101
|
Zheng F, Yang W, Ko MC, Liu J, Cho H, Gao D, Tong M, Tai HH, Woods JH, Zhan CG. Most efficient cocaine hydrolase designed by virtual screening of transition states. J Am Chem Soc 2008; 130:12148-55. [PMID: 18710224 DOI: 10.1021/ja803646t] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is recognized as the most reinforcing of all drugs of abuse. There is no anticocaine medication available. The disastrous medical and social consequences of cocaine addiction have made the development of an anticocaine medication a high priority. It has been recognized that an ideal anticocaine medication is one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., cocaine hydrolysis catalyzed by plasma enzyme butyrylcholinesterase (BChE). However, wild-type BChE has a low catalytic efficiency against the abused cocaine. Design of a high-activity enzyme mutant is extremely challenging, particularly when the chemical reaction process is rate-determining for the enzymatic reaction. Here we report the design and discovery of a high-activity mutant of human BChE by using a novel, systematic computational design approach based on transition-state simulations and activation energy calculations. The novel computational design approach has led to discovery of the most efficient cocaine hydrolase, i.e., a human BChE mutant with an approximately 2000-fold improved catalytic efficiency, promising for therapeutic treatment of cocaine overdose and addiction as an exogenous enzyme in human. The encouraging discovery resulted from the computational design not only provides a promising anticocaine medication but also demonstrates that the novel, generally applicable computational design approach is promising for rational enzyme redesign and drug discovery.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 2008; 283:26771-81. [PMID: 18650421 DOI: 10.1074/jbc.m802800200] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes.
Collapse
Affiliation(s)
- Yan Li
- Gonda Diabetes Center, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:45-57. [PMID: 18603028 DOI: 10.1016/j.bbagrm.2008.06.005] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, and neurodegenerative disorders. Thus, it is important to fully understand the detailed kinetic and chemical mechanisms of these enzymes. Here, we review recent progress towards determining the mechanisms of histone lysine and arginine modifying enzymes. In particular, the mechanisms of S-adenosyl-methionine (AdoMet) dependent methyltransferases, FAD-dependent demethylases, iron dependent demethylases, acetyl-CoA dependent acetyltransferases, zinc dependent deacetylases, NAD(+) dependent deacetylases, and protein arginine deiminases are covered. Particular attention is paid to the conserved active-site residues necessary for catalysis and the individual chemical steps along the catalytic pathway. When appropriate, areas requiring further work are discussed.
Collapse
Affiliation(s)
- Brian C Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
104
|
Wu R, Cao Z. QM/MM study of catalytic methyl transfer by the N5-glutamine SAM-dependent methyltransferase and its inhibition by the nitrogen analogue of coenzyme. J Comput Chem 2008; 29:350-7. [PMID: 17591721 DOI: 10.1002/jcc.20793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The combined density functional quantum mechanical/molecular mechanical (QM/MM) approach has been used to investigate methyl-transfer reactions catalyzed by the N(5)-glutamine S-adenosyl-L-methionine (SAM)-dependent methyltransferase (HemK) and the coenzyme-modified HemK with the replacement of SAM by a nitrogen analogue. Calculations reveal that the catalytic methyl transfer by HemK is an energy-favored process with an activation barrier of 15.7 kcal/mol and an exothermicity of 12.0 kcal/mol, while the coenzyme-modified HemK is unable to catalyze the methyl transfer because of a substantial barrier of 20.6 kcal/mol and instability of the product intermediate. The results lend support to the experimental proposal that the nitrogen analogue of the SAM coenzyme should be a practicable inhibitor for the catalytic methyl transfer by HemK. Comparative QM/MM calculations show that the protein environment, especially the residues Asn197 and Pro198 in the active site, plays a pivotal role in stabilizing the transition state and regulating the positioning of reactive groups.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
105
|
Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Proc Natl Acad Sci U S A 2008; 105:5728-32. [PMID: 18391193 DOI: 10.1073/pnas.0801788105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Molecular dynamics and hybrid quantum mechanics/molecular mechanics have been used to investigate the mechanisms of (+)AdoMet methylation of protein-Lys-NH(2) catalyzed by the lysine methyltransferase enzymes: histone lysine monomethyltransferase SET7/9, Rubisco large-subunit dimethyltransferase, viral histone lysine trimethyltransferase, and the Tyr245Phe mutation of SET7/9. At neutrality in aqueous solution, primary amines are protonated. The enzyme reacts with Lys-NH(3)(+) and (+)AdoMet species to provide an Enz.Lys-NH(3)(+).(+)AdoMet complex. The close positioning of two positive charges lowers the pK(a) of the Lys-NH(3)(+) entity, a water channel appears, and the proton escapes to the aqueous solvent; then the reaction Enz.Lys-NH(2).(+)AdoMet --> Enz.Lys-N(Me)H(2)(+).AdoHcy occurs. Repeat of the sequence provides dimethylated lysine, and another repeat yields a trimethylated lysine. The sequence is halted at monomethylation when the conformation of the Enz.Lys-N(Me)H(2)(+).(+)AdoMet has the methyl positioned to block formation of a water channel. The sequence of reactions stops at dimethylation if the conformation of Enz.Lys-N(Me)(2)H(+).(+)AdoMet has a methyl in position, which forbids the formation of the water channel.
Collapse
|
106
|
Hu P, Wang S, Zhang Y. How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations. J Am Chem Soc 2008; 130:3806-13. [PMID: 18311969 DOI: 10.1021/ja075896n] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A distinct protein lysine methyltransferase (PKMT) only transfers a certain number of methyl group(s) to its target lysine residue in spite of the fact that a lysine residue can be either mono-, di-, or tri-methylated. In order to elucidate how such a remarkable product specificity is achieved, we have carried out ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations on two SET-domain PKMTs: SET7/9 and Rubisco large subunit methyltransferase (LSMT). The results indicate that the methylation state specificity is mainly controlled by the methyl-transfer reaction step, and confirm that SET7/9 is a mono-methyltransferase while LSMT has both mono-and di-methylation activities. It is found that the binding of the methylated lysine substrate in the active site of SET7/ 9 opens up the cofactor AdoMet binding channel so that solvent water molecules get access to the active site. This disrupts the catalytic machinery of SET7/9 for the di-methylation reaction, which leads to a higher activation barrier, whereas for the LSMT, its active site is more spacious than that of SET7/9, so that the methylated lysine substrate can be accommodated without interfering with its catalytic power. These detailed insights take account of protein dynamics and are consistent with available experimental results as well as recent theoretical findings regarding the catalytic power of SET7/9.
Collapse
Affiliation(s)
- Po Hu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
107
|
Zhang X, Bruice TC. Mechanism of product specificity of AdoMet methylation catalyzed by lysine methyltransferases: transcriptional factor p53 methylation by histone lysine methyltransferase SET7/9. Biochemistry 2008; 47:2743-8. [PMID: 18260647 DOI: 10.1021/bi702370p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalysis by SET7/9 histone lysine methyltransferase of AdoMet N-methylation of the transcriptional factor p53-Lys4-NH 2 has been investigated with particular attention paid to the means of product specificity. After formation of the SET7/9.p53-Lys4-NH 3 (+).AdoMet complex, the following events occur: (i) the appearance of a water channel, (ii) a depronation of p53-Lys4-NH 3 (+) via this water channel into the aqueous solvent, and (iii) AdoMet methylation of p53-Lys4-NH 2 to form p53-Lys4-N(Me)H 2 (+). The formation of a water channel does not occur on formation of the SET7/9.p53-Lys4-NH 3 (+), SET7/9.p53-Lys4-N(Me)H 2 (+).AdoHcy, or SET7/9.p53-Lys4-N(Me)H 2 (+).AdoMet complex. Without a water channel, the substrate p53-Lys4-N(Me)H is not available because the proton dissociation p53-Lys4-N(Me)H 2 (+) --> p53-Lys4-N(Me)H + H (+) does not occur. The lack of formation of a water channel is due to the positioning of the methyl substituent of the SET7/9.p53-Lys4-N(Me)H 2 (+).AdoMet complex. By quantum mechanics/molecular mechanics, the computed free energy barrier of the methyl transfer reaction [p53-Lys4-NH 2 + AdoMet --> p53-Lys4-N(Me)H 2 (+) + AdoHcy] in the SET7/9 complex is Delta G (++) = 20.1 +/- 2.9 kcal/mol. This Delta G (++) is in agreement with the value of 20.9 kcal/mol calculated from the experimental rate constant (1.2 +/- 0.1 min (-1)). Our bond-order computations establish that the methyl transfer reaction in protein lysine methyltransferases occurs via a linear S N2 associative reaction with bond making of approximately 50%.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
108
|
