101
|
Trautman EP, Crawford JM. Linking Biosynthetic Gene Clusters to their Metabolites via Pathway- Targeted Molecular Networking. Curr Top Med Chem 2016; 16:1705-16. [PMID: 26456470 PMCID: PMC5055756 DOI: 10.2174/1568026616666151012111046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
Abstract
The connection of microbial biosynthetic gene clusters to the small molecule metabolites they encode is central to the discovery and characterization of new metabolic pathways with ecological and pharmacological potential. With increasing microbial genome sequence information being deposited into publicly available databases, it is clear that microbes have the coding capacity for many more biologically active small molecules than previously realized. Of increasing interest are the small molecules encoded by the human microbiome, as these metabolites likely mediate a variety of currently uncharacterized human-microbe interactions that influence health and disease. In this mini-review, we describe the ongoing biosynthetic, structural, and functional characterizations of the genotoxic colibactin pathway in gut bacteria as a thematic example of linking biosynthetic gene clusters to their metabolites. We also highlight other natural products that are produced through analogous biosynthetic logic and comment on some current disconnects between bioinformatics predictions and experimental structural characterizations. Lastly, we describe the use of pathway-targeted molecular networking as a tool to characterize secondary metabolic pathways within complex metabolomes and to aid in downstream metabolite structural elucidation efforts.
Collapse
Affiliation(s)
| | - Jason M Crawford
- Department of Chemistry, Faculty of Yale University, P.O. Box: 27392, West Haven, CT, 06516, USA.
| |
Collapse
|
102
|
Mousa JJ, Newsome RC, Yang Y, Jobin C, Bruner SD. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster. Biochem Biophys Res Commun 2016; 482:1233-1239. [PMID: 27939886 DOI: 10.1016/j.bbrc.2016.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Multidrug transporters play key roles in cellular drug resistance to toxic molecules, yet these transporters are also involved in natural product transport as part of biosynthetic clusters in bacteria and fungi. The genotoxic molecule colibactin is produced by strains of virulent and pathobiont Escherichia coli and Klebsiella pneumoniae. In the biosynthetic cluster is a multidrug and toxic compound extrusion protein (MATE) proposed to transport the prodrug molecule precolibactin across the cytoplasmic membrane, for subsequent cleavage by the peptidase ClbP and cellular export. We recently determined the X-ray structure of ClbM, and showed preliminary data suggesting its specific role in precolibactin transport. Here, we define a functional role of ClbM by examining transport capabilities under various biochemical conditions. Our data indicate ClbM responds to sodium, potassium, and rubidium ion gradients, while also having substantial transport activity in the absence of alkali cations.
Collapse
Affiliation(s)
- Jarrod J Mousa
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Rachel C Newsome
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
103
|
Healy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A Mechanistic Model for Colibactin-Induced Genotoxicity. J Am Chem Soc 2016; 138:15563-15570. [PMID: 27934011 DOI: 10.1021/jacs.6b10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precolibactins and colibactins represent a family of natural products that are encoded by the clb gene cluster and are produced by certain commensal, extraintestinal, and probiotic E. coli. clb+ E. coli induce megalocytosis and DNA double-strand breaks in eukaryotic cells, but paradoxically, this gene cluster is found in the probiotic Nissle 1917. Evidence suggests precolibactins are converted to genotoxic colibactins by colibactin peptidase (ClbP)-mediated cleavage of an N-acyl-d-Asn side chain, and all isolation efforts have employed ΔclbP strains to facilitate accumulation of precolibactins. It was hypothesized that colibactins form unsaturated imines that alkylate DNA by cyclopropane ring opening (2 → 3). However, as no colibactins have been isolated, this hypothesis has not been tested experimentally. Additionally, precolibactins A-C (7-9) contain a pyridone that cannot generate the unsaturated imines that form the basis of this hypothesis. To resolve this, we prepared 13 synthetic colibactin derivatives and evaluated their DNA binding and alkylation activity. We show that unsaturated imines, but not the corresponding pyridone derivatives, potently alkylate DNA. The imine, unsaturated lactam, and cyclopropane are essential for efficient DNA alkylation. A cationic residue enhances activity. These studies suggest that precolibactins containing a pyridone are not responsible for the genotoxicity of the clb cluster. Instead, we propose that these are off-pathway fermentation products produced by a facile double cyclodehydration route that manifests in the absence of viable ClbP. The results presented herein provide a foundation to begin to connect metabolite structure with the disparate phenotypes associated with clb+ E. coli.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Jaymin R Patel
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
104
|
