101
|
Kim CJ, Debus RJ. Evidence from FTIR Difference Spectroscopy That a Substrate H2O Molecule for O2 Formation in Photosystem II Is Provided by the Ca Ion of the Catalytic Mn4CaO5 Cluster. Biochemistry 2017; 56:2558-2570. [DOI: 10.1021/acs.biochem.6b01278] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
102
|
Narzi D, Mattioli G, Bovi D, Guidoni L. A Spotlight on the Compatibility between XFEL and Ab Initio Structures of the Oxygen Evolving Complex in Photosystem II. Chemistry 2017; 23:6969-6973. [DOI: 10.1002/chem.201700722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Daniele Narzi
- Institute of Chemical Sciences and Engineering; École polytechnique fédérale de Lausanne; Av. F.-A. Forel 2 1015 Lausanne Switzerland
| | | | - Daniele Bovi
- Pangea Formazione s.r.l.; via Gaspare Gozzi, 55 00145 Rome Italy
- Dipartimento di Scienze Fisiche e Chimiche; Università degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche; Università degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| |
Collapse
|
103
|
Nucleophilic water attack is not a possible mechanism for O-O bond formation in photosystem II. Proc Natl Acad Sci U S A 2017; 114:4966-4968. [PMID: 28438997 DOI: 10.1073/pnas.1617843114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two different types of mechanisms are at present suggested for the O-O bond-formation step in photosystem II. The first one is a coupling between an oxyl radical and a bridging oxo. The second one is a nucleophilic water attack on a terminal oxo (or oxyl) group. In the present short paper, the six most reasonable versions of the latter mechanism have been studied and compared with the oxo-oxyl mechanism. The barriers are found to be much too high for the water attack, and that mechanism can therefore safely be ruled out. The reason is that the protonated peroxide product is always very high in energy.
Collapse
|
104
|
Guevara-Vela JM, Rocha-Rinza T, Pendás ÁM. Performance of the RI and RIJCOSX approximations in the topological analysis of the electron density. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2084-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
105
|
Paul S, Cox N, Pantazis DA. What Can We Learn from a Biomimetic Model of Nature’s Oxygen-Evolving Complex? Inorg Chem 2017; 56:3875-3888. [DOI: 10.1021/acs.inorgchem.6b02777] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Satadal Paul
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Dimitrios A. Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
106
|
Hodel FH, Luber S. Dehydrogenation Free Energy of Co 2+(aq) from Density Functional Theory-Based Molecular Dynamics. J Chem Theory Comput 2017; 13:974-981. [PMID: 28225613 DOI: 10.1021/acs.jctc.6b01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electron and proton transfers are important steps occurring in chemical reactions. The often used approach of calculating the energy differences of those steps using methods based on geometry optimizations neglects the influence of dynamic effects. To further investigate this issue and inspired by research in water oxidation, we calculate in the present study the dehydrogenation free energy of aqueous Co2+, which is the free energy change associated with the first step of the water oxidation reaction mechanism of recently investigated model Co(II)-aqua catalysts. We employ a method based on a thermodynamic integration scheme with strong ties to Marcus theory to obtain free energy differences, solvent reorganization free energies, and dynamic structural information on the systems from density functional theory-based molecular dynamics. While this method is computationally orders of magnitude more expensive than a static approach, it potentially allows for predicting the validity of the approximation of neglecting dynamic effects.
Collapse
Affiliation(s)
- Florian H Hodel
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
107
|
Shoji M, Isobe H, Shen JR, Yamaguchi K. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex. Phys Chem Chem Phys 2017; 18:11330-40. [PMID: 27055567 DOI: 10.1039/c5cp07226c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Japan and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan.