Hu H, Lu Z, Parks JM, Burger SK, Yang W. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface. J Chem Phys 2008; 128:034105. [DOI: 10.1063/1.2816557] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
109
|
Hu H, Yang W. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 2008; 59:573-601. [PMID: 18393679 PMCID: PMC3727228 DOI: 10.1146/annurev.physchem.59.032607.093618] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.
Collapse
Affiliation(s)
- Hao Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
110
|
Corminboeuf C, Hu P, Tuckerman ME, Zhang Y. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc 2007; 128:4530-1. [PMID: 16594663 DOI: 10.1021/ja0600882] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize the catalytic mechanism for zinc-dependent histone deacetylases (HDAC), we have carried out density functional theory QM/MM studies on the deacetylation reaction catalyzed by a histone-deacetylase-like protein (HDLP). The calculation results do not support the previous mechanistic hypothesis, but suggest a lower protonation state for the active site as well as a 4-fold zinc coordination during the reaction process. To characterize such mechanistic difference is not only significant for our fundamental understanding of its inner workings but also crucial for the design of HDAC inhibitors.
Collapse
|
111
|
Xiao C, Zhang Y. Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons. J Chem Phys 2007; 127:124102. [PMID: 17902888 PMCID: PMC2773247 DOI: 10.1063/1.2774980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.
Collapse
Affiliation(s)
- Chuanyun Xiao
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
112
|
Guo HB, Guo H. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc Natl Acad Sci U S A 2007; 104:8797-802. [PMID: 17517655 PMCID: PMC1885582 DOI: 10.1073/pnas.0702981104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation of certain lysine residues in the N-terminal tails of core histone proteins in nucleosome is of fundamental importance in the regulation of chromatin structure and gene expression. Such histone modification is catalyzed by protein lysine methyltransferases (PKMTs). PKMTs contain a conserved SET domain in almost all of the cases and may transfer one to three methyl groups from S-adenosyl-L-methionine (AdoMet) to the epsilon-amino group of the target lysine residue. Here, quantum mechanical/molecular mechanical molecular dynamics and free-energy simulations are performed on human PKMT SET7/9 and its mutants to understand two outstanding questions for the reaction catalyzed by PKMTs: the mechanism for deprotonation of positively charged methyl lysine (lysine) and origin of product specificity. The results of the simulations suggest that Tyr-335 (an absolute conserved residue in PKMTs) may play the role as the general base for the deprotonation after dissociation of AdoHcy (S-adenosyl-L-homocysteine) and before binding of AdoMet. It is shown that conformational changes could bring Y335 to the target methyl lysine (lysine) for proton abstraction. This mechanism provides an explanation why methyl transfers could be catalyzed by PKMTs processively. The free-energy profiles for methyl transfers are reported and analyzed for wild type and certain mutants (Y305F and Y335F) and the active-site interactions that are of importance for the enzyme's function are discussed. The results of the simulations provide important insights into the catalytic process and lead to a better understanding of experimental observations concerning the origin of product specificity for PKMTs.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, Center of Excellence in Structural Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, Center of Excellence in Structural Biology, University of Tennessee, Knoxville, TN 37996-0840
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
113
|
Wang S, Hu P, Zhang Y. Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation of enzyme catalysis: the case of histone lysine methyltransferase SET7/9. J Phys Chem B 2007; 111:3758-64. [PMID: 17388541 PMCID: PMC2527688 DOI: 10.1021/jp067147i] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To elucidate enzyme catalysis through computer simulation, a prerequisite is to reliably compute free energy barriers for both enzyme and solution reactions. By employing on-the-fly Born-Oppenheimer molecular dynamics simulations with the ab initio quantum mechanical/molecular mechanical approach and the umbrella sampling method, we have determined free energy profiles for the methyl-transfer reaction catalyzed by the histone lysine methyltransferase SET7/9 and its corresponding uncatalyzed reaction in aqueous solution, respectively. Our calculated activation free energy barrier for the enzyme catalyzed reaction is 22.5 kcal/mol, which agrees very well with the experimental value of 20.9 kcal/mol. The