2Fe2E] (E = Se, S) Cluster Complexes Related to the Active Site of [FeFe]-Hydrogenases. Organometallics 2011. [DOI: 10.1021/om200395g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Gao
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bang-Shao Yin
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hui-Ning Zan
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - De-Fu Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hai-Bin Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
104
|
Singleton ML, Crouthers DJ, Duttweiler RP, Reibenspies JH, Darensbourg MY. Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. Inorg Chem 2011; 50:5015-26. [PMID: 21524099 DOI: 10.1021/ic200272x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of diiron complexes developed as fundamental models of the two-iron subsite in the [FeFe]-hydrogenase enzyme active site show water-solubility by virtue of a sulfonate group incorporated into the -SCH(2)NRCH(2)S- dithiolate unit that bridges two Fe(I)(CO)(2)L moieties. The sulfanilic acid group imparts even greater water solubility in the presence of β-cyclodextrin, β-CyD, for which NMR studies suggest aryl-sulfonate inclusion into the cyclodextrin cavity as earlier demonstrated in the X-ray crystal structure of 1Na·2 β-CyD clathrate, where 1Na = Na(+)(μ-SCH(2)N(C(6)H(4)SO(3)(-))CH(2)S-)[Fe(CO)(3)](2), (Singleton et al., J. Am. Chem. Soc.2010, 132, 8870). Electrochemical analysis of the complexes for potential as electrocatalysts for proton reduction to H(2) finds the presence of β-CyD to diminish response, possibly reflecting inhibition of structural rearrangements required of the diiron unit for a facile catalytic cycle. Advantages of the aryl sulfonate approach include entry into a variety of water-soluble derivatives from the well-known (μ-SRS)[Fe(CO)(3)](2) parent biomimetic, that are stable in O(2)-free aqueous solutions.
Collapse
Affiliation(s)
- Michael L Singleton
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
105
|
Darensbourg MY, Weigand W. Sulfoxygenation of Active Site Models of [NiFe] and [FeFe] Hydrogenases – A Commentary on Possible Chemical Models of Hydrogenase Enzyme Oxygen Sensitivity. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001148] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich‐Schiller‐Universität Jena, August‐Bebel‐Straße 2, 07743 Jena, Germany
| |
Collapse
|
106
|
Begum A, Moula G, Sarkar S. A nickel(II)-sulfur-based radical-ligand complex as a functional model of hydrogenase. Chemistry 2011; 16:12324-7. [PMID: 20853299 DOI: 10.1002/chem.201001812] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ameerunisha Begum
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | | | | |
Collapse
|
107
|
Liu YC, Lee CH, Lee GH, Chiang MH. Influence of a Redox-Active Phosphane Ligand on the Oxidations of a Diiron Core Related to the Active Site of Fe-Only Hydrogenase. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201000972] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
108
|
Liu YC, Tu LK, Yen TH, Lee GH, Chiang MH. Influences on the rotated structure of diiron dithiolate complexes: electronic asymmetry vs. secondary coordination sphere interaction. Dalton Trans 2011; 40:2528-41. [DOI: 10.1039/c0dt01332c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
109
|
Apfel UP, Halpin Y, Görls H, Vos JG, Weigand W. Influence of the Introduction of Cyanido and Phosphane Ligands in Multifunctionalized (Mercaptomethyl)silane [FeFe] Hydrogenase Model Systems. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000918] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
110
|
Hogarth G, Kabir SE, Richards I. Diphosphine Mobility at a Binuclear Metal Center: A Concerted Double Trigonal-Twist in Bis(dithiolate) Complexes [M2(CO)4(μ-dppm){μ-S(CH2)nS}] (M = Fe, Ru; n = 2, 3). Organometallics 2010. [DOI: 10.1021/om100894w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Graeme Hogarth
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| | - Shariff E. Kabir
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Idris Richards
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
| |
Collapse
|
111
|