| | - Hiroshi Isobe
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan and Handairigaku Techno-Research (NPO), Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
108
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N. On the guiding principles for understanding of geometrical structures of the CaMn4O5 cluster in oxygen-evolving complex of photosystem II. Proposal of estimation formula of structural deformations via the Jahn–Teller effects. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
- Handairigaku Techno-Research , Toyonaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University , Tsukuba, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University , Okayama, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University , Osaka, Japan
| | - Y. Umena
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - K. Kawakami
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - N. Kamiya
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| |
Collapse
|
109
|
Nagashima H, Mino H. Location of Methanol on the S 2 State Mn Cluster in Photosystem II Studied by Proton Matrix Electron Nuclear Double Resonance. J Phys Chem Lett 2017; 8:621-625. [PMID: 28099021 DOI: 10.1021/acs.jpclett.7b00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Proton matrix electron nuclear double resonance (ENDOR) spectroscopy was performed to specify the location of the methanol molecule near the manganese cluster in photosystem II. Comparison of the ENDOR spectra in the presence of CH3OH and CD3OH revealed two pairs of hyperfine couplings, 1.2 MHz for A⊥ and 2.5 MHz for A//, arising from the methyl group in methanol. On the basis of the crystal structure, the possible location of methanol close to the manganese cluster was discussed.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| |
Collapse
|
110
|
Askerka M, Brudvig GW, Batista VS. The O 2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data. Acc Chem Res 2017; 50:41-48. [PMID: 28001034 DOI: 10.1021/acs.accounts.6b00405] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn4O5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S1 state is exposed to light, the S1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S1 → S2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the "narrow" channel through a "carousel" rearrangement of waters around Mn4 upon the S2 → S3 transition. An alternative hypothesis suggests water delivery through the "large" channel on the Ca side. However, both water delivery paths lead to a similar S3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O2 evolution.
Collapse
Affiliation(s)
- Mikhail Askerka
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
111
|
Shoji M, Isobe H, Nakajima T, Shigeta Y, Suga M, Akita F, Shen JR, Yamaguchi K. Large-scale QM/MM calculations of the CaMn4O5 cluster in the S3 state of the oxygen evolving complex of photosystem II. Comparison between water-inserted and no water-inserted structures. Faraday Discuss 2017; 198:83-106. [DOI: 10.1039/c6fd00230g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Large-scale QM/MM calculations were performed to elucidate an optimized geometrical structure of a CaMn4O5 cluster with and without water insertion in the S3 state of the oxygen evolving complex (OEC) of photosystem II (PSII). The left (L)-opened structure was found to be stable under the assumption of no hydroxide anion insertion in the S3 state, whereas the right (R)-opened structure became more stable if one water molecule is inserted to the Mn4Ca cluster. The optimized Mna(4)–Mnd(1) distance determined by QM/MM was about 5.0 Å for the S3 structure without an inserted hydroxide anion, but this is elongated by 0.2–0.3 Å after insertion. These computational results are discussed in relation to the possible mechanisms of O–O bond formation in water oxidation by the OEC of PSII.
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Graduate School of Pure and Applied Sciences
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
| | | | - Yasuteru Shigeta
- Center for Computational Sciences
- University of Tsukuba
- Tsukuba
- Japan
- Graduate School of Pure and Applied Sciences
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
| | - Kizashi Yamaguchi
- Riken Advanced Institute for Computational Science
- Kobe
- Japan
- Institute for NanoScience Design
- Osaka University
| |
Collapse
|
112
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. The open-cubane oxo–oxyl coupling mechanism dominates photosynthetic oxygen evolution: a comprehensive DFT investigation on O–O bond formation in the S4state. Phys Chem Chem Phys 2017; 19:13909-13923. [DOI: 10.1039/c7cp01617d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How is O2created in nature? Comprehensive DFT investigations determine the dominance of the open-cubane oxo–oxyl coupling mechanism over alternative possibilities.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
113
|
Nakamura S, Noguchi T. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn 4CaO 5 cluster in photosystem II. Proc Natl Acad Sci U S A 2016; 113:12727-12732. [PMID: 27729534 PMCID: PMC5111704 DOI: 10.1073/pnas.1607897113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.
