101
|
Castillo F, Tavassoli A. Genetic Selections with SICLOPPS Libraries: Toward the Identification of Novel Protein-Protein Interaction Inhibitors and Chemical Tools. Methods Mol Biol 2019; 2001:317-328. [PMID: 31134578 DOI: 10.1007/978-1-4939-9504-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclic peptide libraries have successfully been employed for the identification of inhibitors of highly challenging targets. While several methodologies exist for the generation of cyclic peptide libraries, genetically encoded libraries hold several advantages over purely in vitro methods of library generation, including the ability to conduct cell-based functional screens and straightforward hit deconvolution. Here we detail the use of split-intein circular ligation of peptides and proteins (SICLOPPS) for the identification and optimization of several first-in-class and best-in-class inhibitors. We describe the current advances in the identification of SICLOPPS-derived inhibitors, as well as the optimization of library generation through the use of new inteins. Finally, we discuss the production of more diverse libraries as a way of enhancing the hit rate against difficult protein-protein interactions.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
102
|
Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, Laub MT. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol 2018; 15:141-150. [PMID: 30559427 PMCID: PMC6366861 DOI: 10.1038/s41589-018-0183-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
The nucleotide ppGpp is a highly conserved regulatory molecule in prokaryotes that helps tune growth rate to nutrient availability. Despite decades of study, how ppGpp regulates growth remains poorly understood. Here, we develop and validate a capture-compound mass spectrometry approach that identifies >50 putative ppGpp targets in Escherichia coli. These targets control many key cellular processes and include 13 enzymes required for nucleotide synthesis. We demonstrate that ppGpp inhibits the de novo synthesis of all purine nucleotides by directly targeting the enzyme PurF. By solving a structure of PurF bound to ppGpp, we design a mutation that ablates ppGpp-based regulation, leading to a dysregulation of purine nucleotide synthesis following ppGpp accumulation. Collectively, our results provide new insights into ppGpp-based growth control and a nearly comprehensive set of targets for future exploration. The capture compounds developed will also now enable the rapid identification of ppGpp targets in any species, including pathogens.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda Del Rosario
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
103
|
Kim E, Dai B, Qiao JB, Li W, Fortner JD, Zhang F. Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43003-43012. [PMID: 30480422 DOI: 10.1021/acsami.8b14890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5(2) and Mfp5(3). The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5(3) displayed a high force of adhesion (201 ± 36 nN μm-1) and a high work of adhesion (68 ± 21 fJ μm-1) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.
Collapse
|
104
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
105
|
Abstract
With the increasing utilization of high-throughput screening for lead identification in drug discovery, the need for easily constructed and diverse libraries which cover significant chemical space is greater than ever. Cyclic peptides address this need; they combine the advantageous properties of peptides (ease of production, high diversity, high potential specificity) with increased resistance to proteolysis and often increased biological activity (due to conformational locking). There are a number of techniques for the generation and screening of cyclic peptide libraries. As drug discovery moves toward tackling challenging targets, such as protein-protein interactions, cyclic peptide libraries are expected to continue producing hits where small molecule libraries may be stymied. However, it is important to design robust systems for the generation and screening of these large libraries, and to be able to make sense of structure-activity relationships in these highly variable scaffolds. There are a plethora of possible modifications that can be made to cyclic peptides, which is both a weakness and a strength of these scaffolds; high variability will allow more precise tuning of leads to targets, but exploring the whole range of modifications may become an overwhelming challenge.
