101
|
Awazu A. Segregation and phase inversion of strongly and weakly fluctuating Brownian particle mixtures and a chain of such particle mixtures in spherical containers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042308. [PMID: 25375495 DOI: 10.1103/physreve.90.042308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 06/04/2023]
Abstract
We investigate the segregation pattern formation of strongly and weakly fluctuating Brownian particle mixtures confined in a three-dimensional spherical container. We consider systems where the particle motion is restricted by the harmonic external trapping potential and the container edge wall. In such systems, two segregation patterns are observed. When the container radius is sufficiently large, more weakly fluctuating particles accumulate near the center of the container than strongly fluctuating particles. On the other hand, the distributions of the strongly and weakly fluctuating particles are inverted when the container radius is small. With no external trapping potentials, we find similar segregation and phase inversion if the particles construct a chain (heterofluctuating polymer) and are confined in a three-dimensional spherical container. We could apply these phenomena in the study of biopolymer behavior, such as chromosomes in the cell nucleus.
Collapse
Affiliation(s)
- Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University, Kagami-yama 1-3-1, Higashi-Hiroshima 739-8526, Japan and Research Center for Mathematics on Chromatin Live Dynamics. Kagami-yama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
102
|
Hyeon C, Denesyuk NA, Thirumalai D. Development and Applications of Coarse-Grained Models for RNA. Isr J Chem 2014. [DOI: 10.1002/ijch.201400029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
103
|
Nakano SI, Kitagawa Y, Miyoshi D, Sugimoto N. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds. FEBS Open Bio 2014; 4:643-50. [PMID: 25161873 PMCID: PMC4141205 DOI: 10.1016/j.fob.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 12/23/2022] Open
Abstract
Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Yuichi Kitagawa
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan ; Department of Chemistry, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan ; Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| |
Collapse
|
104
|
Tan SM, Altschuler G, Zhao TY, Ang HS, Yang H, Lim B, Vardy L, Hide W, Thomson AM, Lareu RR. Divergent LIN28-mRNA associations result in translational suppression upon the initiation of differentiation. Nucleic Acids Res 2014; 42:7997-8007. [PMID: 24860167 PMCID: PMC4081066 DOI: 10.1093/nar/gku430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications.
Collapse
Affiliation(s)
- Shen Mynn Tan
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Gabriel Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Tian Yun Zhao
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Haw Siang Ang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore (NUS), 117599, Singapore
| | - Bing Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Leah Vardy
- Institute of Medical Biology, A*STAR, 138648, Singapore
| | - Winston Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew M Thomson
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 138672, Singapore
| | - Ricky R Lareu
- Department of Orthopedic Surgery, NUS Tissue Engineering Program, Yong Loo Lin School of Medicine, NUS, 119228, Singapore and School of Pharmacy, CHIRI Biosciences, Curtin University, Western Australia 6102, Australia
| |
Collapse
|
105
|
Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc Natl Acad Sci U S A 2014; 111:8464-9. [PMID: 24850865 DOI: 10.1073/pnas.1316039111] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop-receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple "hard-sphere" treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ -5 kcal/mol free-energy stabilization at excluded volume fractions of 30%.
Collapse
|
106
|
Song Y, Liu KJ, Wang TH. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One 2014; 9:e94619. [PMID: 24722341 PMCID: PMC3983213 DOI: 10.1371/journal.pone.0094619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 01/22/2023] Open
Abstract
Adapter ligation is a critical first step in many microRNA analysis methods including microarray, qPCR, and sequencing. Previous studies have shown that ligation bias can have dramatic effects on both the fidelity of expression profiles and reproducibility across samples. We have developed a method for high efficiency and low bias microRNA capture by 3′ adapter ligation using T4 RNA ligase that does not require pooled adapters. Using a panel of 20 microRNA, we investigated the effects of ligase type, PEG concentration, ligase amount, adapter concentration, incubation time, incubation temperature, and adapter design on capture efficiency and bias. Of these factors, high PEG% was found to be critical in suppressing ligation bias. We obtained high average capture efficiency and low CV across the 20 microRNA panel, both in idealized buffer conditions (86%±10%) and total RNA spiking conditions (64%±17%). We demonstrate that this method is reliable across microRNA species that previous studies have had difficulty capturing and that our adapter design performs significantly better than the common adapter designs. Further, we demonstrate that the optimization methodology must be specifically designed for minimizing bias in order to obtain the ideal reaction parameters.