Collapse
Affiliation(s)
- Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
114
|
Barber J. Mn4Ca Cluster of Photosynthetic Oxygen-Evolving Center: Structure, Function and Evolution. Biochemistry 2016; 55:5901-5906. [DOI: 10.1021/acs.biochem.6b00794] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- James Barber
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
115
|
Chernev P, Zaharieva I, Rossini E, Galstyan A, Dau H, Knapp EW. Merging Structural Information from X-ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII. J Phys Chem B 2016; 120:10899-10922. [DOI: 10.1021/acs.jpcb.6b05800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Petko Chernev
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ivelina Zaharieva
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Emanuele Rossini
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Artur Galstyan
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Holger Dau
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ernst-Walter Knapp
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
116
|
|
117
|
Zaharieva I, Chernev P, Berggren G, Anderlund M, Styring S, Dau H, Haumann M. Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation. Biochemistry 2016; 55:4197-211. [PMID: 27377097 DOI: 10.1021/acs.biochem.6b00491] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.
Collapse
Affiliation(s)
- Ivelina Zaharieva
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Gustav Berggren
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Magnus Anderlund
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Stenbjörn Styring
- Uppsala University , Department of Chemistry, Ångström Laboratory, 75120 Uppsala, Sweden
| | - Holger Dau
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin , Department of Physics, 14195 Berlin, Germany
| |
Collapse
|
118
|
Retegan M, Pantazis DA. Interaction of methanol with the oxygen-evolving complex: atomistic models, channel identification, species dependence, and mechanistic implications. Chem Sci 2016; 7:6463-6476. [PMID: 28451104 PMCID: PMC5355959 DOI: 10.1039/c6sc02340a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Methanol has long being used as a substrate analogue to probe access pathways and investigate water delivery at the oxygen-evolving complex (OEC) of photosystem-II. In this contribution we study the interaction of methanol with the OEC by assembling available spectroscopic data into a quantum mechanical treatment that takes into account the local channel architecture of the active site. The effect on the magnetic energy levels of the Mn4Ca cluster in the S2 state of the catalytic cycle can be explained equally well by two models that involve either methanol binding to the calcium ion of the cluster, or a second-sphere interaction in the vicinity of the "dangler" Mn4 ion. However, consideration of the latest 13C hyperfine interaction data shows that only one model is fully consistent with experiment. In contrast to previous hypotheses, methanol is not a direct ligand to the OEC, but is situated at the end-point of a water channel associated with the O4 bridge. Its effect on magnetic properties of plant PS-II results from disruption of hydrogen bonding between O4 and proximal channel water molecules, thus enhancing superexchange (antiferromagnetic coupling) between the Mn3 and Mn4 ions. The same interaction mode applies to the dark-stable S1 state and possibly to all other states of the complex. Comparison of protein sequences from cyanobacteria and plants reveals a channel-altering substitution (D1-Asn87 versus D1-Ala87) in the proximity of the methanol binding pocket, explaining the species-dependence of the methanol effect. The water channel established as the methanol access pathway is the same that delivers ammonia to the Mn4 ion, supporting the notion that this is the only directly solvent-accessible manganese site of the OEC. The results support the pivot mechanism for water binding at a component of the S3 state and would be consistent with partial inhibition of water delivery by methanol. Mechanistic implications for enzymatic regulation and catalytic progression are discussed.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
119
|
Gerey B, Gouré E, Fortage J, Pécaut J, Collomb MN. Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
120
|
Terrett R, Petrie S, Stranger R, Pace RJ. What computational chemistry and magnetic resonance reveal concerning the oxygen evolving centre in Photosystem II. J Inorg Biochem 2016; 162:178-189. [PMID: 27157978 DOI: 10.1016/j.jinorgbio.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022]
Abstract