Li ZR, Li J, Gu JP, Lai JYH, Duggan BM, Zhang WP, Li ZL, Li YX, Tong RB, Xu Y, Lin DH, Moore BS, Qian PY. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 2016; 12:773-5. [PMID: 27547923 PMCID: PMC5030165 DOI: 10.1038/nchembio.2157] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
| | - Jin-Ping Gu
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jennifer Y. H. Lai
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Wei-Peng Zhang
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhi-Long Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yong-Xin Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Rong-Biao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Ecoenvironmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dong-Hai Lin
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Pei-Yuan Qian
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
105
|
Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO, Pénary M, Houle S, Nougayrède JP, Piel J, Taylor PW, Dozois CM, Genevaux P, Oswald E, Martin P. The Bacterial Stress-Responsive Hsp90 Chaperone (HtpG) Is Required for the Production of the Genotoxin Colibactin and the Siderophore Yersiniabactin inEscherichia coli. J Infect Dis 2016; 214:916-24. [DOI: 10.1093/infdis/jiw294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023] Open
|
106
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
107
|
Secher T, Brehin C, Oswald E. Early settlers: which E. coli strains do you not want at birth? Am J Physiol Gastrointest Liver Physiol 2016; 311:G123-9. [PMID: 27288422 DOI: 10.1152/ajpgi.00091.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/21/2016] [Indexed: 01/31/2023]
Abstract
The intestinal microbiota exerts vital biological processes throughout the human lifetime, and imbalances in its composition have been implicated in both health and disease status. Upon birth, the neonatal gut moves from a barely sterile to a massively colonized environment. The development of the intestinal microbiota during the first year of life is characterized by rapid and important changes in microbial composition, diversity, and magnitude. The pioneer bacteria colonizing the postnatal intestinal tract profoundly contribute to the establishment of the host-microbe symbiosis, which is essential for health throughout life. Escherichia coli is one of the first colonizers of the gut after birth. E. coli is a versatile population including harmless commensal, probiotic strains as well as frequently deadly pathogens. The prevalence of the specific phylogenetic B2 group, which encompasses both commensal and extra- or intraintestinal pathogenic E. coli strains, is increasing among E. coli strains colonizing infants quickly after birth. Fifty percent of the B2 group strains carry in their genome the pks gene cluster encoding the synthesis of a nonribosomal peptide-polyketide hybrid genotoxin named colibactin. In this review, we summarize both clinical and experimental evidence associating the recently emerging neonatal B2 E. coli population with several pathology and discuss how the expression of colibactin by both normal inhabitants of intestinal microflora and virulent strains may darken the borderline between commensalism and pathogenicity.
Collapse
Affiliation(s)
- Thomas Secher
- UMR1220, Institute de Recherche en Santé Digestive, INSERM-INRA-UPS-ENVT, Toulouse, France
| | - Camille Brehin
- UMR1220, Institute de Recherche en Santé Digestive, INSERM-INRA-UPS-ENVT, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Pédiatrie, Toulouse, France; and
| | - Eric Oswald
- UMR1220, Institute de Recherche en Santé Digestive, INSERM-INRA-UPS-ENVT, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
108
|
Zha L, Wilson MR, Brotherton CA, Balskus EP. Characterization of Polyketide Synthase Machinery from the pks Island Facilitates Isolation of a Candidate Precolibactin. ACS Chem Biol 2016; 11:1287-95. [PMID: 26890481 DOI: 10.1021/acschembio.6b00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colibactin is a human gut bacterial genotoxin of unknown structure that has been linked to colon cancer. The biosynthesis of this elusive metabolite is directed by the pks gene cluster, which encodes a hybrid nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line that is hypothesized to use the unusual polyketide building block aminomalonate. This biosynthetic pathway is thought to initially produce an inactive intermediate (precolibactin) that is processed to the active toxin. Here, we report the first in vitro biochemical characterization of the PKS components of the pks enzymatic assembly line. We evaluate PKS extender unit utilization and show that ClbG, a freestanding acyltransferase (AT) from the pks gene cluster, recognizes aminomalonyl-acyl carrier protein (AM-ACP) and transfers this building block to multiple PKS modules, including a cis-AT PKS ClbI. We also use genetics to explore the in vivo role of ClbG in colibactin and precolibactin biosynthesis. Unexpectedly, production of previously identified pks-associated metabolites is dramatically increased in a ΔclbP/ΔclbG mutant strain, enabling the first structure elucidation of a bithiazole-containing candidate precolibactin. This work provides new insights into the unusual biosynthetic capabilities of the pks gene cluster, offers further support for the hypothesis that colibactin directly damages DNA, and suggests that additional, uncharacterized pks-derived metabolites containing aminomalonate play critical roles in genotoxicity.