Gordon JC, Kubas GJ. Perspectives on How Nature Employs the Principles of Organometallic Chemistry in Dihydrogen Activation in Hydrogenases. Organometallics 2010. [DOI: 10.1021/om100436c] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John C. Gordon
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gregory J. Kubas
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
112
|
Singleton ML, Reibenspies JH, Darensbourg MY. A Cyclodextrin Host/Guest Approach to a Hydrogenase Active Site Biomimetic Cavity. J Am Chem Soc 2010; 132:8870-1. [DOI: 10.1021/ja103774j] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
Windhager J, Apfel UP, Yoshino T, Nakata N, Görls H, Rudolph M, Ishii A, Weigand W. Reactions of 7,8-Dithiabicyclo[4.2.1]nona-2,4-diene 7-exo-Oxide with Dodecacarbonyl Triiron Fe3(CO)12: A Novel Type of Sulfenato Thiolato Diiron Hexacarbonyl Complexes. Chem Asian J 2010; 5:1600-10. [DOI: 10.1002/asia.200900733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
114
|
Affiliation(s)
- Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
115
|
Rauchfuss T. Die Entschlüsselung der Biosynthese der schnellsten natürlichen Hydrogenase. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
116
|
Bertini L, Greco C, Bruschi M, Fantucci P, De Gioia L. CO Affinity and Bonding Properties of [FeFe] Hydrogenase Active Site Models. A DFT Study. Organometallics 2010. [DOI: 10.1021/om900658b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Bertini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Maurizio Bruschi
- Department of Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| |
Collapse
|
117
|
Galinato MGI, Whaley CM, Lehnert N. Vibrational analysis of the model complex (mu-edt)[Fe(CO)(3)](2) and comparison to iron-only hydrogenase: the activation scale of hydrogenase model systems. Inorg Chem 2010; 49:3201-15. [PMID: 20225804 PMCID: PMC2860110 DOI: 10.1021/ic9022135] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Research on simple [FeFe] hydrogenase model systems of type (mu-S(2)R)[Fe(CO)(3)](2) (R = C(2)H(4) (edt), C(3)H(6) (pdt)) which have been shown to function as robust electrocatalysts for proton reduction, provides a reference to understand the electronic and vibrational properties of the active site of [FeFe] hydrogenases and of more sophisticated model systems. In this study, the solution and solid state Raman spectra of (mu-edt)[Fe(CO)(3)](2) and of the corresponding (13)CO-labeled complex are presented and analyzed in detail, with focus on the nu(C=O) and nu(Fe-CO)/delta(Fe-C=O) vibrational regions. These regions are specifically important as vibrations involving CO ligands serve as probes for the "electron richness" of low-valent transition metal centers and the geometric structures of the complexes. The obtained vibrational spectra have been completely assigned in terms of the nu(C=O), nu(Fe-CO), and delta(Fe-C=O) modes, and the force constants of the important C=O and Fe-CO bonds have been determined using our Quantum Chemistry Centered Normal Coordinate Analysis (QCC-NCA). In the 400-650 cm(-1) region, fifteen mixed nu(Fe-CO)/delta(Fe-C=O) modes have been identified. The most prominent Raman peaks at 454, 456, and 483 cm(-1) correspond to a combination of nu(Fe-CO) stretching and delta(Fe-C=O) linear bending modes. The less intense peaks at 416 cm(-1) and 419 cm(-1) correspond to pure delta(Fe-C=O) linear bends. In the nu(C=O) region, the nu(C=O) normal modes at lower energy (1968 and 1964 cm(-1)) are almost pure equatorial (eq) nu(C=O)(eq) stretching vibrations, whereas the remaining four nu(C=O) normal modes show dominant (C=O)(eq) (2070 and 1961 cm(-1)) and (C=O)(ax) (2005 and 1979 cm(-1); ax = axial) contributions. Importantly, an inverse correlation between the f(C=O)(ax/eq) and f(Fe-CO)(ax/eq) force constants is obtained, in agreement with the idea that the Fe(I)-CO bond in these types of complexes is dominated by pi-backdonation. Compared to the reduced form of [FeFe] hydrogenase (H(red)), the nu(C=O) vibrational frequencies of (mu-edt)[Fe(CO)(3)](2) are higher in energy, indicating that the dinuclear iron core in (mu-edt)[Fe(CO)(3)](2) is less electron rich compared to H(red) in the actual enzyme. Finally, quantum yields for the photodecomposition of (mu-edt)[Fe(CO)(3)](2) have been determined.