Collapse
Affiliation(s)
- Yunke Song
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kelvin J. Liu
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- Circulomics Inc, Baltimore, Maryland, United States of America
- * E-mail: (THW); (KJL)
| | - Tza-Huei Wang
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (THW); (KJL)
| |
Collapse
|
107
|
Cao C, Wang QB, Tang LJ, Ge BQ, Chen ZX, Deng SP. Chain-Length-Dependent Autocatalytic Hydrolysis of Fatty Acid Anhydrides in Polyethylene Glycol. J Phys Chem B 2014; 118:3461-8. [DOI: 10.1021/jp4125233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cao Cao
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qing-Biao Wang
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Lin-Jun Tang
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Bing-Qiang Ge
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Zhong-Xiu Chen
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shao-Ping Deng
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
108
|
Strulson CA, Boyer JA, Whitman EE, Bevilacqua PC. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions. RNA (NEW YORK, N.Y.) 2014; 20:331-47. [PMID: 24442612 PMCID: PMC3923128 DOI: 10.1261/rna.042747.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/22/2013] [Indexed: 05/21/2023]
Abstract
Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg(2+) ion concentrations are low, K(+) concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo-like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg(2+) (0.5-2 mM) and K(+) (140 mM) if the solution is supplemented with physiological amounts (∼ 20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution.
Collapse
Affiliation(s)
- Christopher A. Strulson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua A. Boyer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elisabeth E. Whitman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorE-mail
| |
Collapse
|
109
|
Aumiller WM, Davis BW, Hashemian N, Maranas C, Armaou A, Keating CD. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system. J Phys Chem B 2014; 118:2506-17. [PMID: 24517887 PMCID: PMC3983363 DOI: 10.1021/jp501126v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
intracellular environment in which biological reactions occur
is crowded with macromolecules and subdivided into microenvironments
that differ in both physical properties and chemical composition.
The work described here combines experimental and computational model
systems to help understand the consequences of this heterogeneous
reaction media on the outcome of coupled enzyme reactions. Our experimental
model system for solution heterogeneity is a biphasic polyethylene
glycol (PEG)/sodium citrate aqueous mixture that provides coexisting
PEG-rich and citrate-rich phases. Reaction kinetics for the coupled
enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase
(HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS).
Enzyme kinetics differed between the two phases, particularly for
the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however,
the Amplex Red substrate necessary to complete the sequential reaction
partitioned strongly to the PEG-rich phase. Reactions in ATPS were
quantitatively described by a mathematical model that incorporated
measured partitioning and kinetic parameters. The model was then extended
to new reaction conditions, i.e., higher enzyme concentration. Both
experimental and computational results suggest mass transfer across
the interface is vital to maintain the observed rate of product formation,
which may be a means of metabolic regulation in vivo. Although outcomes
for a specific system will depend on the particulars of the enzyme
reactions and the microenvironments, this work demonstrates how coupled
enzymatic reactions in complex, heterogeneous media can be understood
in terms of a mathematical model.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry and ‡Department of Chemical Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | |
Collapse
|
110
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
111
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
112
|
Molecular crowding inhibits U-insertion/deletion RNA editing in vitro: consequences for the in vivo reaction. PLoS One 2013; 8:e83796. [PMID: 24376749 PMCID: PMC3871654 DOI: 10.1371/journal.pone.0083796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/16/2013] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial pre-mRNAs in African trypanosomes are edited to generate functional transcripts. The reaction is typified by the insertion and deletion of U nucleotides and is catalyzed by a macromolecular complex, the editosome. Editosomes bind pre-edited mRNA/gRNA pairs and the reaction can be recapitulated in vitro by using pre-mRNA- and gRNA-mimicking oligoribonucleotides together with enriched editosome preparations. Although the in vitro assay has been instrumental in unraveling the basic steps of the editing cycle it is performed at dilute solvent conditions. This ignores the fact that editing takes place inside the highly crowded mitochondria. Here we investigate the effects of molecular crowding on RNA editing. By using neutral, macromolecular cosolutes we generate defined dilute, semidilute and crowded solvent properties and we demonstrate different thermodynamic stabilities of the pre-mRNA/gRNA hybrid RNAs at these conditions. Crowded conditions stabilize the RNAs by -30 kJ/mol. Furthermore, we show that the rate constants for the association and dissociation (kass/kdiss) of substrate RNAs to editosomes decrease, ultimately inhibiting the in vitro reaction. The data demonstrate that the current RNA editing in vitro system is sensitive to molecular crowding, which suggests that the in vivo reaction cannot rely on a diffusion-controlled, collision-based mechanism. Possible non-diffusional reaction pathways are discussed.
Collapse
|
113
|
Desai R, Kilburn D, Lee HT, Woodson SA. Increased ribozyme activity in crowded solutions. J Biol Chem 2013; 289:2972-7. [PMID: 24337582 DOI: 10.1074/jbc.m113.527861] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg(2+) concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg(2+) threshold at which activity was detected and increased total RNA cleavage at high Mg(2+) concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates.