Collapse
Affiliation(s)
- Li Zha
- Department of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Wilson
- Department of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Carolyn A. Brotherton
- Department of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
109
|
Brachmann AO, Garcie C, Wu V, Martin P, Ueoka R, Oswald E, Piel J. Colibactin biosynthesis and biological activity depend on the rare aminomalonyl polyketide precursor. Chem Commun (Camb) 2016; 51:13138-41. [PMID: 26191546 DOI: 10.1039/c5cc02718g] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The as-yet unidentified E. coli metabolite colibactin induces DNA damage in eukaryotic cells and promotes tumorigenesis. Its wide distribution in pathogenic and probiotic strains has raised great interest in its structure and biosynthesis. Here we show that colibactin formation involves a rare aminomalonyl unit used as a building block.
Collapse
Affiliation(s)
- A O Brachmann
- Institute of Microbiology, Eigenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
110
|
Healy AR, Vizcaino MI, Crawford JM, Herzon SB. Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin A. J Am Chem Soc 2016; 138:5426-32. [PMID: 27025153 PMCID: PMC5049697 DOI: 10.1021/jacs.6b02276] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The colibactins are hybrid polyketide-nonribosomal peptide natural products produced by certain strains of commensal and extraintestinal pathogenic Escherichia coli. The metabolites are encoded by the clb gene cluster as prodrugs termed precolibactins. clb(+) E. coli induce DNA double-strand breaks in mammalian cells in vitro and in vivo and are found in 55-67% of colorectal cancer patients, suggesting that mature colibactins could initiate tumorigenesis. However, elucidation of their structures has been an arduous task as the metabolites are obtained in vanishingly small quantities (μg/L) from bacterial cultures and are believed to be unstable. Herein we describe a flexible and convergent synthetic route to prepare advanced precolibactins and derivatives. The synthesis proceeds by late-stage union of two complex precursors (e.g., 28 + 17 → 29a, 90%) followed by a base-induced double dehydrative cascade reaction to form two rings of the targets (e.g., 29a → 30a, 79%). The sequence has provided quantities of advanced candidate precolibactins that exceed those obtained by fermentation, and is envisioned to be readily scaled. These studies have guided a structural revision of the predicted metabolite precolibactin A (from 5a or 5b to 7) and have confirmed the structures of the isolated metabolites precolibactins B (3) and C (6). Synthetic precolibactin C (6) was converted to N-myristoyl-d-asparagine and its corresponding colibactin by colibactin peptidase ClbP. The synthetic strategy outlined herein will facilitate mechanism of action and structure-function studies of these fascinating metabolites, and is envisioned to accommodate the synthesis of additional (pre)colibactins as they are isolated.
Collapse
Affiliation(s)
- Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
111
|
MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 2016; 1:15009. [PMID: 27571755 DOI: 10.1038/nmicrobiol.2015.9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
Various forms of cancer have been linked to the carcinogenic activities of microorganisms(1-3). The virulent gene island polyketide synthase (pks) produces the secondary metabolite colibactin, a genotoxic molecule(s) causing double-stranded DNA breaks(4) and enhanced colorectal cancer development(5,6). Colibactin biosynthesis involves a prodrug resistance strategy where an N-terminal prodrug scaffold (precolibactin) is assembled, transported into the periplasm and cleaved to release the mature product(7-10). Here, we show that ClbM, a multidrug and toxic compound extrusion (MATE) transporter, is a key component involved in colibactin activity and transport. Disruption of clbM attenuated pks+ E. coli-induced DNA damage in vitro and significantly decreased the DNA damage response in gnotobiotic Il10(-/-) mice. Colonization experiments performed in mice or zebrafish animal models indicate that clbM is not implicated in E. coli niche establishment. The X-ray structure of ClbM shows a structural motif common to the recently described MATE family. The 12-transmembrane ClbM is characterized as a cation-coupled antiporter, and residues important to the cation-binding site are identified. Our data identify ClbM as a precolibactin transporter and provide the first structure of a MATE transporter with a defined and specific biological function.
Collapse
|
112
|
Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways. Appl Environ Microbiol 2016; 81:1502-12. [PMID: 25527542 DOI: 10.1128/aem.03283-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations.
Collapse
|
113
|
Mousa JJ, Bruner SD. Structural and mechanistic diversity of multidrug transporters. Nat Prod Rep 2016; 33:1255-1267. [DOI: 10.1039/c6np00006a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review article surveys recent structural and mechanistic advances in the field of multi-drug and natural product transporters.
Collapse
|
114
|
Bossuet-Greif N, Dubois D, Petit C, Tronnet S, Martin P, Bonnet R, Oswald E, Nougayrède JP. Escherichia coli ClbS is a colibactin resistance protein. Mol Microbiol 2015; 99:897-908. [PMID: 26560421 DOI: 10.1111/mmi.13272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/24/2022]
Abstract
The genomic pks island codes for the biosynthetic machinery that produces colibactin, a peptide-polyketide metabolite. Colibactin is a genotoxin that contributes to the virulence of extra-intestinal pathogenic Escherichia coli and promotes colorectal cancer. In this work, we examined whether the pks-encoded clbS gene of unknown function could participate in the self-protection of E. coli-producing colibactin. A clbS mutant was not impaired in the ability to inflict DNA damage in HeLa cells, but the bacteria activated the SOS response and ceased to replicate. This autotoxicity phenotype was markedly enhanced in a clbS uvrB double mutant inactivated for DNA repair by nucleotide excision but was suppressed in a clbS clbA double mutant unable to produce colibactin. In addition, ectopic expression of clbS protected infected HeLa cells from colibactin. Thus, ClbS is a resistance protein blocking the genotoxicity of colibactin both in the procaryotic and the eucaryotic cells.