Collapse
Affiliation(s)
| | - C. Matthew Whaley
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
118
|
Barton BE, Zampella G, Justice AK, De Gioia L, Rauchfuss TB, Wilson SR. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases. Dalton Trans 2010; 39:3011-9. [PMID: 20221534 PMCID: PMC3476456 DOI: 10.1039/b910147k] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stepwise formation of bridging (mu-) hydrides of diiron dithiolates is discussed with attention on the pathway for protonation and subsequent isomerizations. Our evidence is consistent with protonations occurring at a single Fe center, followed by isomerization to a series of mu-hydrides. Protonation of Fe(2)(edt)(CO)(4)(dppv) (1) gave a single mu-hydride with dppv spanning apical and basal sites, which isomerized at higher temperatures to place the dppv into a dibasal position. Protonation of Fe(2)(pdt)(CO)(4)(dppv) (2) followed an isomerization pathway similar to that for [1H](+), except that a pair of isomeric terminal hydrides were observed initially, resulting from protonation at the Fe(CO)(3) or Fe(CO)(dppv) site. The first observable product from low temperature protonation of the tris-phosphine Fe(2)(edt)(CO)(3)(PMe(3))(dppv) (3) was a single mu-hydride wherein PMe(3) is apical and the dppv ligand spans apical and basal sites. Upon warming, this isomer converted fully but in a stepwise manner to a mixture of three other isomeric hydrides. Protonation of Fe(2)(pdt)(CO)(3)(PMe(3))(dppv) (4) proceeded similarly to the edt analogue 3, however a terminal hydride was observed, albeit only briefly and at very low temperatures (-90 degrees C). Low-temperature protonation of the bis-chelates Fe(2)(xdt)(CO)(2)(dppv)(2) produced exclusively the terminal hydrides [HFe(2)(xdt)(mu-CO)(CO)(dppv)(2)](+) (xdt = edt and pdt), which subsequently isomerized to a pair of mu-hydrides. At room temperature these (dppv)(2) derivatives convert to an equilibrium of two isomers, one C(2)-symmetric and the other C(s)-symmetric. The stability of the terminal hydrides correlates with the (C(2)-isomer)/(C(s)-isomer) equilibrium ratio, which reflects the size of the dithiolate. The isomerization was found to be unaffected by the presence of excess acid, by solvent polarity, and the presence of D(2)O. This isomerization mechanism is proposed to be intramolecular, involving a 120 degrees rotation of the HFeL(3) subunit to an unobserved terminal basal hydride as the rate-determining step. The observed stability of the hydrides was supported by DFT calculations, which also highlight the instability of the basal terminal hydrides. Isomerization of the mu-hydride isomers occurs on alternating FeL(3) via 120 degree rotations without generating D(2)O-exchangeable intermediates.