Collapse
Affiliation(s)
- Ravi Desai
- From the T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
114
|
Novikova IV, Hennelly SP, Sanbonmatsu KY. Tackling structures of long noncoding RNAs. Int J Mol Sci 2013; 14:23672-84. [PMID: 24304541 PMCID: PMC3876070 DOI: 10.3390/ijms141223672] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/15/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022] Open
Abstract
RNAs are important catalytic machines and regulators at every level of gene expression. A new class of RNAs has emerged called long non-coding RNAs, providing new insights into evolution, development and disease. Long non-coding RNAs (lncRNAs) predominantly found in higher eukaryotes, have been implicated in the regulation of transcription factors, chromatin-remodeling, hormone receptors and many other processes. The structural versatility of RNA allows it to perform various functions, ranging from precise protein recognition to catalysis and metabolite sensing. While major housekeeping RNA molecules have long been the focus of structural studies, lncRNAs remain the least characterized class, both structurally and functionally. Here, we review common methodologies used to tackle RNA structure, emphasizing their potential application to lncRNAs. When considering the complexity of lncRNAs and lack of knowledge of their structure, chemical probing appears to be an indispensable tool, with few restrictions in terms of size, quantity and heterogeneity of the RNA molecule. Probing is not constrained to in vitro analysis and can be adapted to high-throughput sequencing platforms. Significant efforts have been applied to develop new in vivo chemical probing reagents, new library construction protocols for sequencing platforms and improved RNA prediction software based on the experimental evidence.
Collapse
|
115
|
Tateishi-Karimta H, Sugimoto N. Control of stability and structure of nucleic acids using cosolutes. Methods 2013; 67:151-8. [PMID: 24270066 DOI: 10.1016/j.ymeth.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022] Open
Abstract
The stabilities, structures, and functions of nucleic acids are responsive to surrounding conditions. Living cells contain biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, that occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. We have proven that conditions that mimic features of this intra-cellular environment alter the physical properties affect the stability, structure, and function of nucleic acids. The ability to control structure of nucleic acids by mimicking intra-cellular conditions will be useful in nanotechnology applications of nucleic acids. This paper describes methods that can be used to analyze quantitatively the intra-cellular environment effects caused by cosolutes on nucleic acid structures and to regulate properties of nucleic acids using cosolutes.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimta
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
116
|
Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ. The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 2013; 52:8777-85. [PMID: 24215455 DOI: 10.1021/bi401207q] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute time scale using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg(2+), the approximate Mg(2+) concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg(2+) concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg(2+) alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations.
Collapse
Affiliation(s)
- Jillian Tyrrell
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | |
Collapse
|
117
|
Strulson CA, Yennawar NH, Rambo RP, Bevilacqua PC. Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions. Biochemistry 2013; 52:8187-97. [PMID: 24187989 PMCID: PMC3882164 DOI: 10.1021/bi400816s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.
Collapse
Affiliation(s)
- Christopher A. Strulson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Neela H. Yennawar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Robert P. Rambo
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
118
|
Pincus DL, Thirumalai D. Force-induced unzipping transitions in an athermal crowded environment. J Phys Chem B 2013; 117:13107-14. [PMID: 23789729 DOI: 10.1021/jp402922q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using theoretical arguments and extensive Monte Carlo (MC) simulations of a coarse-grained three-dimensional off-lattice model of a β-hairpin, we demonstrate that the equilibrium critical force, Fc, needed to unfold the biopolymer increases nonlinearly with increasing volume fraction occupied by the spherical macromolecular crowding agent. Both scaling arguments and MC simulations show that the critical force increases as Fc ≈ φc(α). The exponent α is linked to the Flory exponent relating the size of the unfolded state of the biopolymer and the number of amino acids. The predicted power law dependence is confirmed in simulations of the dependence of the isothermal extensibility and the fraction of native contacts on φc. We also show using MC simulations that Fc is linearly dependent on the average osmotic pressure (P) exerted by the crowding agents on the β-hairpin. The highly significant linear correlation coefficient of 0.99657 between Fc and P makes it straightforward to predict the dependence of the critical force on the density of crowders. Our predictions are amenable to experimental verification using laser optical tweezers.