Collapse
|
106
|
Murray DT, Zhou X, Kato M, Xiang S, Tycko R, McKnight SL. Structural characterization of the D290V mutation site in hnRNPA2 low-complexity-domain polymers. Proc Natl Acad Sci U S A 2018; 115:E9782-E9791. [PMID: 30279180 PMCID: PMC6196502 DOI: 10.1073/pnas.1806174115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human genetic studies have given evidence of familial, disease-causing mutations in the analogous amino acid residue shared by three related RNA binding proteins causative of three neurological diseases. Alteration of aspartic acid residue 290 of hnRNPA2 to valine is believed to predispose patients to multisystem proteinopathy. Mutation of aspartic acid 262 of hnRNPA1 to either valine or asparagine has been linked to either amyotrophic lateral sclerosis or multisystem proteinopathy. Mutation of aspartic acid 378 of hnRNPDL to either asparagine or histidine has been associated with limb girdle muscular dystrophy. All three of these aspartic acid residues map to evolutionarily conserved regions of low-complexity (LC) sequence that may function in states of either intrinsic disorder or labile self-association. Here, we present a combination of solid-state NMR spectroscopy with segmental isotope labeling and electron microscopy on the LC domain of the hnRNPA2 protein. We show that, for both the wild-type protein and the aspartic acid 290-to-valine mutant, labile polymers are formed in which the LC domain associates into an in-register cross-β conformation. Aspartic acid 290 is shown to be charged at physiological pH and immobilized within the polymer core. Polymers of the aspartic acid 290-to-valine mutant are thermodynamically more stable than wild-type polymers. These observations give evidence that removal of destabilizing electrostatic interactions may be responsible for the increased propensity of the mutated LC domains to self-associate in disease-causing conformations.
Collapse
Affiliation(s)
- Dylan T Murray
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MD 20892
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD 20892
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Siheng Xiang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MD 20892;
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
107
|
Lee E, Min K, Chang YT, Kwon Y. Efficient and wash-free labeling of membrane proteins using engineered Npu DnaE split-inteins. Protein Sci 2018; 27:1568-1574. [PMID: 30151847 DOI: 10.1002/pro.3455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient and wash-free method to conjugate a fluorescent tag to a target membrane protein is developed, using engineered Npu DnaE split-inteins. This approach allowed fast labeling while avoiding the strenuous synthesis of a long polypeptide. Two different modes of labeling, namely specific binding and covalent conjugation, are observed. The covalent labeling was monitored within 5 min, without background staining.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Kyoungmi Min
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| |
Collapse
|
108
|
Stevens AJ, Sekar G, Gramespacher JA, Cowburn D, Muir TW. An Atypical Mechanism of Split Intein Molecular Recognition and Folding. J Am Chem Soc 2018; 140:11791-11799. [PMID: 30156841 PMCID: PMC7232844 DOI: 10.1021/jacs.8b07334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Split inteins associate to trigger protein splicing in trans, a post-translational modification in which protein sequences fused to the intein pair are ligated together in a traceless manner. Recently, a family of naturally split inteins has been identified that is split at a noncanonical location in the primary sequence. These atypically split inteins show considerable promise in protein engineering applications; however, the mechanism by which they associate is unclear and must be different from that of previously characterized canonically split inteins due to unique topological restrictions. Here, we use a consensus design strategy to generate an atypical split intein pair (Cat) that has greatly improved activity and is amenable to detailed biochemical and biophysical analysis. Guided by the solution structure of Cat, we show that the association of the fragments involves a disorder-to-order structural transition driven by hydrophobic interactions. This molecular recognition mechanism satisfies the topological constraints of the intein fold and, importantly, ensures that premature chemistry does not occur prior to fragment complementation. Our data lead a common blueprint for split intein complementation in which localized structural rearrangements are used to drive folding and regulate protein-splicing activity.