Density Functional Theory (DFT) computational studies of the Mn4/Ca Oxygen Evolving Complex (OEC) region of Photosystem II in the paramagnetic S2 and S3 states of the water oxdizing catalytic cycle are described. These build upon recent advances in computationally understanding the detailed S1 state OEC geometries, revealed by the recent high resolution Photosystem II crystal structures of Shen et al., at 1.90Å and 1.95Å (Petrie et al., 2015, Angew. Chem. Int. Ed., 54, 7120). The models feature a 'Low Oxidation Paradigm' assumption for the mean Mn oxidation states in the functional enzyme, with the mean oxidation levels being 3.0, 3.25 and 3.5 in S1, S2 and S3, respectively. These calculations are used to infer magnetic exchange interactions within the coupled OEC cluster, particularly in the Electron Paramagnetic Resonance (EPR)-visible S2 and S3 states. Detailed computational estimates of the intrinsic magnitudes and molecular orientations of the 55Mn hyperfine tensors in the S2 state are presented. These parameters, together with the resultant spin projected hyperfine values are compared with recent appropriate experimental EPR data (Continuous Wave (CW), Electron-Nuclear Double Resonance (ENDOR) and ELDOR (Electron-Electron Double Resonance)-Detected Nuclear Magnetic Resonance (EDNMR)) from the OEC. It is found that an effective Coupled Dimer magnetic organization of the four Mn in the OEC cluster in the S2 and S3 states is able to quantitatively rationalize the observed 55Mn hyperfine data. This is consistent with structures we propose to represent the likely state of the OEC in the catalytically active form of the enzyme.
Collapse
Affiliation(s)
- Richard Terrett
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
121
|
Capone M, Narzi D, Bovi D, Guidoni L. Mechanism of Water Delivery to the Active Site of Photosystem II along the S(2) to S(3) Transition. J Phys Chem Lett 2016; 7:592-6. [PMID: 26799278 DOI: 10.1021/acs.jpclett.5b02851] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The two water molecules serving as substrate for the oxygen evolution in Photosystem II are already bound in the S2 state of the Kok-Joliot's cycle. Nevertheless, an additional water molecule is supposed to bind the cluster during the transition between the S2 and S3 states, which has been recently revealed to have the Mn4CaO5 catalytic cluster arranged in an open cubane fashion. In this Letter, by means of ab initio calculations, we investigated the possible pathways for the binding of the upcoming water molecule. Upon the four different possibilities checked in our calculations, the binding of the crystallographic water molecule, originally located nearby the Cl(-) binding site, showed the lowest activation energy barrier. Our findings therefore support the view in which the W2 hydroxyl group and the O5 oxygen act as substrates for the oxygen evolution. Within this framework the role of the open and closed Mn4CaO5 conformers is clarified as well as the exact mechanistic events occurring along the S2 to S3 transition.
Collapse
Affiliation(s)
- Matteo Capone
- Dipartimento di Chimica, Sapienza Università di Roma , 00185 Roma, Italy
| | - Daniele Narzi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , 67100 L'Aquila, Italy
| | - Daniele Bovi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , 67100 L'Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , 67100 L'Aquila, Italy
| |
Collapse
|
122
|
Hodel FH, Luber S. What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02507] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian H. Hodel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
123
|
Chuah WY, Stranger R, Pace RJ, Krausz E, Frankcombe TJ. Deprotonation of Water/Hydroxo Ligands in Clusters Mimicking the Water Oxidizing Complex of PSII and Its Effect on the Vibrational Frequencies of Ligated Carboxylate Groups. J Phys Chem B 2016; 120:377-85. [PMID: 26727127 DOI: 10.1021/acs.jpcb.5b09987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The IR absorptions of several first-shell carboxylate ligands of the water oxidizing complex (WOC) have been experimentally shown to be unaffected by oxidation state changes in the WOC during its catalytic cycle. Several model clusters that mimic the Mn4O5Ca core of the WOC in the S1 state, with electronic configurations that correspond to both the so-called "high" and "low" oxidation paradigms, were investigated. Deprotonation at W2, W1, or O3 sites was found to strongly reduce carboxylate ligand frequency shifts on oxidation of the metal cluster. The frequency shifts were smallest in neutrally charged clusters where the initial mean Mn oxidation state was +3, with W2 as an hydroxide and O5 a water. Deprotonation also reduced and balanced the oxidation energy of all clusters in successive oxidations.