Collapse
Affiliation(s)
- David L Pincus
- Institute for Physical Science and Technology, University of Maryland , College Park, Maryland 20742, United States
| | | |
Collapse
|
119
|
Qin S, Zhou HX. Effects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins. J Phys Chem Lett 2013; 4:10.1021/jz401817x. [PMID: 24312701 PMCID: PMC3846091 DOI: 10.1021/jz401817x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to their conformational malleability, intrinsically disordered proteins (IDPs) are particularly susceptible to influences of crowded cellular environments. Here we report a computational study of the effects of macromolecular crowding on the conformational ensemble of a coarse-grained IDP model, by using two approaches. In one, the IDP is simulated along with the crowders; in the other, crowder-free simulations are postprocessed to predict the conformational ensembles under crowding. We found significant decreases in the radius of gyration of the IDP under crowding, and suggest repulsive interactions with crowders as a common cause for chain compaction in a number of experimental studies. The postprocessing approach accurately reproduced the conformational ensembles of the IDP in the direct simulations here, and holds enormous potential for realistic modeling of IDPs under crowding, by permitting thorough conformation sampling for the proteins even when they and the crowders are both represented at the all-atom level.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Correspondence information: phone, (850) 645-1336; fax, (850) 644-7244; e-mail,
| |
Collapse
|
120
|
Cui J, Waltman P, Le VH, Lewis EA. The effect of molecular crowding on the stability of human c-MYC promoter sequence I-motif at neutral pH. Molecules 2013; 18:12751-67. [PMID: 24132198 PMCID: PMC6270392 DOI: 10.3390/molecules181012751] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that c-MYC promoter sequences can form stable i-motifs in acidic solution (pH 4.5-5.5). In terms of drug targeting, the question is whether c-MYC promoter sequence i-motifs will exist in the nucleus at neutral pH. In this work, we have investigated the stability of a mutant c-MYC i-motif in solutions containing a molecular crowding agent. The crowded nuclear environment was modeled by the addition of up to 40% w/w polyethylene glycols having molecular weights up to 12,000 g/mol. CD and DSC were used to establish the presence and stability of c-MYC i-motifs in buffer solutions over the pH range 4 to 7. We have shown that the c-MYC i-motif can exist as a stable structure at pH values as high as 6.7 in crowded solutions. Generic dielectric constant effects, e.g., a shift in the pKa of cytosine by more than 2 units (e.g., 4.8 to 7.0), or the formation of non-specific PEG/DNA complexes appear to contribute insignificantly to i-motif stabilization. Molecular crowding, largely an excluded volume effect of added PEG, having a molecular weight in excess of 1,000 g/mol, appears to be responsible for stabilizing the more compact i-motif over the random coil at higher pH values.
Collapse
Affiliation(s)
- Jingjing Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
121
|
Trachman RJ, Draper DE. Comparison of interactions of diamine and Mg²⁺ with RNA tertiary structures: similar versus differential effects on the stabilities of diverse RNA folds. Biochemistry 2013; 52:5911-9. [PMID: 23899366 PMCID: PMC3809084 DOI: 10.1021/bi400529q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cations play a large role in stabilizing the native state of RNA in vivo. In addition to Mg²⁺, putrescine²⁺ is an abundant divalent cation in bacterial cells, but its effect on the folding of RNA tertiary structure has not been widely explored. In this study, we look at how the stabilities of four structured RNAs, each with a different degree of dependence on K⁺ and Mg²⁺, are affected by putrescine²⁺ relative to Mg²⁺. Through the use of thermal melts, we observe that (i) at a given concentration, putrescine²⁺ is less effective than Mg²⁺ at stabilizing RNA, (ii) the stability imparted to RNA by various diamines is a function of charge density (average separation distance between charges) as well as the flexibility of the counterion, and (iii) when Mg²⁺ is already present in a buffer, further addition of putrescine²⁺ may either destabilize or stabilize RNA structure, depending on whether the native RNA does or does not chelate Mg²⁺ ion, respectively. At ion concentrations likely to be found in vivo, the effect of putrescine²⁺ on the free energy of folding of an RNA tertiary structure is probably quite small compared to that of Mg²⁺, but the ability of mixed Mg²⁺/putrescine²⁺ environments to (in effect) discriminate between different RNA architectures suggests that, in some cells, the evolution of functional RNA structures may have been influenced by the presence of putrescine²⁺.