Collapse
Affiliation(s)
- Adam J. Stevens
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Giridhar Sekar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Josef A. Gramespacher
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
109
|
Matern JCJ, Friedel K, Binschik J, Becher KS, Yilmaz Z, Mootz HD. Altered Coordination of Individual Catalytic Steps in Different and Evolved Inteins Reveals Kinetic Plasticity of the Protein Splicing Pathway. J Am Chem Soc 2018; 140:11267-11275. [PMID: 30111090 DOI: 10.1021/jacs.8b04794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein splicing performed by inteins provides powerful opportunities to manipulate protein structure and function, however, detailed mechanistic knowledge of the multistep pathway to help engineering optimized inteins remains scarce. A typical intein has to coordinate three steps to maximize the product yield of ligated exteins. We have revealed a new type of coordination in the Ssp DnaB intein, in which the initial N- S acyl shift appears rate-limiting and acts as an up-regulation switch to dramatically accelerate the last step of succinimide formation, which is thus coupled to the first step. The structure-activity relationship at the N-terminal scissile bond was studied with atomic precision using a semisynthetic split intein. We show that the removal of the extein acyl group from the α-amino moiety of the intein's first residue is strictly required and sufficient for the up-regulation switch. Even an acetyl group as the smallest possible extein moiety completely blocked the switch. Furthermore, we investigated the M86 intein, a mutant with faster splicing kinetics previously obtained by laboratory evolution of the Ssp DnaB intein, and the individual impact of its eight mutations. The succinimide formation was decoupled from the first step in the M86 intein, but the acquired H143R mutation acts as a brake to prevent premature C-terminal cleavage and thereby maximizes splicing yields. Together, these results revealed a high degree of plasticity in the kinetic coordination of the splicing pathway. Furthermore, our study led to the rational design of improved M86 mutants with the highest yielding trans-splicing and fastest trans-cleavage activities.
Collapse
Affiliation(s)
- Julian C J Matern
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kristina Friedel
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Jens Binschik
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Zahide Yilmaz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| |
Collapse
|
110
|
Pirzer T, Becher KS, Rieker M, Meckel T, Mootz HD, Kolmar H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS Chem Biol 2018; 13:2058-2066. [PMID: 29920062 DOI: 10.1021/acschembio.8b00222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell targeting protein toxins have gained increasing interest for cancer therapy aimed at increasing the therapeutic window and reducing systemic toxicity. Because recombinant expression of immunotoxins consisting of a receptor-binding and a cell-killing moiety is hampered by their high toxicity in a eukaryotic production host, most applications rely on recombinant production of fusion proteins consisting of an antibody fragment and a protein toxin in bacterial hosts such as Escherichia coli ( E. coli). These fusions often lack beneficial properties of whole antibodies like extended serum half-life or efficient endocytic uptake via receptor clustering. Here, we describe the production of full-length antibody immunotoxins using self-splicing split inteins. To this end, the short (11 amino acids) N-terminal intein part of the artificially designed split intein M86, a derivative of the Ssp DnaB intein, was recombinantly fused to the heavy chain of trastuzumab, a human epidermal growth factor receptor 2 (HER2) receptor targeting antibody and to a nanobody-Fc fusion targeting the HER1 receptor, respectively. Both antibodies were produced in Expi293F cells. The longer C-terminal counterpart of the intein was genetically fused to the protein toxins gelonin or Pseudomonas Exotoxin A, respectively, and expressed in E. coli via fusion to maltose binding protein. Using optimized in vitro splicing conditions, we were able to generate a set of specific and potent immunotoxins with IC50 values in the mid- to subpicomolar range.
Collapse
Affiliation(s)
- Thomas Pirzer
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Marcel Rieker
- Antibody Drug Conjugates and Targeted NBE Therapeutics , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
- Protein Engineering and Antibody Technologies , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
| | - Tobias Meckel
- Macromolecular Chemistry & Paper Chemistry, Department of Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
111
|
Bowen CH, Dai B, Sargent CJ, Bai W, Ladiwala P, Feng H, Huang W, Kaplan DL, Galazka JM, Zhang F. Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk. Biomacromolecules 2018; 19:3853-3860. [DOI: 10.1021/acs.biomac.8b00980] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Jonathan M. Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, United States
| | | |
Collapse
|
112
|
Nakano S, Motoyama T, Miyashita Y, Ishizuka Y, Matsuo N, Tokiwa H, Shinoda S, Asano Y, Ito S. Benchmark Analysis of Native and Artificial NAD +-Dependent Enzymes Generated by a Sequence-Based Design Method with or without Phylogenetic Data. Biochemistry 2018; 57:3722-3732. [PMID: 29787243 DOI: 10.1021/acs.biochem.8b00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full-consensus design (FCD) and ancestral-sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial l-threonine 3-dehydrogenases (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1, and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH); the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5 °C higher than that of CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were 2- and 7-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.