difference in potential of mean force between a corresponding prereaction state and the transition state for the solution reaction is computed to be 30.9 kcal/mol. Thus, our simulations indicate that the enzyme SET7/9 plays an essential catalytic role in significantly lowering the barrier for the methyl-transfer reaction step. For the reaction in solution, it is found that the hydrogen bond network near the reaction center undergoes a significant change, and there is a strong shift in electrostatic field from the prereaction state to the transition state, whereas for the enzyme reaction, such an effect is much smaller and the enzyme SET7/9 is found to provide a preorganized electrostatic environment to facilitate the methyl-transfer reaction. Meanwhile, we find that the transition state in the enzyme reaction is a little more dissociative than that in solution.
Collapse
Affiliation(s)
- Shenglong Wang
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
114
|
Wang L, Yu X, Hu P, Broyde S, Zhang Y. A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 2007; 129:4731-7. [PMID: 17375926 PMCID: PMC2519035 DOI: 10.1021/ja068821c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA polymerases are enzymes responsible for the synthesis of DNA from nucleotides. Understanding their molecular fundamentals is a prerequisite for elucidating their aberrant activities in diseases such as cancer. Here we have carried out ab initio quantum mechanical/molecular mechanical (QM/MM) studies on the nucleotidyl-transfer reaction catalyzed by the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus, with template guanine and Watson-Crick paired dCTP as the nascent base pair. The results suggested a novel water-mediated and substrate-assisted (WMSA) mechanism: the initial proton transfer to the alpha-phosphate of the substrate via a bridging crystal water molecule is the rate-limiting step, the nucleotidyl-transfer step is associative with a metastable pentacovalent phosphorane intermediate, and the pyrophosphate leaving is facilitated by a highly coordinated proton relay mechanism through mediation of water which neutralizes the evolving negative charge. The conserved carboxylates, which retain their liganding to the two Mg2+ ions during the reaction process, are found to be essential in stabilizing transition states. This WMSA mechanism takes specific advantage of the unique structural features of this low-fidelity lesion-bypass Y-family polymerase, which has a more spacious and solvent-exposed active site than replicative and repair polymerases.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Biology, New York University, New York, NY 10003
| | - Xinyun Yu
- Department of Biology, New York University, New York, NY 10003
| | - Po Hu
- Department of Chemistry, New York University, New York, NY 10003
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
115
|
Ferrer S, Tuñón I, Martí S, Moliner V, Garcia-Viloca M, Gonzalez-Lafont A, Lluch JM. A theoretical analysis of rate constants and kinetic isotope effects corresponding to different reactant valleys in lactate dehydrogenase. J Am Chem Soc 2007; 128:16851-63. [PMID: 17177436 DOI: 10.1021/ja0653977] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In some enzymatic systems large conformational changes are coupled to the chemical step, in such a way that dispersion of rate constants can be observed in single-molecule experiments, each corresponding to the reaction from a different reactant valley. Under this perspective here we present a computational study of pyruvate to lactate transformation catalyzed by lactate dehydrogenase. The reaction consists of a hydride transfer and a proton transfer that seem to take place concertedly. The degree of asynchronicity and the energy barrier depend on the particular starting reactant valley. In order to estimate rate constants we used a free energy perturbation technique adapted to follow the intrinsic reaction coordinate for several possible reaction paths. Tunneling effects are also obtained with a slightly modified version of the ensemble-averaged variational transition state theory with multidimensional tunneling contributions. According to our results the closure of the active site by means of a flexible loop can lead to the formation of different reactant complexes displaying different features in the disposition of some key residues (such as Arg109), interactions with the substrate and number of water molecules in the active site. The chemical step of the reaction takes place with a different reaction rate from each of these complexes. Finally, primary kinetic isotope effects for replacement of the transferring hydrogen of the cofactor with a deuteride are in good agreement with experimental observations, thus validating our methodology.