Collapse
Affiliation(s)
| | - David E. Draper
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
122
|
Shand O, Volz K. The solution structure of apo-iron regulatory protein 1. Gene 2013; 524:341-6. [DOI: 10.1016/j.gene.2013.03.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
123
|
Kilburn D, Roh JH, Behrouzi R, Briber RM, Woodson SA. Crowders perturb the entropy of RNA energy landscapes to favor folding. J Am Chem Soc 2013; 135:10055-63. [PMID: 23773075 DOI: 10.1021/ja4030098] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biological macromolecules have evolved to fold and operate in the crowded environment of the cell. We have shown previously that molecular crowding stabilizes folded RNA structures. Here we report SAXS measurements on a 64 kDa bacterial group I ribozyme in the presence of mono- and divalent ions and PEG crowders of different molecular weight. These experiments show that crowders always stabilize the folded RNA, but this stabilization is weaker in NaCl solutions than MgCl2 solutions. Additionally, we find that RNAs with the same global structure, parametrized by Rg, have different scattering functions depending upon the ratio of electrostatic and entropic stabilization by ions and crowders, respectively. We quantify this difference using the scattering length per scattering volume and find that this ratio is larger for RNAs that fold in lower ionic strength solutions due to the higher crowder content. We conclude that lower RNA flexibility, or reduced configurational entropy, widens the free energy gap between the unfolded and folded RNA in crowded MgCl2 solutions.
Collapse
Affiliation(s)
- Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
124
|
Tateishi-Karimata H, Nakano SI, Sugimoto N. Quantitative analyses of nucleic Acid stability under the molecular crowding condition induced by cosolutes. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 7:7.19.1-7.19.17. [PMID: 23775810 DOI: 10.1002/0471142700.nc0719s53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A variety of biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, are present in living cells. These molecules occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. This situation is referred to as molecular crowding. Although the thermodynamic stabilities of DNA structures are known to be altered in a crowded environment, less is known about the behavior of nucleic acids and their interactions with cations and water molecules under such conditions. This unit describes methods that can be used to quantitatively analyze the molecular crowding effects caused by cosolutes on the thermodynamic stability, hydration, and cation binding of nucleic acid structures.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Shu-Ichi Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.,Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.,Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| |
Collapse
|
125
|
Fujii M, Nishimori H, Awazu A. Influences of excluded volume of molecules on signaling processes on the biomembrane. PLoS One 2013; 8:e62218. [PMID: 23658714 PMCID: PMC3642174 DOI: 10.1371/journal.pone.0062218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/18/2013] [Indexed: 01/25/2023] Open
Abstract
We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by monotonically increasing; increasing then decreasing in a bell-shaped curve; or increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.
Collapse
Affiliation(s)
- Masashi Fujii
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | |
Collapse
|
126
|
Denesyuk NA, Thirumalai D. Entropic stabilization of the folded states of RNA due to macromolecular crowding. Biophys Rev 2013; 5:225-232. [PMID: 28510164 DOI: 10.1007/s12551-013-0119-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/25/2022] Open
Abstract
We review the effects of macromolecular crowding on the folding of RNA by considering the simplest scenario when excluded volume interactions between crowding particles and RNA dominate. Using human telomerase enzyme as an example, we discuss how crowding can alter the equilibrium between pseudoknot and hairpin states of the same RNA molecule-a key aspect of crowder-RNA interactions. We summarize data showing that the crowding effect is significant only if the size of the spherical crowding particle is smaller than the radius of gyration of the RNA in the absence of crowding particles. The implication for function of the wild type and mutants of human telomerase is outlined by using a relationship between enzyme activity and its conformational equilibrium. In addition, we discuss the interplay between macromolecular crowding and ionic strength of the RNA buffer. Finally, we briefly review recent experiments which illustrate the connection between excluded volume due to macromolecular crowding and the thermodynamics of RNA folding.
Collapse
Affiliation(s)
- Natalia A Denesyuk
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
127
|
Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint. Biochem J 2013; 451:439-51. [DOI: 10.1042/bj20121761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure–function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate–ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.