Collapse
Affiliation(s)
- Wooi Yee Chuah
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Rob Stranger
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Ron J Pace
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Elmars Krausz
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Terry J Frankcombe
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia.,School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
124
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
125
|
Nakamura S, Ota K, Shibuya Y, Noguchi T. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study. Biochemistry 2016; 55:597-607. [DOI: 10.1021/acs.biochem.5b01120] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shin Nakamura
- Division
of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kai Ota
- Division
of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichi Shibuya
- Division
of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division
of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
126
|
Krewald V, Retegan M, Neese F, Lubitz W, Pantazis DA, Cox N. Spin State as a Marker for the Structural Evolution of Nature’s Water-Splitting Catalyst. Inorg Chem 2015; 55:488-501. [DOI: 10.1021/acs.inorgchem.5b02578] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
127
|
Yamaguchi K, Isobe H, Shoji M, Yamanaka S, Okumura M. Theory of chemical bonds in metalloenzymes XX: magneto-structural correlations in the CaMn4O5cluster in oxygen-evolving complex of photosystem II. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1114162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
128
|
Retegan M, Krewald V, Mamedov F, Neese F, Lubitz W, Cox N, Pantazis DA. A five-coordinate Mn(iv) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding. Chem Sci 2015; 7:72-84. [PMID: 29861966 PMCID: PMC5950799 DOI: 10.1039/c5sc03124a] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/17/2015] [Indexed: 01/16/2023] Open
Abstract
Among the four photo-driven transitions of the water-oxidizing tetramanganese-calcium cofactor of biological photosynthesis, the second-last step of the catalytic cycle, that is the S2 to S3 state transition, is the crucial step that poises the catalyst for the final O-O bond formation. This transition, whose intermediates are not yet fully understood, is a multi-step process that involves the redox-active tyrosine residue and includes oxidation and deprotonation of the catalytic cluster, as well as the binding of a water molecule. Spectroscopic data has the potential to shed light on the sequence of events that comprise this catalytic step, which still lacks a structural interpretation. In this work the S2-S3 state transition is studied and a key intermediate species is characterized: it contains a Mn3O4Ca cubane subunit linked to a five-coordinate Mn(iv) ion that adopts an approximately trigonal bipyramidal ligand field. It is shown using high-level density functional and multireference wave function calculations that this species accounts for the near-infrared absorption and electron paramagnetic resonance observations on metastable S2-S3 intermediates. The results confirm that deprotonation and Mn oxidation of the cofactor must precede the coordination of a water molecule, and lead to identification of a novel low-energy water binding mode that has important implications for the identity of the substrates in the mechanism of biological water oxidation.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Fikret Mamedov
- Molecular Biomimetics , Department of Chemistry - Ångstrom Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany . ;
| |
Collapse
|
129
|
Li X, Siegbahn PEM. Water Oxidation for Simplified Models of the Oxygen-Evolving Complex in Photosystem II. Chemistry 2015; 21:18821-7. [DOI: 10.1002/chem.201501593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/29/2015] [Indexed: 11/08/2022]
|
130
|
Isobe H, Shoji M, Shen JR, Yamaguchi K. Strong Coupling between the Hydrogen Bonding Environment and Redox Chemistry during the S2 to S3 Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:13922-33. [DOI: 10.1021/acs.jpcb.5b05740] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroshi Isobe