Collapse
Affiliation(s)
- Nadège Bossuet-Greif
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | - Damien Dubois
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Claude Petit
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,INP-ENVT ESC, Toulouse, France
| | - Sophie Tronnet
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| | - Patricia Martin
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Richard Bonnet
- Université d'Auvergne, Inserm UMR 1071, INRA USC 2018, Clermont-Ferrand, France
| | - Eric Oswald
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France.,CHU Toulouse, Service de bactériologie-Hygiène, Toulouse, France
| | - Jean-Philippe Nougayrède
- INRA, USC 1360, Toulouse, France.,Inserm, UMR 1043, Toulouse, France.,CNRS, UMR 5282, Toulouse, France.,Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
115
|
Zhu Y, Zhang W, Chen Y, Yuan C, Zhang H, Zhang G, Ma L, Zhang Q, Tian X, Zhang S, Zhang C. Characterization of Heronamide Biosynthesis Reveals a Tailoring Hydroxylase and Indicates Migrated Double Bonds. Chembiochem 2015; 16:2086-93. [PMID: 26194087 DOI: 10.1002/cbic.201500281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Yiguang Zhu
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Yaolong Chen
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Chengshan Yuan
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology; Guangdong Key Laboratory of Marine Materia Medica; RNAM Center for Marine Microbiology; South China Sea Institute of Oceanology; Chinese Academy of Sciences; 164 West Xingang Road Guangzhou 510301 China
| |
Collapse
|
116
|
Abstract
Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of small molecules from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and understanding their biological relevance.
Collapse
Affiliation(s)
- Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
117
|
Bode HB. Die Mikroben in uns und der Wettlauf um die Struktur und Biosynthese von Colibactin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
118
|
Bode HB. The Microbes inside Us and the Race for Colibactin. Angew Chem Int Ed Engl 2015; 54:10408-11. [PMID: 26184782 DOI: 10.1002/anie.201505341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main (Germany) http://www.uni-frankfurt.de/fb/fb15/institute/inst-3-mol-biowiss/AK-Bode. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a. M. (Germany).
| |
Collapse
|
119
|
The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection. Infect Immun 2015; 83:3704-11. [PMID: 26150540 DOI: 10.1128/iai.00716-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate.
Collapse
|
120
|
|
121
|
Li ZR, Li Y, Lai JYH, Tang J, Wang B, Lu L, Zhu G, Wu X, Xu Y, Qian PY. Critical Intermediates Reveal New Biosynthetic Events in the Enigmatic Colibactin Pathway. Chembiochem 2015; 16:1715-9. [PMID: 26052818 DOI: 10.1002/cbic.201500239] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/19/2023]
Abstract
Colibactin is a potent genotoxin that induces DNA double-strand breaks; it is produced by Escherichia coli strains harboring a pks+ island. However, the structure of this compound remains elusive. Here, using transformation-associated recombination (TAR) cloning to perform heterologous expression, we took advantage of the significantly increased yield of colibactin pathway-related compounds to determine and isolate a series of vital (pre)colibactin intermediates. The chemical structures of compounds 8, 10 and 11 were identified by NMR and MS(n) analyses. The new 1H-pyrrolo[3,4-c]pyridine-3,6(2H,5H)-dione- and thiazole-containing compound 10 provides new insights regarding the biosynthetic pathway to (pre)colibactin and establishes foundations for future investigation of the intriguing (pre)colibactin structures and its modes of action.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Yongxin Li
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Jennifer Y H Lai
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Jianqiang Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental, Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060 (P. R. China)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine, Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Lincheng, Zhoushan 316022 (P. R. China)
| | - Liang Lu
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 88 South University Avenue, Yangzhou, Jiangsu 225009 (P. R. China)
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632 (P. R. China)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental, Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science, Shenzhen University, Shenzhen 518060 (P. R. China)
| | - Pei-Yuan Qian
- Division of Life Science and Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China).