Collapse
|
128
|
Gu X, Nguyen MT, Overacre A, Seaton S, Schroeder SJ. Effects of salt, polyethylene glycol, and locked nucleic acids on the thermodynamic stabilities of consecutive terminal adenosine mismatches in RNA duplexes. J Phys Chem B 2013; 117:3531-40. [PMID: 23480443 DOI: 10.1021/jp312154d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Consecutive terminal mismatches add thermodynamic stability to RNA duplexes and occur frequently in microRNA-mRNA interactions. Accurate thermodynamic stabilities of consecutive terminal mismatches contribute to the development of specific, high-affinity siRNA therapeutics. Consecutive terminal adenosine mismatches (TAMS) are studied at different salt concentrations, with polyethylene glycol cosolutes, and with locked nucleic acid (LNA) substitutions. These measurements provide benchmarks for the application of thermodynamic predictions to different physiological or therapeutic conditions. The salt dependence for RNA duplex stability is similar for TAMS, internal loops, and Watson-Crick duplexes. A unified model for predicting the free energy of an RNA duplex with or without loops and mismatches at lower sodium concentrations is presented. The destabilizing effects of PEG 200 are larger for TAMS than internal loops or Watson-Crick duplexes, which may result from different base stacking conformations, dynamics, and water hydration. In contrast, LNA substitutions stabilize internal loops much more than TAMS. Surprisingly, the average per adenosine increase in stability for LNA substitutions in internal loops is -1.82 kcal/mol and only -0.20 kcal/mol for TAMS. The stabilities of TAMS and internal loops with LNA substitutions have similar favorable free energies. Thus, the unfavorable free energy of adenosine internal loops is largely an entropic effect. The favorable stabilities of TAMS result mainly from base stacking. The ability of RNA duplexes to form extended terminal mismatches in the absence of proteins such as argonaute and identifying the enthalpic contributions to terminal mismatch stabilities provide insight into the physical basis of microRNA-mRNA molecular recognition and specificity.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry and Biochemistry, Department of Microbiology and Plant Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|
129
|
Tan ZJ, Chen SJ. Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 2013; 103:827-36. [PMID: 22947944 DOI: 10.1016/j.bpj.2012.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 12/28/2022] Open
Abstract
RNAs are negatively charged molecules that reside in cellular environments with macromolecular crowding. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the effect of confinement on ion-mediated RNA structural collapse for a simple model system. We find that for both Na(+) and Mg(2+), the ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. This enhancement of ion efficiency is attributed to the decreased electrostatic free-energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Collapse
Affiliation(s)
- Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, People's Republic of China.
| | | |
Collapse
|
130
|
Effects of long DNA folding and small RNA stem-loop in thermophoresis. Proc Natl Acad Sci U S A 2012; 109:17972-7. [PMID: 23071341 DOI: 10.1073/pnas.1215764109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In thermophoresis, with the fluid at rest, suspensions move along a gradient of temperature. In an aqueous solution, a PEG polymer suspension is depleted from the hot region and builds a concentration gradient. In this gradient, DNA polymers of different sizes can be separated. In this work the effect of the polymer structure for genomic DNA and small RNA is studied. For genome-size DNA, individual single T4 DNA is visualized and tracked in a PEG solution under a temperature gradient built by infrared laser focusing. We find that T4 DNA follows steps of depletion, ring-like localization, and accumulation patterns as the PEG volume fraction is increased. Furthermore, a coil-globule transition for DNA is observed for a large enough PEG volume fraction. This drastically affects the localization position of T4 DNA. In a similar experiment, with small RNA such as ribozymes we find that the stem-loop folding of such polymers has important consequences. The RNA polymers having a long and rigid stem accumulate, whereas a polymer with stem length less than 4 base pairs shows depletion. Such measurements emphasize the crucial contribution of the double-stranded parts of RNA for thermal separation and selection under a temperature gradient. Because huge temperature gradients are present around hydrothermal vents in the deep ocean seafloor, this process might be relevant, at the origin of life, in an RNA world hypothesis. Ribozymes could be selected from a pool of random sequences depending on the length of their stems.
Collapse
|
131
|
Miyoshi D, Fujimoto T, Sugimoto N. Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Top Curr Chem (Cham) 2012; 330:87-110. [DOI: 10.1007/128_2012_335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
132
|
Protein crowding impedes pressure-induced unfolding of staphylococcal nuclease. Biochim Biophys Acta Gen Subj 2012; 1820:957-61. [DOI: 10.1016/j.bbagen.2012.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
|
133
|
Nakano SI, Hirayama H, Miyoshi D, Sugimoto N. Dimerization of nucleic acid hairpins in the conditions caused by neutral cosolutes. J Phys Chem B 2012; 116:7406-15. [PMID: 22703387 DOI: 10.1021/jp302170f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Characterization of metal ion binding to RNA and DNA base pairs is important for understanding their energy contribution to the folding and conformational changes of nucleic acid structures. In this study, we examine the equilibrium shift from the hairpin toward the dimer formation, induced by nonspecifically bound metal ions. The hairpin dimerization is markedly enhanced in the presence of high background concentrations of poly(ethylene glycol) (PEG) and several small organic molecules. The simple volume exclusion effect and the base pair stability cannot entirely account for this increase. We find that the dielectric constant correlates well with the dimerization efficiency in the conditions caused by small alcohol molecules and amide compounds as well as PEG. The hairpin dimerization experiments reveal the potential of PEG for enhancing the binding affinity between nucleic acids and metal ions, by reducing the solution dielectric constant without decreasing the thermodynamic stability of nucleic acid structures. The results presented here contribute to the understanding of nucleic acid folding and its ability to switch between alternative conformations under the condition of limited cation availability and cellular physiology.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | |
Collapse
|
134
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
135
|
Kudlay A, Cheung MS, Thirumalai D. Influence of the shape of crowding particles on the structural transitions in a polymer. J Phys Chem B 2012; 116:8513-22. [PMID: 22616622 DOI: 10.1021/jp212535n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structural transitions in a polymer induced by spherical and nonspherical crowding particles over a wide range of conditions. The polymer conformations are specified by the radius of gyration and the quality of the solvent in the absence of crowding particles. In the presence of crowding particles, the structures are altered by the volume fraction, size, shape, and polydispersity of the crowders. We show that crowding induces an array of structural changes, ranging from helix, helical hairpin (HH), and multiple helix bundles (HBs), depending on the interplay of multiple length and energy scales including the solvent quality, length of the polymer, temperature, and the characteristics of the crowding agents. In nearly good solvents, the polymer undergoes coil-helix transition in accord with the predictions based on the entropic stabilization mechanism. Higher-order (HH and HB) structures are obtained in poor or moderately poor solvents. In a binary mixture of spherical crowders, the effect of the two components is largely additive with the polymer undergoing greater compaction at higher volume fraction. In contrast to spherical crowders, spherocylinder-like crowders have a dramatically different effect on the diagram of states of the polymer. In the presence of spherocylinders, the polymer prefers to form a nearly ideal helix, especially at low temperatures and high aspect ratios of the crowders, at volume fractions that are not large enough for nematic order. Surprisingly, there is a complete absence of HH and HB in the range of conditions explored here. The dominant formation of spherocylinder-induced helix formation is due to the tendency of the spherocylinders and the polymer to align along the director formed by an increase in nematic order only in the vicinity of the polymer. Our study, which has produced several testable predictions, shows that only by probing the effects of crowding on a polymer (or a protein and RNA) over a wide range of conditions can the diagram of states be quantitatively described.
Collapse
Affiliation(s)
- Alexander Kudlay
- Biophysics Program, Institute for Physical Sciences and Technology, University of Houston, Houston, Texas 77204, United States
| | | | | |
Collapse
|
136
|
Beckford SJ, Dixon DW. Molecular Dynamics of Anthraquinone DNA Intercalators with Polyethylene Glycol Side Chains. J Biomol Struct Dyn 2012; 29:1065-80. [DOI: 10.1080/073911012010525031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
137
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
138
|
Lease RA, Arluison V, Lavelle C. Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo.. FRONTIERS IN LIFE SCIENCE 2012; 6:19-32. [PMID: 23914307 PMCID: PMC3725660 DOI: 10.1080/21553769.2012.761163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/18/2012] [Indexed: 11/23/2022]
Abstract
The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly.
Collapse
Affiliation(s)
- Richard A Lease
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
139
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
140
|
Kumar V, Endoh T, Murakami K, Sugimoto N. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch. Chem Commun (Camb) 2012; 48:9693-5. [DOI: 10.1039/c2cc34506d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
141
|
Butcher SE, Pyle AM. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 2011; 44:1302-11. [PMID: 21899297 DOI: 10.1021/ar200098t] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are flanked by highly structured untranslated regions, which provide regulatory information necessary for gene expression. RNA tertiary structure is defined as the three-dimensional arrangement of RNA building blocks, which include helical duplexes, triple-stranded structures, and other components that are held together through connections collectively termed RNA tertiary interactions. The structural diversity of these interactions is now a subject of intense investigation, involving the techniques of NMR, X-ray crystallography, chemical genetics, and phylogenetic analysis. At the same time, many investigators are using biophysical techniques to elucidate the driving forces for tertiary structure formation and the mechanisms for its stabilization. RNA tertiary folding is promoted by maximization of base stacking, much like the hydrophobic effect that drives protein folding. RNA folding also requires electrostatic stabilization, both through charge screening and site binding of metals, and it is enhanced by desolvation of the phosphate backbone. In this Account, we provide an overview of the features that specify and stabilize RNA tertiary structure. A major determinant for overall tertiary RNA architecture is local conformation in secondary-structure junctions, which are regions from which two or more duplexes project. At junctions and other structures, such as pseudoknots and kissing loops, adjacent helices stack on one another, and these coaxial stacks play a major role in dictating the overall architectural form of an RNA molecule. In addition to RNA junction topology, a second determinant for RNA tertiary structure is the formation of sequence-specific interactions. Networks of triple helices, tetraloop-receptor interactions, and other sequence-specific contacts establish the framework for the overall tertiary fold. The third determinant of tertiary structure is the formation of stabilizing stacking and backbone interactions, and many are not sequence specific. For example, ribose zippers allow 2'-hydroxyl groups on different RNA strands to form networks of interdigitated hydrogen bonds, serving to seal strands together and thereby stabilize adjacent substructures. These motifs often require monovalent and divalent cations, which can interact diffusely or through chelation to specific RNA functional groups. As we learn more about the components of RNA tertiary structure, we will be able to predict the structures of RNA molecules from their sequences, thereby obtaining key information about biological function. Understanding and predicting RNA structure is particularly important given the recent discovery that although most of our genome is transcribed into RNA molecules, few of them have a known function. The prevalence of RNA viruses and pathogens with RNA genomes makes RNA drug discovery an active area of research. Finally, knowledge of RNA structure will facilitate the engineering of supramolecular RNA structures, which can be used as nanomechanical components for new materials. But all of this promise depends on a better understanding of the RNA parts list, and how the pieces fit together.