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Mitsuo Shoji
- Graduate School
of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jian-Ren Shen
- Photosynthesis
Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- The Institute
of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Institute for
NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
131
|
Nagashima H, Nakajima Y, Shen JR, Mino H. Proton Matrix ENDOR Studies on Ca2+-depleted and Sr2+-substituted Manganese Cluster in Photosystem II. J Biol Chem 2015; 290:28166-28174. [PMID: 26438823 DOI: 10.1074/jbc.m115.675496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
Proton matrix ENDOR spectra were measured for Ca(2+)-depleted and Sr(2+)-substituted photosystem II (PSII) membrane samples from spinach and core complexes from Thermosynechococcus vulcanus in the S2 state. The ENDOR spectra obtained were similar for untreated PSII from T. vulcanus and spinach, as well as for Ca(2+)-containing and Sr(2+)-substituted PSII, indicating that the proton arrangements around the manganese cluster in cyanobacterial and higher plant PSII and Ca(2+)-containing and Sr(2+)-substituted PSII are similar in the S2 state, in agreement with the similarity of the crystal structure of both Ca(2+)-containing and Sr(2+)-substituted PSII in the S1 state. Nevertheless, slightly different hyperfine separations were found between Ca(2+)-containing and Sr(2+)-substituted PSII because of modifications of the water protons ligating to the Sr(2+) ion. Importantly, Ca(2+) depletion caused the loss of ENDOR signals with a 1.36-MHz separation because of the loss of the water proton W4 connecting Ca(2+) and YZ directly. With respect to the crystal structure and the functions of Ca(2+) in oxygen evolution, it was concluded that the roles of Ca(2+) and Sr(2+) involve the maintenance of the hydrogen bond network near the Ca(2+) site and electron transfer pathway to the manganese cluster.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshiki Nakajima
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroyuki Mino
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
132
|
Beckwith MA, Ames W, Vila FD, Krewald V, Pantazis DA, Mantel C, Pécaut J, Gennari M, Duboc C, Collomb MN, Yano J, Rehr JJ, Neese F, DeBeer S. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II. J Am Chem Soc 2015; 137:12815-34. [PMID: 26352328 DOI: 10.1021/jacs.5b00783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.
Collapse
Affiliation(s)
- Martha A Beckwith
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - William Ames
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Fernando D Vila
- Department of Physics, University of Washington , Seattle, Washington 98195, United States
| | - Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Claire Mantel
- Département de Chimie Moléculaire, Université Joseph Fourier Grenoble, CNRS , F-38000 Grenoble, France
| | - Jacques Pécaut
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique, (UMR E-3 CEA/UJF, FRE3200 CNRS), CEA-Grenoble, INAC , 17 rue des Martyrs 38054 Grenoble cedex 9, France
| | - Marcello Gennari
- Département de Chimie Moléculaire, Université Joseph Fourier Grenoble, CNRS , F-38000 Grenoble, France
| | - Carole Duboc
- Département de Chimie Moléculaire, Université Joseph Fourier Grenoble, CNRS , F-38000 Grenoble, France
| | - Marie-Noëlle Collomb
- Département de Chimie Moléculaire, Université Joseph Fourier Grenoble, CNRS , F-38000 Grenoble, France
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - John J Rehr
- Department of Physics, University of Washington , Seattle, Washington 98195, United States
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
133
|
Krewald V, Neese F, Pantazis DA. Resolving the Manganese Oxidation States in the Oxygen-evolving Catalyst of Natural Photosynthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
134
|
Pitari F, Bovi D, Narzi D, Guidoni L. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2015; 54:5959-68. [PMID: 26346422 DOI: 10.1021/acs.biochem.5b00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.