| |
Collapse
|
122
|
Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, Schummer D, Toti L, Wink J, Müller R. Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity. J Am Chem Soc 2015; 137:7692-705. [DOI: 10.1021/jacs.5b01794] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
| | - Lena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Armin Bauer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Alexandre Froidbise
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Peter Hammann
- R&D TSU Infectious Diseases, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Guillaume Mondesert
- TSU Infectious Diseases, Sanofi R&D, 195 Route d‘Espagne, 31036 Toulouse, France
| | - Michael Kurz
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Schiell
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Dietmar Schummer
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Joachim Wink
- R&D LGCR, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz
Centre for Infection Research, and Department of Pharmaceutical Biotechnology, Saarland University, Building C 2.3, 66123, Saarbrücken, Germany
- German Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
123
|
Bian X, Plaza A, Zhang Y, Müller R. Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 2015; 6:3154-3160. [PMID: 28706687 PMCID: PMC5490422 DOI: 10.1039/c5sc00101c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Colibactin represents a structurally undefined class of bacterial genotoxin inducing DNA damage and genomic instability in mammalian cells, thus promoting tumour development and exacerbating lymphopenia in animal models. The colibactin biosynthetic gene cluster (clb) has been known for ten years and it encodes a hybrid nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) assembly line. Nevertheless, the final chemical product(s) remain unknown. Previously, we and others reported several colibactin pathway-related metabolites including N-myristoyl-d-asparagine (1) as part of a prodrug precursor that is cleaved from the putative precolibactin to form active colibactin by the peptidase ClbP. Herein, we report two new colibactin pathway-related metabolites (2 and 3) isolated from a clbP mutant of the probiotic E. coli Nissle 1917 strain. Their structures were established by HRMS and NMR. Compound 2 shows an additional 4-aminopenatanoic acid moiety with respect to 1, while 3 is characterized by the presence of an unusual 7-methyl-4-azaspiro[2.4]hept-6-en-5-one residue. Moreover, we propose the biosynthetic pathway towards both intermediates on the basis of extensive gene inactivation and feeding experiments. The identification of 2 and 3 provides further insight into colibactin biosynthesis including the involvement and formation of a rare 1-aminocyclopropanecarboxylic acid unit. Thus, our work establishes additional steps of the pathway forming the bacterial genotoxin colibactin.
Collapse
Affiliation(s)
- Xiaoying Bian
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
- Shandong University-Helmholtz Institute of Biotechnology , State Key Laboratory of Microbial Technology , School of Life Science , Shandong University , Zhuzhou Road 168 , 266101 Qingdao , P. R. China . ; Tel: +86-531-88363082
| | - Alberto Plaza
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology , State Key Laboratory of Microbial Technology , School of Life Science , Shandong University , Zhuzhou Road 168 , 266101 Qingdao , P. R. China . ; Tel: +86-531-88363082
| | - Rolf Müller
- Department of Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus C2 3 , 66123 Saarbrücken , Germany . ; Tel: +49-681-30270201
| |
Collapse
|
124
|
Abstract
Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of E. coli present in the human colon have been linked to initiating inflammation-induced colorectal cancer through an unknown small molecule-mediated process. The responsible nonribosomal peptide-polyketide hybrid pathway encodes “colibactin,” a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labeling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin’s DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.
Collapse
|
125
|
Brotherton CA, Wilson M, Byrd G, Balskus EP. Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Org Lett 2015; 17:1545-8. [PMID: 25753745 DOI: 10.1021/acs.orglett.5b00432] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colibactin is a structurally uncharacterized, genotoxic natural product produced by commensal and pathogenic strains of E. coli that harbor the pks island. A new metabolite has been isolated from a pks(+) E. coli mutant missing an essential biosynthetic enzyme. The unusual azaspiro[2.4] bicyclic ring system of this molecule provides new insights into colibactin biosynthesis and suggests a mechanism through which colibactin and other pks-derived metabolites may exert genotoxicity.
Collapse
Affiliation(s)
- Carolyn A Brotherton
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew Wilson
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Gary Byrd
- ‡Small Molecule Mass Spectrometry Facility, Faculty of Arts and Sciences Division of Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Emily P Balskus
- †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
126
|
Abstract
This highlight reviews recent studies of colibactin, a structurally uncharacterized genotoxin synthesized by members of the human gut microbiota.