Collapse
Affiliation(s)
- Silvia Ferrer
- Departament de Química Física, Universitat de València, València, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Ruthenburg AJ, Wang W, Graybosch DM, Li H, Allis CD, Patel DJ, Verdine GL. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 2006; 13:704-12. [PMID: 16829959 PMCID: PMC4698793 DOI: 10.1038/nsmb1119] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/05/2006] [Indexed: 11/09/2022]
Abstract
WDR5 is a core component of SET1-family complexes that achieve transcriptional activation via methylation of histone H3 on Nzeta of Lys4 (H3K4). The role of WDR5 in the MLL1 complex has recently been described as specific recognition of dimethyl-K4 in the context of a histone H3 amino terminus; WDR5 is essential for vertebrate development, Hox gene activation and global H3K4 trimethylation. We report the high-resolution X-ray structures of WDR5 in the unliganded form and complexed with histone H3 peptides having unmodified and mono-, di- and trimethylated K4, which together provide the first comprehensive analysis of methylated histone recognition by the ubiquitous WD40-repeat fold. Contrary to predictions, the structures reveal that WDR5 does not read out the methylation state of K4 directly, but instead serves to present the K4 side chain for further methylation by SET1-family complexes.
Collapse
Affiliation(s)
- Alexander J Ruthenburg
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Couture JF, Hauk G, Thompson MJ, Blackburn GM, Trievel RC. Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases. J Biol Chem 2006; 281:19280-7. [PMID: 16682405 DOI: 10.1074/jbc.m602257200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SET domain enzymes represent a distinct family of protein lysine methyltransferases in eukaryotes. Recent studies have yielded significant insights into the structural basis of substrate recognition and the product specificities of these enzymes. However, the mechanism by which SET domain methyltransferases catalyze the transfer of the methyl group from S-adenosyl-L-methionine to the lysine epsilon-amine has remained unresolved. To elucidate this mechanism, we have determined the structures of the plant SET domain enzyme, pea ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit methyltransferase, bound to S-adenosyl-L-methionine, and its non-reactive analogs Aza-adenosyl-L-methionine and Sinefungin, and characterized the binding of these ligands to a homolog of the enzyme. The structural and biochemical data collectively reveal that S-adenosyl-L-methionine is selectively recognized through carbon-oxygen hydrogen bonds between the cofactor's methyl group and an array of structurally conserved oxygens that comprise the methyl transfer pore in the active site. Furthermore, the structure of the enzyme co-crystallized with the product epsilon-N-trimethyllysine reveals a trigonal array of carbon-oxygen interactions between the epsilon-ammonium methyl groups and the oxygens in the pore. Taken together, these results establish a central role for carbon-oxygen hydrogen bonding in aligning the cofactor's methyl group for transfer to the lysine epsilon-amine and in coordinating the methyl groups after transfer to facilitate multiple rounds of lysine methylation.
Collapse
Affiliation(s)
- Jean-François Couture
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|