Collapse
Affiliation(s)
- Bryan E. Barton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 1 20126, Milan, (Italy)
| | - Aaron K. Justice
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Luca De Gioia
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 1 20126, Milan, (Italy)
| | - Thomas B. Rauchfuss
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 1 20126, Milan, (Italy)
| | - Scott R. Wilson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
119
|
Zeng X, Li Z, Liu X. Mechanistic investigations into electrocatalytic substitution reactions of two diiron hexacarbonyl complexes by triphenyl phosphine ligand. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
120
|
Vannucci AK, Wang S, Nichol GS, Lichtenberger DL, Evans DH, Glass RS. Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex. Dalton Trans 2010; 39:3050-6. [DOI: 10.1039/b921067a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
Harb MK, Apfel UP, Kübel J, Görls H, Felton GAN, Sakamoto T, Evans DH, Glass RS, Lichtenberger DL, El-khateeb M, Weigand W. Preparation and Characterization of Homologous Diiron Dithiolato, Diselenato, and Ditellurato Complexes: [FeFe]-Hydrogenase Models. Organometallics 2009. [DOI: 10.1021/om900675q] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad K. Harb
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Ulf-Peter Apfel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Joachim Kübel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Greg A. N. Felton
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| | - Taka Sakamoto
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| | - Dennis H. Evans
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| | - Richard S. Glass
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721
| | | | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| |
Collapse
|
122
|
Song LC, Yan J, Li YL, Wang DF, Hu QM. Synthetic and Structural Studies on l-Cysteinyl Group-Containing Diiron/Triiron Azadithiolates as Active Site Models of [FeFe]-Hydrogenases. Inorg Chem 2009; 48:11376-81. [DOI: 10.1021/ic9006179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Yan
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Long Li
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - De-Fu Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qing-Mei Hu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
123
|
Daraosheh AQ, Harb MK, Windhager J, Görls H, El-khateeb M, Weigand W. Substitution Reactions at [FeFe] Hydrogenase Models Containing [2Fe3S] Assembly by Phosphine or Phosphite Ligands. Organometallics 2009. [DOI: 10.1021/om9005752] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmad Q. Daraosheh
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Mohammad K. Harb
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Jochen Windhager
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany
| |
Collapse
|
124
|
Song LC, Gao W, Feng CP, Wang DF, Hu QM. Investigations on Synthesis, Structure, and Properties of New Butterfly [2Fe2Se] Cluster Complexes Relevant to Active Sites of Some Hydrogenases. Organometallics 2009. [DOI: 10.1021/om900572t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Gao
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Cui-Ping Feng
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - De-Fu Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing-Mei Hu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
125
|
Liu T, Li B, Singleton ML, Hall MB, Darensbourg MY. Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-hydrogenase active site: properties and oxygen damage repair possibilities. J Am Chem Soc 2009; 131:8296-307. [PMID: 19507910 DOI: 10.1021/ja9016528] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study explores the site specificity (sulfur vs the Fe-Fe bond) of oxygenation of diiron (Fe(I)Fe(I) and Fe(II)Fe(II)) organometallics that model the 2-iron subsite in the active site of [FeFe]-hydrogenase: (mu-pdt)[Fe(CO)(2)L][Fe(CO)(2)L'] (L = L' = CO (1); L = PPh(3), L' = CO (2); L = L' = PMe(3) (4)) and (mu-pdt)(mu-H)[Fe(CO)(2)PMe(3)](2) (5). DFT computations find that the Fe-Fe bond in the Fe(I)Fe(I) diiron models is thermodynamically favored to produce the mu-oxo or oxidative addition product, Fe(II)-O-Fe(II); nevertheless, the sulfur-based HOMO-1 accounts for the experimentally observed mono- and bis-O-atom adducts at sulfur, i.e., (mu-pst)[Fe(CO)(2)L][Fe(CO)(2)L'] (pst = -S(CH(2))(3)S(O)-, 1,3-propanesulfenatothiolate; L = L' = CO (1-O); L = PPh(3), L' = CO (2-O); L = L' = PMe(3) (4-O)) and (mu-pds)[Fe(CO)(2)L][Fe(CO)(2)L'] (pds = -(O)S(CH(2))(3)S(O)-, 1,3-propanedisulfenato; L = PPh(3), L' = CO (2-O(2))). The Fe(II)(mu-H)Fe(II) diiron model (5), for which the HOMO is largely of sulfur character, exclusively yields S-oxygenation. The depressing effect of such bridging ligand modification on the dynamic NMR properties arising from rotation of the Fe(CO)(3) correlates with higher barriers to the CO/PMe(3) exchange of (mu-pst)[Fe(CO)(3)](2) as compared to (mu-pdt)[Fe(CO)(3)](2). Five molecular structures are confirmed by X-ray diffraction: 1-O, 2-O, 2-O(2), 4-O, and 6. Deoxygenation with reclamation of the mu-pdt parent complex occurs in a proton/electron-coupled process. The possible biological relevance of oxygenation and deoxygenation studies is discussed.