Collapse
|
135
|
Lee C, Aikens CM. Water Splitting Processes on Mn4O4 and CaMn3O4 Model Cubane Systems. J Phys Chem A 2015; 119:9325-37. [DOI: 10.1021/acs.jpca.5b03170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M. Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
136
|
Oyala PH, Stich TA, Debus RJ, Britt RD. Ammonia Binds to the Dangler Manganese of the Photosystem II Oxygen-Evolving Complex. J Am Chem Soc 2015; 137:8829-37. [DOI: 10.1021/jacs.5b04768] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Paul H. Oyala
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Troy A. Stich
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
137
|
Petrie S, Pace RJ, Stranger R. Resolving the Differences Between the 1.9 Å and 1.95 Å Crystal Structures of Photosystem II: A Single Proton Relocation Defines Two Tautomeric Forms of the Water-Oxidizing Complex. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
138
|
Petrie S, Pace RJ, Stranger R. Resolving the Differences Between the 1.9 Å and 1.95 Å Crystal Structures of Photosystem II: A Single Proton Relocation Defines Two Tautomeric Forms of the Water-Oxidizing Complex. Angew Chem Int Ed Engl 2015; 54:7120-4. [PMID: 25917648 DOI: 10.1002/anie.201502463] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/11/2022]
Abstract
Great progress has been made in characterizing the water-oxidizing complex (WOC) in photosystem II (PSII) with the publication of a 1.9 Å resolution X-ray diffraction (XRD) and recently a 1.95 Å X-ray free-electron laser (XFEL) structure. However, these achievements are under threat because of perceived conflicts with other experimental data. For the earlier 1.9 Å structure, lack of agreement with extended X-ray absorption fine structure (EXAFS) data led to the notion that the WOC suffered from X-ray photoreduction. In the recent 1.95 Å structure, Mn photoreduction is not an issue, but poor agreement with computational models which adopt the 'high' oxidation state paradigm, has again resulted in criticism of the structure on the basis of contamination with lower S states of the WOC. Here we use DFT modeling to show that the distinct WOC geometries in the 1.9 and 1.95 Å structures can be straightforwardly accounted for when the Mn oxidation states are consistent with the 'low' oxidation state paradigm. Remarkably, our calculations show that the two structures are tautomers, related by a single proton relocation.
Collapse
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia)
| | - Ron J Pace
- Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia).
| | - Rob Stranger
- Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia).
| |
Collapse
|
139
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
140
|
Isobe H, Shoji M, Yamanaka S, Mino H, Umena Y, Kawakami K, Kamiya N, Shen JR, Yamaguchi K. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II. Phys Chem Chem Phys 2015; 16:11911-23. [PMID: 24632787 DOI: 10.1039/c4cp00282b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.
Collapse
Affiliation(s)
- H Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Siegbahn PEM. Water oxidation energy diagrams for photosystem II for different protonation states, and the effect of removing calcium. Phys Chem Chem Phys 2015; 16:11893-900. [PMID: 24618784 DOI: 10.1039/c3cp55329a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main parts of the water oxidation mechanism in photosystem II have now been established both from theory and experiments. Still, there are minor questions remaining. One of them concerns the charge and the protonation state of the oxygen evolving complex (OEC). Previously, theory and experiments have agreed that the two water derived ligands on the outer manganese should be one hydroxide and one water. In the present study it is investigated whether both of them could be water. This question is addressed by a detailed study of energy diagrams, but in this context it is more conclusive to compare the redox potential of the OEC to the one of TyrZ. Both procedures lead to the conclusion that one of the ligands is a hydroxide. Another question concerns the protonation of the second shell His337, where the results are more ambiguous. The final part of the present study describes results when calcium is removed from the OEC. Even though protons enter to compensate the charge of the missing Ca(2+), the redox potential and the pKa value of the OEC change dramatically and prevent the progress after S2.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
142
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
143
|
High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II. Proc Natl Acad Sci U S A 2015; 112:5319-24. [PMID: 25852147 DOI: 10.1073/pnas.1422800112] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.