Collapse
Affiliation(s)
- Emily P. Balskus
- Department of Chemistry and Chemical Biology
- Harvard University
- Cambridge
- USA
| |
Collapse
|
127
|
Park H, Kevany BM, Dyer DH, Thomas MG, Forest KT. A polyketide synthase acyltransferase domain structure suggests a recognition mechanism for its hydroxymalonyl-acyl carrier protein substrate. PLoS One 2014; 9:e110965. [PMID: 25340352 PMCID: PMC4207774 DOI: 10.1371/journal.pone.0110965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the acyl transferase domain of ZmaA (ZmaA-AT) is involved in the biosynthesis of the aminopolyol polyketide/nonribosomal peptide hybrid molecule zwittermicin A from cereus UW85, and that it specifically recognizes the precursor hydroxymalonyl-acyl carrier protein (ACP) and transfers the hydroxymalonyl extender unit to a downstream second ACP via a transacylated AT domain intermediate. We now present the X-ray crystal structure of ZmaA-AT at a resolution of 1.7 Å. The structure shows a patch of solvent-exposed hydrophobic residues in the area where the AT is proposed to interact with the precursor ACP. We addressed the significance of the AT/ACP interaction in precursor specificity of the AT by testing whether malonyl- or methylmalonyl-ACP can be recognized by ZmaA-AT. We found that the ACP itself biases extender unit selection. Until now, structural information for ATs has been limited to ATs specific for the CoA-linked precursors malonyl-CoA and (2S)-methylmalonyl-CoA. This work contributes to polyketide synthase engineering efforts by expanding our knowledge of AT/substrate interactions with the structure of an AT domain that recognizes an ACP-linked substrate, the rare hydroxymalonate. Our structure suggests a model in which ACP interaction with a hydrophobic motif promotes secondary structure formation at the binding site, and opening of the adjacent substrate pocket lid to allow extender unit binding in the AT active site.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian M. Kevany
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. Dyer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MGT); (KTF)
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MGT); (KTF)
| |
Collapse
|
128
|
Masschelein J, Clauwers C, Awodi UR, Stalmans K, Vermaelen W, Lescrinier E, Aertsen A, Michiels C, Challis GL, Lavigne R. A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics. Chem Sci 2014; 6:923-929. [PMID: 29560178 PMCID: PMC5811116 DOI: 10.1039/c4sc01927j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
The zeamines are a unique group of antibiotics produced by Serratia plymuthica RVH1 that contain variable hybrid peptide-polyketide moieties connected to a common pentaamino-hydroxyalkyl chain. They exhibit potent activity against a broad spectrum of Gram-positive and Gram-negative bacteria. Here we report a combination of targeted gene deletions, high resolution LC-MS(/MS) analyses, in vitro biochemical assays and feeding studies that define the functions of several key zeamine biosynthetic enzymes. The pentaamino-hydroxyalkyl chain is assembled by an iterative multienzyme complex (Zmn10-13) that bears a close resemblance to polyunsaturated fatty acid synthases. Zmn14 was shown to function as an NADH-dependent thioester reductase and is proposed to release a tetraamino-hydroxyalkyl thioester from the acyl carrier protein domain of Zmn10 as an aldehyde. Despite the intrinsic ability of Zmn14 to catalyze further reduction of aldehydes to alcohols, the initially-formed aldehyde intermediate is proposed to undergo preferential transamination to produce zeamine II. In a parallel pathway, hexapeptide-monoketide and hexapeptide-diketide thioesters are generated by a hybrid nonribosomal peptide synthetase-polyketide synthase multienzyme complex (Zmn16-18) and subsequently conjugated to zeamine II by a stand-alone condensing enzyme (Zmn19). Structures for the resulting prezeamines were elucidated using a combination of high resolution LC-MS/MS and 1- and 2-D NMR spectroscopic analyses. The prezeamines are hypothesized to be precursors of the previously-identified zeamines, which are generated by the action of Zmn22, an acylpeptide hydrolase that specifically cleaves the N-terminal pentapeptide of the prezeamines in a post-assembly processing step. Thus, the zeamine antibiotics are assembled by a unique combination of nonribosomal peptide synthetase, type I modular polyketide synthase and polyunsaturated fatty acid synthase-like biosynthetic machinery.