Collapse
Affiliation(s)
- Tianbiao Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
126
|
Pal S, Ohki Y, Yoshikawa T, Kuge K, Tatsumi K. Dithiolate-bridged Fe-Ni-Fe trinuclear complexes consisting of Fe(CO)(3-n)(CN)(n) (n = 0, 1) components relevant to the active site of [NiFe] hydrogenase. Chem Asian J 2009; 4:961-968. [PMID: 19130447 DOI: 10.1002/asia.200800434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A dithiolate-bridged Fe-Ni-Fe trinuclear carbonyl complex [(CO)(3)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(3)] (1, ndt = norbornane-exo-2,3-dithiolate) has been synthesized from the reaction of [Fe(CO)(4)I(2)] and Li(2)[Ni(ndt)(2)]. This reaction was found to occur with concomitant formation of a tetranuclear cluster [Ni(3)(mu-ndt)(4)FeI] (2). Treatment of 1 with Na[N(SiMe(3))(2)] transforms some of the CO ligands into CN(-), and the monocyanide complex (PPh(4))[(CO)(2)(CN)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(3)] (3) and the dicyanide complex (PPh(4))(2)[(CO)(2)(CN)Fe(mu-ndt)Ni(mu-ndt)Fe(CO)(2)(CN)] (4) were isolated. X-ray structural analyses of the trinuclear complexes revealed a Fe-Ni-Fe array in which the metal centers are connected by the ndt sulfur bridges and direct Fe-Ni bonds. Hydrogen bonding between the CN ligand in 3 and cocrystallized ethanol was found in the solid-state structure. The monocyanide complex 3 and dicyanide complex 4 reacted with acids such as HOTf or HCl generating insoluble materials, whereas complex 1 did not react.
Collapse
Affiliation(s)
- Satyanarayan Pal
- Department of Chemistry, Graduate School of Science and Research Center for Materials, Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
127
|
Tard C, Pickett CJ. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 2009; 109:2245-74. [PMID: 19438209 DOI: 10.1021/cr800542q] [Citation(s) in RCA: 1021] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cédric Tard
- Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS 7591, Université Paris Diderot, 75013 Paris, France
| | | |
Collapse
|
128
|
Harb MK, Windhager J, Daraosheh A, Görls H, Lockett LT, Okumura N, Evans DH, Glass RS, Lichtenberger DL, El-khateeb M, Weigand W. Phosphane- and Phosphite-Substituted Diiron Diselenolato Complexes as Models for [FeFe]-Hydrogenases. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900252] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Morvan D, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J, Yaouanc JJ, Michaud F, Kervarec N. Modeling [FeFe] hydrogenase: Synthesis and protonation of a diiron dithiolate complex containing a phosphine-N-heterocyclic-carbene ligand. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
130
|
|
131
|
Song LC, Wang LX, Tang MY, Li CG, Song HB, Hu QM. Synthesis, Structure, and Photoinduced Catalysis of [FeFe]-Hydrogenase Active Site Models Covalently Linked to a Porphyrin or Metalloporphyrin Moiety. Organometallics 2009. [DOI: 10.1021/om900141x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Liang-Xing Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Ming-Yi Tang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chang-Gong Li
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hai-Bin Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing-Mei Hu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
132
|
Li Z, Zeng X, Niu Z, Liu X. Electrocatalytic investigations of a tri-iron cluster towards hydrogen evolution and relevance to [FeFe]-hydrogenase. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
133
|
Song LC, Gai B, Wang HT, Hu QM. Synthesis, characterization and electrocatalysis of diiron propanediselenolate derivatives as the active site models of [FeFe]-hydrogenases. J Inorg Biochem 2009; 103:805-12. [DOI: 10.1016/j.jinorgbio.2009.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
134
|
Bertini L, Greco C, De Gioia L, Fantucci P. DFT/TDDFT Exploration of the Potential Energy Surfaces of the Ground State and Excited States of Fe2(S2C3H6)(CO)6: A Simple Functional Model of the [FeFe] Hydrogenase Active Site. J Phys Chem A 2009; 113:5657-70. [DOI: 10.1021/jp809347h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Bertini