Collapse
|
144
|
Boussac A, Rutherford AW, Sugiura M. Electron transfer pathways from the S2-states to the S3-states either after a Ca2+/Sr2+ or a Cl-/I- exchange in Photosystem II from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:576-86. [PMID: 25843552 DOI: 10.1016/j.bbabio.2015.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 01/12/2023]
Abstract
The site for water oxidation in Photosystem II (PSII) goes through five sequential oxidation states (S0 to S4) before O2 is evolved. It consists of a Mn4CaO5-cluster close to a redox-active tyrosine residue (YZ). Cl- is also required for enzyme activity. By using EPR spectroscopy it has been shown that both Ca2+/Sr2+ exchange and Cl-/I- exchange perturb the proportions of centers showing high (S=5/2) and low spin (S=1/2) forms of the S2-state. The S3-state was also found to be heterogeneous with: i) a S=3 form that is detectable by EPR and not sensitive to near-infrared light; and ii) a form that is not EPR visible but in which Mn photochemistry occurs resulting in the formation of a (S2YZ)' split EPR signal upon near-infrared illumination. In Sr/Cl-PSII, the high spin (S=5/2) form of S2 shows a marked heterogeneity with a g=4.3 form generated at low temperature that converts to a relaxed form at g=4.9 at higher temperatures. The high spin g=4.9 form can then progress to the EPR detectable form of S3 at temperatures as low as 180K whereas the low spin (S=1/2) S2-state can only advance to the S3 state at temperatures≥235 K. Both of the two S2 configurations and the two S3 configurations are each shown to be in equilibrium at ≥235 K but not at 198 K. Since both S2 configurations are formed at 198 K, they likely arise from two specific populations of S1. The existence of heterogeneous populations in S1, S2 and S3 states may be related to the structural flexibility associated with the positioning of the oxygen O5 within the cluster highlighted in computational approaches and which has been linked to substrate exchange. These data are discussed in the context of recent in silico studies of the electron transfer pathways between the S2-state(s) and the S3-state(s).
Collapse
Affiliation(s)
- Alain Boussac
- I(2)BC, CNRS UMR 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | | - Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
145
|
Petrie S, Stranger R, Pace RJ. Rationalising the Geometric Variation between the A and B Monomers in the 1.9 Å Crystal Structure of Photosystem II. Chemistry 2015; 21:6780-92. [DOI: 10.1002/chem.201406419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 11/12/2022]
|
146
|
Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II. Proc Natl Acad Sci U S A 2015; 112:3979-84. [PMID: 25775575 DOI: 10.1073/pnas.1422058112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2-S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.
Collapse
|
147
|
Rivalta I, Yang KR, Brudvig GW, Batista VS. Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ivan Rivalta
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Ke R. Yang
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
148
|
Indra A, Menezes PW, Driess M. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation. CHEMSUSCHEM 2015; 8:776-85. [PMID: 25641823 DOI: 10.1002/cssc.201402812] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 05/23/2023]
Abstract
Artificial photosynthesis by harvesting solar light into chemical energy could solve the problems of energy conversion and storage in a sustainable way. In nature, CO2 and H2 O are transformed into carbohydrates by photosynthesis to store the solar energy in chemical bonds and water is oxidized to O2 in the oxygen-evolving center (OEC) of photosystem II (PS II). The OEC contains CaMn4 O5 cluster in which the metals are interconnected through oxido bridges. Inspired by biological systems, manganese-oxide-based catalysts have been synthesized and explored for water oxidation. Structural, functional modeling, and design of the materials have prevailed over the years to achieve an effective and stable catalyst system for water oxidation. Structural flexibility with eg(1) configuration of Mn(III) , mixed valency in manganese, and higher surface area are the main requirements to attain higher efficiency. This Minireview discusses the most recent progress in heterogeneous manganese-oxide-based catalysts for efficient chemical, photochemical, and electrochemical water oxidation as well as the structural requirements for the catalyst to perform actively.
Collapse
Affiliation(s)
- Arindam Indra
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17 Juni 135, Sekr. C2, 10623 Berlin (Germany), Fax: (+49) 030-314-29732
| | | | | |
Collapse
|
149
|
Davis KM, Pushkar YN. Structure of the Oxygen Evolving Complex of Photosystem II at Room Temperature. J Phys Chem B 2015; 119:3492-8. [PMID: 25621994 DOI: 10.1021/acs.jpcb.5b00452] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine M. Davis
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Yulia N. Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
150
|
Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:7366-77. [PMID: 25575266 DOI: 10.1021/jp510948e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.
Collapse
Affiliation(s)
- Muhamed Amin
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Leslie Vogt
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Witold Szejgis
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Serguei Vassiliev
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - Gary W Brudvig
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Doug Bruce
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - M R Gunner
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| |
Collapse
|