Collapse
Affiliation(s)
- Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock
Drive, Madison, Wisconsin 53706-1544, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular
and Developmental Biology and Department of Chemistry, Yale University, New Haven, Connecticut, United States
- Howard Hughes Medical Institute
| |
Collapse
|
142
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
143
|
Blose JM, Pabit SA, Meisburger SP, Li L, Jones CD, Pollack L. Effects of a protecting osmolyte on the ion atmosphere surrounding DNA duplexes. Biochemistry 2011; 50:8540-7. [PMID: 21882885 DOI: 10.1021/bi200710m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and nonprotecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Nonprotecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions, we used small-angle X-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes; thus, it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose, except under high Mg(2+) conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small-angle X-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose.
Collapse
Affiliation(s)
- Joshua M Blose
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
145
|
Lane AN. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie 2011; 94:277-86. [PMID: 21854828 DOI: 10.1016/j.biochi.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
DNA quadruplexes are often conceived as very stable structures. However, most of the free energy of stabilization derives from specific ion binding via inner sphere coordination of the GO6 of the guanine residues comprising the basic quartet. When compared with other nucleic acid structures such as DNA or RNA duplexes and hairpins, or proteins of the same number of atoms, metal-coordinated intramolecular quadruplexes are found to be of comparable or lower thermodynamic stability under similar solution conditions. Furthermore, intramolecular quadruplexes are actually less stable kinetically, than DNA duplexes or hairpins of the same size. Although the literature is incomplete, it is clear that polyelectrolyte ion effects, the influence of solvation and steric crowding on stability are qualitatively different between intramolecular quadruplexes and DNA duplexes. For example, decreasing water activity destabilizes DNA duplexes, whereas quadruplexes are stabilized. The variety of folded conformations accessible to a single sequence further implies strong sensitivity of the conformational ensemble to the solution conditions, compared with DNA duplexes or small single domain proteins. These considerations may have relevance to the conditions prevailing inside cell nuclei and therefore the structures that potentially might form in vivo.
Collapse
Affiliation(s)
- Andrew N Lane
- JG Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
146
|
Denesyuk NA, Thirumalai D. Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA. J Am Chem Soc 2011; 133:11858-61. [DOI: 10.1021/ja2035128] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia A. Denesyuk
- Department of Chemistry and Biochemistry and Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - D. Thirumalai
- Department of Chemistry and Biochemistry and Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
147
|
Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF. Long-Range Distance Measurements on Nucleic Acids in Cells by Pulsed EPR Spectroscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
148
|
Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 2011; 50:5070-4. [PMID: 21506223 DOI: 10.1002/anie.201100886] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Indexed: 12/18/2022]
Affiliation(s)
- Ivan Krstić
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr Opin Struct Biol 2011; 21:296-305. [PMID: 21497083 DOI: 10.1016/j.sbi.2011.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Accompanying recent advances in determining RNA secondary structure is the growing appreciation for the importance of relatively simple topological constraints, encoded at the secondary structure level, in defining the overall architecture, folding pathways, and dynamic adaptability of RNA. A new view is emerging in which tertiary interactions do not define RNA 3D structure, but rather, help select specific conformers from an already narrow, topologically pre-defined conformational distribution. Studies are providing fundamental insights into the nature of these topological constraints, how they are encoded by the RNA secondary structure, and how they interplay with other interactions, breathing new meaning to RNA secondary structure. New approaches have been developed that take advantage of topological constraints in determining RNA backbone conformation based on secondary structure, and a limited set of other, easily accessible constraints. Topological constraints are also providing a much-needed framework for rationalizing and describing RNA dynamics and structural adaptation. Finally, studies suggest that topological constraints may play important roles in steering RNA folding pathways. Here, we review recent advances in our understanding of topological constraints encoded by the RNA secondary structure.
Collapse
|
150
|
Feng B, Frykholm K, Nordén B, Westerlund F. DNA strand exchange catalyzed by molecular crowding in PEG solutions. Chem Commun (Camb) 2010; 46:8231-3. [DOI: 10.1039/c0cc03117h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|