- Department of Biotechnology and Biosciences, Universitá degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Biotechnology and Biosciences, Universitá degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, Universitá degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, Universitá degli Studi di Milano—Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
135
|
Wang X, Li Z, Peng F, Ru X, Zeng X, Luo Q, Liu X. Intramolecular formation and cleavage of C–S/N bonds promoted by iron-sulfur coordination chemistry. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
136
|
Peters JW. Carbon Monoxide and Cyanide Ligands in the Active Site of [FeFe]-Hydrogenases. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The [FeFe]-hydrogenases, although share common features when compared to other metal containing hydrogenases, clearly have independent evolutionary origins. Examples of [FeFe]-hydrogenases have been characterized in detail by biochemical and spectroscopic approaches and the high resolution structures of two examples have been determined. The active site H-cluster is a complex bridged metal assembly in which a [4Fe-4S] cubane is bridged to a 2Fe subcluster with unique non-protein ligands including carbon monoxide, cyanide, and a five carbon dithiolate. Carbon monoxide and cyanide ligands as a component of a native active metal center is a property unique to the metal containing hydrogenases and there has been considerable attention to the characterization of the H-cluster at the level of electronic structure and mechanism as well as to defining the biological means to synthesize such a unique metal cluster. The chapter describes the structural architecture of [FeFe]-hydrogenases and key spectroscopic observations that have afforded the field with a fundamental basis for understanding the relationship between structure and reactivity of the H-cluster. In addition, the results and ideas concerning the topic of H-cluster biosynthesis as an emerging and fascinating area of research, effectively reinforcing the potential linkage between iron-sulfur biochemistry to the role of iron-sulfur minerals in prebiotic chemistry and the origin of life.
Collapse
Affiliation(s)
- John W. Peters
- Montana State University, Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center Bozeman, MT 59717 USA
| |
Collapse
|
137
|
Harb MK, Niksch T, Windhager J, Görls H, Holze R, Lockett LT, Okumura N, Evans DH, Glass RS, Lichtenberger DL, El-khateeb M, Weigand W. Synthesis and Characterization of Diiron Diselenolato Complexes Including Iron Hydrogenase Models. Organometallics 2009. [DOI: 10.1021/om800748p] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad K. Harb
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Tobias Niksch
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Jochen Windhager
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Helmar Görls
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Rudolf Holze
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - L. Tori Lockett
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Noriko Okumura
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Dennis H. Evans
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Richard S. Glass
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Dennis L. Lichtenberger
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Mohammad El-khateeb
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| | - Wolfgang Weigand
- Institut für Anorganische and Analytische Chemie, Friedrich-Schiller-Universität Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan, Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, 09111 Chemnitz, Germany, and Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
138
|
Green KN, Hess JL, Thomas CM, Darensbourg MY. Resin-bound models of the [FeFe]-hydrogenase enzyme active site and studies of their reactivity. Dalton Trans 2009:4344-50. [DOI: 10.1039/b823152d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
139
|