Collapse
Affiliation(s)
- Joleen Masschelein
- Laboratory of Gene Technology , KU Leuven , Kasteelpark Arenberg 21-box 2462 , B-3001 Heverlee , Belgium . ; ; Tel: +32 (0) 16 37 95 24.,Laboratory of Food Microbiology , KU Leuven , Kasteelpark Arenberg 22 , B-3001 Heverlee , Belgium
| | - Charlien Clauwers
- Laboratory of Gene Technology , KU Leuven , Kasteelpark Arenberg 21-box 2462 , B-3001 Heverlee , Belgium . ; ; Tel: +32 (0) 16 37 95 24.,Laboratory of Food Microbiology , KU Leuven , Kasteelpark Arenberg 22 , B-3001 Heverlee , Belgium
| | - Ufedo R Awodi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . ; ; Tel: +44 (0) 2476 574024
| | - Karen Stalmans
- Laboratory of Gene Technology , KU Leuven , Kasteelpark Arenberg 21-box 2462 , B-3001 Heverlee , Belgium . ; ; Tel: +32 (0) 16 37 95 24
| | - Wesley Vermaelen
- Laboratory of Gene Technology , KU Leuven , Kasteelpark Arenberg 21-box 2462 , B-3001 Heverlee , Belgium . ; ; Tel: +32 (0) 16 37 95 24
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry , Rega Institute for Medical Research , KU Leuven , Minderbroedersstraat 10 , B-3000 Leuven , Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology , KU Leuven , Kasteelpark Arenberg 22 , B-3001 Heverlee , Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology , KU Leuven , Kasteelpark Arenberg 22 , B-3001 Heverlee , Belgium
| | - Gregory L Challis
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK . ; ; Tel: +44 (0) 2476 574024
| | - Rob Lavigne
- Laboratory of Gene Technology , KU Leuven , Kasteelpark Arenberg 21-box 2462 , B-3001 Heverlee , Belgium . ; ; Tel: +32 (0) 16 37 95 24
| |
Collapse
|
129
|
Egami Y, Wakimoto T, Abe I. Phosphocalyculin C as a pyrophosphate protoxin of calyculin C in the marine sponge Discodermia calyx. Bioorg Med Chem Lett 2014; 24:5150-3. [PMID: 25442302 DOI: 10.1016/j.bmcl.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Calyculin C, a minor derivative of the calyculins, has an additional methyl group on C32 of calyculin A. A recent biosynthetic study of calyculins revealed that an end product of calyculin biosynthesis is the pyrophosphate form, phosphocalyculin A. However, the pyrophosphate counterpart derived from calyculin C had not been reported. We isolated phosphocalyculin C as a minor pyrophosphate derivative, by a detailed investigation of an extract from the sponge Discodermia calyx. The treatment of phosphocalyculin C with the D. calyx cell-free extract significantly enhanced its cytotoxicity, providing molecular evidence for its role as the protoxin of calyculin C.
Collapse
Affiliation(s)
- Yoko Egami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Wakimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
130
|
Fusobacterium and Enterobacteriaceae: important players for CRC? Immunol Lett 2014; 162:54-61. [PMID: 24972311 DOI: 10.1016/j.imlet.2014.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an essential role in regulating intestinal homeostasis through its capacity to modulate various biological activities ranging from barrier, immunity and metabolic function. Not surprisingly, microbial dysbiosis is associated with numerous intestinal disorders including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). In this piece, we will review recent evidence that gut microbial dysbiosis can influence intestinal disease, including colitis and CRC. We will discuss the biological events implicated in the development of microbial dysbiosis and the emergence of CRC-associated microorganisms, focusing on Escherichia coli and Fusobacterium nucleatum. Finally, the mechanisms by which E. coli and F. nucleatum exert potentially carcinogenic effects on the host will be reviewed.
Collapse
|
131
|
Vizcaino MI, Engel P, Trautman E, Crawford JM. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J Am Chem Soc 2014; 136:9244-7. [PMID: 24932672 PMCID: PMC4091280 DOI: 10.1021/ja503450q] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
gene cluster responsible for synthesis of the unknown molecule
“colibactin” has been identified in mutualistic and
pathogenic Escherichia coli. The pathway
endows its producer with a long-term persistence phenotype in the
human bowel, a probiotic activity used in the treatment of ulcerative
colitis, and a carcinogenic activity under host inflammatory conditions.
To date, functional small molecules from this pathway have not been
reported. Here we implemented a comparative metabolomics and targeted
structural network analyses approach to identify a catalog of small
molecules dependent on the colibactin pathway from the meningitis
isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent
small molecules are proposed based on structural characterizations
and network relationships. The network will provide a roadmap for
the structural and functional elucidation of a variety of other small
molecules encoded by the pathway. From the characterized small molecule
set, in vitro bacterial growth inhibitory and mammalian
CNS receptor antagonist activities are presented.
Collapse
Affiliation(s)
- Maria I Vizcaino
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
132
|
Schild HA, Fuchs SW, Bode HB, Grünewald B. Low-molecular-weight metabolites secreted by Paenibacillus larvae as potential virulence factors of American foulbrood. Appl Environ Microbiol 2014; 80:2484-92. [PMID: 24509920 PMCID: PMC3993163 DOI: 10.1128/aem.04049-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Paenibacillus larvae causes a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced by P. larvae are as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee, Apis mellifera carnica, with different P. larvae isolates. Honeybee larvae were reared in vitro in 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates of P. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts of P. larvae cultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate that P. larvae secretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) of P. larvae. Genome mining of P. larvae subsp. larvae BRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential of P. larvae to produce such compounds.
Collapse
Affiliation(s)
- Hedwig-Annabell Schild
- Institut für Bienenkunde, Polytechnische Gesellschaft, Oberursel, Germany
- Institut für Zellbiologie und Neurowissenschaft, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Sebastian W. Fuchs
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, Oberursel, Germany
| |
Collapse
|
133
|
Vizcaino MI, Guo X, Crawford JM. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. J Ind Microbiol Biotechnol 2014; 41:285-99. [PMID: 24127069 PMCID: PMC3946945 DOI: 10.1007/s10295-013-1356-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022]
Abstract
The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.
