101
|
Tonhauser C, Natalello A, Löwe H, Frey H. Microflow Technology in Polymer Synthesis. Macromolecules 2012. [DOI: 10.1021/ma301671x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Tonhauser
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
| | - Adrian Natalello
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128
Mainz, Germany
| | - Holger Löwe
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
- Institut für Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-22, 55129
Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
| |
Collapse
|
102
|
Wang G, Shi G, Mu Q, Zhang Q, Wang H, Li Y. Highly dispersed Co0.5Zn0.5Fe2O4/polypyrrole nanocomposites for cost-effective, high-performance defluoridation using a magnetically controllable microdevice. JOURNAL OF HAZARDOUS MATERIALS 2012; 237-238:1-9. [PMID: 22959477 DOI: 10.1016/j.jhazmat.2012.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/25/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
Highly dispersed Co(0.5)Zn(0.5)Fe(2)O(4)/polypyrrole (CZFO/PPy) nanocomposites with enhanced electromagnetic properties and large surface area were rapidly and controllably prepared using microfluidic reactors. A novel magnetically controllable microdevice using the new adsorbent in a highly dispersed form was assembled and used for fluoride adsorption. Compared with traditional adsorption methods, the device displayed high adsorption efficiency and capacity. The adsorbents were regenerated with no significant loss in defluoridation ability, which indicates that the device is a realistic and highly efficient alternative way of removing fluoride pollution at low cost.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | | | |
Collapse
|
103
|
Sadler S, Moeller AR, Jones GB. Microwave and continuous flow technologies in drug discovery. Expert Opin Drug Discov 2012; 7:1107-28. [DOI: 10.1517/17460441.2012.727393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
104
|
Distefano G, Comotti A, Bracco S, Beretta M, Sozzani P. Porous Dipeptide Crystals as Polymerization Nanoreactors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
105
|
Distefano G, Comotti A, Bracco S, Beretta M, Sozzani P. Porous dipeptide crystals as polymerization nanoreactors. Angew Chem Int Ed Engl 2012; 51:9258-62. [PMID: 22893625 DOI: 10.1002/anie.201204178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Gaetano Distefano
- Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
| | | | | | | | | |
Collapse
|
106
|
Bhangale AS, Beers KL, Gross RA. Enzyme-Catalyzed Polymerization of End-Functionalized Polymers in a Microreactor. Macromolecules 2012. [DOI: 10.1021/ma301178k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atul S. Bhangale
- Center for Biocatalysis and
Bioprocessing of Macromolecules, Department of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Kathryn L. Beers
- Polymers Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Richard A. Gross
- Center for Biocatalysis and
Bioprocessing of Macromolecules, Department of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| |
Collapse
|
107
|
Kundu S, Johnson PM, Beers KL. Increasing Molecular Mass in Enzymatic Lactone Polymerizations. ACS Macro Lett 2012; 1:347-351. [PMID: 35578499 DOI: 10.1021/mz2002005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a model developed for the enzyme-catalyzed polymerization and degradation of poly(caprolactone), we illustrate a method and the kinetic mechanisms necessary to improve molecular mass by manipulating equilibrium reactions in the kinetic pathway. For these polymerization/degradation reactions, a water/linear chain equilibrium controls the number of chains in solution. Here, we control the equilibrium by adding water-trapping molecular sieves in the batch polymerization reactions of ε-caprolactone. While ring-opening rates were mostly unaffected, the molecular mass shifted to higher molecular masses after complete conversion was reached, and a good agreement between the experimental and modeling results was found. These results provide a framework to improve the molecular mass for enzyme-catalyzed ring-opening polymerization of lactone.
Collapse
Affiliation(s)
- Santanu Kundu
- Polymers
Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Peter M. Johnson
- Polymers
Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Kathryn L. Beers
- Polymers
Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| |
Collapse
|
108
|
|
109
|
Yang Y, Yu Y, Zhang Y, Liu C, Shi W, Li Q. Lipase/esterase-catalyzed ring-opening polymerization: A green polyester synthesis technique. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
110
|
Marques MP, Fernandes P. Microfluidic devices: useful tools for bioprocess intensification. Molecules 2011; 16:8368-401. [PMID: 21963626 PMCID: PMC6264232 DOI: 10.3390/molecules16108368] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 11/16/2022] Open
Abstract
The dawn of the new millennium saw a trend towards the dedicated use of microfluidic devices for process intensification in biotechnology. As the last decade went by, it became evident that this pattern was not a short-lived fad, since the deliverables related to this field of research have been consistently piling-up. The application of process intensification in biotechnology is therefore seemingly catching up with the trend already observed in the chemical engineering area, where the use of microfluidic devices has already been upgraded to production scale. The goal of the present work is therefore to provide an updated overview of the developments centered on the use of microfluidic devices for process intensification in biotechnology. Within such scope, particular focus will be given to different designs, configurations and modes of operation of microreactors, but reference to similar features regarding microfluidic devices in downstream processing will not be overlooked. Engineering considerations and fluid dynamics issues, namely related to the characterization of flow in microchannels, promotion of micromixing and predictive tools, will also be addressed, as well as reflection on the analytics required to take full advantage of the possibilities provided by microfluidic devices in process intensification. Strategies developed to ease the implementation of experimental set-ups anchored in the use of microfluidic devices will be briefly tackled. Finally, realistic considerations on the current advantages and limitation on the use of microfluidic devices for process intensification, as well as prospective near future developments in the field, will be presented.
Collapse
Affiliation(s)
- Marco P.C. Marques
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, IST, Lisboa, Portugal
| | - Pedro Fernandes
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, IST, Lisboa, Portugal
| |
Collapse
|
111
|
Johnson PM, Kundu S, Beers KL. Modeling enzymatic kinetic pathways for ring-opening lactone polymerization. Biomacromolecules 2011; 12:3337-43. [PMID: 21834510 DOI: 10.1021/bm2009312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified kinetic pathway for the enzyme-catalyzed polymerization and degradation of poly(ε-caprolactone) was developed. This model tracks the complete distribution of individual chain lengths, both enzyme-bound and in solution, and successfully predicts monomer conversion and the molecular mass distribution as a function of reaction time. As compared to reported experimental data for polymerization reactions, modeled kinetics generate similar trends, with ring-opening rates and water concentration as key factors to controlling molecular mass distributions. Water is critically important by dictating the number of linear chains in solution, shifting the molecular mass distribution at which propagation and degradation equilibrate. For the enzymatic degradation of poly(ε-caprolactone), the final reaction product is also consistent with the equilibrium dictated by the propagation and degradation rates. When the modeling framework described here is used, further experiments can be designed to isolate key reaction steps and provide methods for improving the efficiency of enzyme polymerization.
Collapse
Affiliation(s)
- Peter M Johnson
- Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | | |
Collapse
|
112
|
Enzyme-immobilized microfluidic process reactors. Molecules 2011; 16:6041-59. [PMID: 21772235 PMCID: PMC6264325 DOI: 10.3390/molecules16076041] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 11/17/2022] Open
Abstract
Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.
Collapse
|