Song LC, Luo X, Wang YZ, Gai B, Hu QM. Synthesis, characterization and electrochemical behavior of some N-heterocyclic carbene-containing active site models of [FeFe]-hydrogenases. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2008.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
140
|
Wang WG, Wang HY, Si G, Tung CH, Wu LZ. Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Dalton Trans 2009:2712-20. [DOI: 10.1039/b818012a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
141
|
Brown-McDonald J, Berg S, Peralto M, Works C. Photochemical studies of iron-only hydrogenase model compounds. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.03.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
142
|
Synthesis, characterisation of two hexa-iron clusters with {Fe2S2(CO)x} (x=5 or 6) fragments and investigation into their inter-conversion. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
143
|
Petro BJ, Vannucci AK, Lockett LT, Mebi C, Kottani R, Gruhn NE, Nichol GS, Goodyer PA, Evans DH, Glass RS, Lichtenberger DL. Photoelectron spectroscopy of dithiolatodiironhexacarbonyl models for the active site of [Fe–Fe] hydrogenases: Insight into the reorganization energy of the “rotated” structure in the enzyme. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
144
|
Capon J, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J. Organometallic Diiron Complex Chemistry Related to the [2Fe]
H
Subsite of [FeFe]H
2
ase. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800717] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jean‐François Capon
- Université Européenne de Bretagne, France, Université de Brest, CNRS, UMR 6521 “ Chimie, Electrochimie Moléculaires et Chimie Analytique ”, ISSTB, CS 93837, 29238 Brest‐Cedex 3, France
| | - Frédéric Gloaguen
- Université Européenne de Bretagne, France, Université de Brest, CNRS, UMR 6521 “ Chimie, Electrochimie Moléculaires et Chimie Analytique ”, ISSTB, CS 93837, 29238 Brest‐Cedex 3, France
| | - François Y. Pétillon
- Université Européenne de Bretagne, France, Université de Brest, CNRS, UMR 6521 “ Chimie, Electrochimie Moléculaires et Chimie Analytique ”, ISSTB, CS 93837, 29238 Brest‐Cedex 3, France
| | - Philippe Schollhammer
- Université Européenne de Bretagne, France, Université de Brest, CNRS, UMR 6521 “ Chimie, Electrochimie Moléculaires et Chimie Analytique ”, ISSTB, CS 93837, 29238 Brest‐Cedex 3, France
| | - Jean Talarmin
- Université Européenne de Bretagne, France, Université de Brest, CNRS, UMR 6521 “ Chimie, Electrochimie Moléculaires et Chimie Analytique ”, ISSTB, CS 93837, 29238 Brest‐Cedex 3, France
| |
Collapse
|
145
|
Windhager J, Seidel R, Apfel UP, Görls H, Linti G, Weigand W. Oxidation of Diiron and Triiron Sulfurdithiolato Complexes: Mimics for the Active Site of [FeFe]-Hydrogenase. Chem Biodivers 2008; 5:2023-2041. [DOI: 10.1002/cbdv.200890185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
146
|
Roy LE, Batista ER, Hay PJ. Theoretical studies on the redox potentials of Fe dinuclear complexes as models for hydrogenase. Inorg Chem 2008; 47:9228-37. [PMID: 18811143 DOI: 10.1021/ic800541w] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density Functional calculations have been performed at the uB3LYP and uBP86 levels to calculate the one-electron redox potentials for a series of small models based on the diiron hydrogenase enzymes in the presence of acetonitrile (MeCN). The solvation effects in MeCN are incorporated via a self-consistent reaction field (SCRF) using the polarized continuum model (PCM). The calculated redox potentials reproduce the trends in experimental data with an average error of only 0.12 V using the BP86 functional, whereas comparing results with the B3LYP functional require a systematic shift of -0.82 and -0.53 V for oxidation and reduction, respectively. The bonding orbitals and d-electron populations were examined using Mulliken population analysis, and the results were used to rationalize the calculated and observed redox potentials. These studies demonstrate that the redox potential correlates with the empirical spectrochemical series for the ligands, as well as with the amount of electron density donated by the ligand onto the Fe centers.