Collapse
Affiliation(s)
- Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Xun Guo
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06510, USA
- Chemical Biology Institute, Yale University, West Haven, CT, 06516, USA
| |
Collapse
|
134
|
Kudo F, Miyanaga A, Eguchi T. Biosynthesis of natural products containing β-amino acids. Nat Prod Rep 2014; 31:1056-73. [DOI: 10.1039/c4np00007b] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Amino acids are unique components involved in a wide variety of natural products such as anticancer agents taxol, bleomycin, cytotoxic microcystin, enediyne compound C-1027 chromophore, nucleoside antibiotic blasticidin S, and macrolactam antibiotic vicenistatin. The biosynthesis and incorporation mechanisms are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology
- Tokyo 152-8551, Japan
| |
Collapse
|
135
|
Reimer D, Bode HB. A natural prodrug activation mechanism in the biosynthesis of nonribosomal peptides. Nat Prod Rep 2014; 31:154-9. [DOI: 10.1039/c3np70081j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ThisHighlightdescribes the recently discovered prodrug activation mechanism found in the biosynthesis of nonribosomally produced peptides and peptide/polyketide hybrids as well as related mechanisms.
Collapse
Affiliation(s)
- Daniela Reimer
- Merck Stiftungsprofessur für Molekulare Biotechnologie
- Fachbereich Biowissenschaften
- Goethe Universität Frankfurt
- 60438 Frankfurt am Main, Germany
| | - Helge B. Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie
- Fachbereich Biowissenschaften
- Goethe Universität Frankfurt
- 60438 Frankfurt am Main, Germany
| |
Collapse
|
136
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
137
|
Chong ESL. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 2013; 30:351-74. [PMID: 24068536 DOI: 10.1007/s11274-013-1499-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/16/2013] [Indexed: 02/07/2023]
Abstract
A number of investigations, mainly using in vitro and animal models, have demonstrated a wide range of possible mechanisms, by which probiotics may play a role in colorectal cancer (CRC) prevention. In this context, the most well studied probiotics are certain strains from the genera of lactobacilli and bifidobacteria. The reported anti-CRC mechanisms of probiotics encompass intraluminal, systemic, and direct effects on intestinal mucosa. Intraluminal effects detailed in this review include competitive exclusion of pathogenic intestinal flora, alteration of intestinal microflora enzyme activity, reduction of carcinogenic secondary bile acids, binding of carcinogens and mutagens, and increasing short chain fatty acids production. Reduction of DNA damage and suppression of aberrant crypt foci formation have been well demonstrated as direct anti-CRC effects of probiotics on intestinal mucosa. Existing evidence clearly support a multifaceted immunomodulatory role of probiotics in CRC, particularly its ability to modulate intestinal inflammation, a well known risk factor for CRC. The effectiveness of probiotics in CRC prevention is dependent on the strain of the microorganism, while viability may not be a prerequisite for certain probiotic anticancer mechanisms, as indicated by several studies. Emerging data suggest synbiotic as a more effective approach than either prebiotics or probiotics alone. More in vivo especially human studies are warranted to further elucidate and confirm the potential role of probiotics (viable and non-viable), prebiotics and synbiotics in CRC chemoprevention.
Collapse
Affiliation(s)
- Esther Swee Lan Chong
- Institute of Food, Nutrition and Human Health, Massey University, PO Box 11222, Palmerston North, 4442, New Zealand,
| |
Collapse
|
138
|
Pu JY, Peng C, Tang MC, Zhang Y, Guo JP, Song LQ, Hua Q, Tang GL. Naphthyridinomycin Biosynthesis Revealing the Use of Leader Peptide to Guide Nonribosomal Peptide Assembly. Org Lett 2013; 15:3674-7. [DOI: 10.1021/ol401549y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jin-Yue Pu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chao Peng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Man-Cheng Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian-Ping Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Li-Qiang Song
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiang Hua
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China, and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
139
|
Bian X, Fu J, Plaza A, Herrmann J, Pistorius D, Stewart AF, Zhang Y, Müller R. In vivo evidence for a prodrug activation mechanism during colibactin maturation. Chembiochem 2013; 14:1194-7. [PMID: 23744512 DOI: 10.1002/cbic.201300208] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 01/19/2023]
Abstract
Releasing the cytopath: We have identified an N-myristoyl-D-asparagine (1) as the free N-terminal prodrug scaffold in cytopathogenic Escherichia coli strains expressing the colibactin gene cluster. Colibactin is released in vivo upon cleavage of precolibactin. We provide for the first time in vivo evidence of the prodrug-like release mechanism of colibactin.
Collapse
Affiliation(s)
- Xiaoying Bian
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland HIPS, Helmholtz Centre for Infection Research HZI and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|