Collapse
Affiliation(s)
- Lindsay E Roy
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
147
|
Olsen MT, Bruschi M, De Gioia L, Rauchfuss TB, Wilson SR. Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site. J Am Chem Soc 2008; 130:12021-30. [PMID: 18700771 PMCID: PMC2574744 DOI: 10.1021/ja802268p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study probes the impact of electronic asymmetry of diiron(I) dithiolato carbonyls. Treatment of Fe2(S2C(n)H(2n))(CO)(6-x)(PMe3)x compounds (n = 2, 3; x = 1, 2, 3) with NOBF4 gave the derivatives [Fe2(S2C(n)H(2n))(CO)(5-x)(PMe3)x(NO)]BF4, which are electronically unsymmetrical because of the presence of a single NO(+) ligand. Whereas the monophosphine derivative is largely undistorted, the bis(PMe3) derivatives are distorted such that the CO ligand on the Fe(CO)(PMe3)(NO)(+) subunit is semibridging. Two isomers of [Fe2(S2C3H6)(CO)3(PMe3)2(NO)]BF4 were characterized spectroscopically and crystallographically. Each isomer features electron-rich Fe(CO)2PMe3 and electrophilic Fe(CO)(PMe3)(NO)(+) subunits. These species are in equilibrium with an unobserved isomer that reversibly binds CO (DeltaH = -35 kJ/mol, DeltaS = -139 J mol(-1) K(-1)) to give the symmetrical adduct [Fe2(S2C3H6)(mu-NO)(CO)4(PMe3)2]BF4. In contrast to Fe2(S2C3H6)(CO)4(PMe3)2, the bis(PMe3) nitrosyl complexes readily undergo CO substitution to give the (PMe3)3 derivatives. The nitrosyl complexes reduce at potentials that are approximately 1 V milder than their carbonyl counterparts. Results of density functional theory calculations, specifically natural bond orbital analysis, reinforce the electronic resemblance of the nitrosyl complexes to the corresponding mixed-valence diiron complexes. Unlike other diiron dithiolato carbonyls, these species undergo reversible reductions at mild potentials. The results show that the novel structural and chemical features associated with mixed-valence diiron dithiolates (the so-called H(ox) models) can be replicated in the absence of mixed-valency by the introduction of electronic asymmetry.
Collapse
Affiliation(s)
- Matthew T. Olsen
- Department of Chemistry, University of Illinois at Urbana -- Champaign, Urbana, Illinois, 61801
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, Piazza della Scienza 1, 20126-Milan, Italy
| | - Maurizio Bruschi
- Department of Chemistry, University of Illinois at Urbana -- Champaign, Urbana, Illinois, 61801
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, Piazza della Scienza 1, 20126-Milan, Italy
| | - Luca De Gioia
- Department of Chemistry, University of Illinois at Urbana -- Champaign, Urbana, Illinois, 61801
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, Piazza della Scienza 1, 20126-Milan, Italy
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana -- Champaign, Urbana, Illinois, 61801
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, Piazza della Scienza 1, 20126-Milan, Italy
| | - Scott R. Wilson
- Department of Chemistry, University of Illinois at Urbana -- Champaign, Urbana, Illinois, 61801
- Department of Biotechnology and Biosciences, University of Milano—Bicocca, Piazza della Scienza 1, 20126-Milan, Italy
| |
Collapse
|
148
|
Singleton ML, Jenkins RM, Klemashevich CL, Darensbourg MY. The effect of bridgehead steric bulk on the ground state and intramolecular exchange processes of (μ-SCH2CR2CH2S)[Fe(CO)3][Fe(CO)2L] complexes. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
149
|
Si Y, Hu M, Chen C. Diiron models for active site of FeFe-hydrogenase with aromatic thiolate bridges: Structures and electrochemistry. CR CHIM 2008. [DOI: 10.1016/j.crci.2008.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
150
|
Wang Z, Jiang W, Liu J, Jiang W, Wang Y, Åkermark B, Sun L. Pendant bases as proton transfer relays in diiron dithiolate complexes inspired by [Fe–Fe] hydrogenase active site. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|