Collapse
Affiliation(s)
- Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Tomoharu Motoyama
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Yurina Miyashita
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yuki Ishizuka
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Naoya Matsuo
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Hiroaki Tokiwa
- Department of Chemistry , Rikkyo University , Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Suguru Shinoda
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Yasuhisa Asano
- Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan.,Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan.,Asano Active Enzyme Molecule Project , ERATO, JST , 5180 Kurokawa , Imizu, Toyama 939-0398 , Japan
| |
Collapse
|
113
|
Banerjee A, Howarth M. Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras. Curr Opin Biotechnol 2018; 51:16-23. [DOI: 10.1016/j.copbio.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
|
114
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
115
|
Gramespacher JA, Stevens AJ, Thompson RE, Muir TW. Improved protein splicing using embedded split inteins. Protein Sci 2018; 27:614-619. [PMID: 29226478 PMCID: PMC5818749 DOI: 10.1002/pro.3357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 01/24/2023]
Abstract
Naturally split inteins mediate a traceless protein ligation process known as protein trans-splicing (PTS). Although frequently used in protein engineering applications, the efficiency of PTS can be reduced by the tendency of some split intein fusion constructs to aggregate; a consequence of the fragmented nature of the split intein itself or the polypeptide to which it is fused (the extein). Here, we report a strategy to help address this liability. This involves embedding the split intein within a protein sequence designed to stabilize either the intein fragment itself or the appended extein. We expect this approach to increase the scope of PTS-based protein engineering efforts.
Collapse
Affiliation(s)
| | - Adam J. Stevens
- Department of ChemistryPrinceton University, Frick Laboratory, PrincetonNew Jersey
| | - Robert E. Thompson
- Department of ChemistryPrinceton University, Frick Laboratory, PrincetonNew Jersey
| | - Tom W. Muir
- Department of ChemistryPrinceton University, Frick Laboratory, PrincetonNew Jersey
| |
Collapse
|
116
|
Pavankumar TL. Inteins: Localized Distribution, Gene Regulation, and Protein Engineering for Biological Applications. Microorganisms 2018; 6:E19. [PMID: 29495613 PMCID: PMC5874633 DOI: 10.3390/microorganisms6010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 11/25/2022] Open
Abstract
Inteins are self-splicing polypeptides with an ability to excise themselves from flanking host protein regions with remarkable precision; in the process, they ligate flanked host protein fragments. Inteins are distributed sporadically across all three domains of life (bacteria, archaea, and unicellular eukaryotes). However, their apparent localized distribution in DNA replication, repair, and recombination proteins (the 3Rs), particularly in bacteria and archaea, is enigmatic. Our understanding of the localized distribution of inteins in the 3Rs, and their possible regulatory role in such distribution, is still only partial. Nevertheless, understanding the chemistry of post-translational self-splicing of inteins has opened up opportunities for protein chemists to modify, manipulate, and bioengineer proteins. Protein-splicing technology is adapted to a wide range of applications, starting with untagged protein purification, site-specific protein labeling, protein biotinylation, isotope incorporation, peptide cyclization, as an antimicrobial target, and so on. This review is focused on the chemistry of splicing; the localized distribution of inteins, particularly in the 3Rs and their possible role in regulating host protein function; and finally, the use of protein-splicing technology in various protein engineering applications.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Ave, University of California, Davis, CA 95616, USA.
| |
Collapse
|
117
|
Gupta S, Tycko R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:103-114. [PMID: 29464399 PMCID: PMC5832360 DOI: 10.1007/s10858-017-0162-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15N,13C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Collapse
Affiliation(s)
- Sebanti Gupta
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
- National Institutes of Health, Building 5, Room 409, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
118
|
Muik A, Reul J, Friedel T, Muth A, Hartmann KP, Schneider IC, Münch RC, Buchholz CJ. Covalent coupling of high-affinity ligands to the surface of viral vector particles by protein trans-splicing mediates cell type-specific gene transfer. Biomaterials 2017; 144:84-94. [PMID: 28825979 DOI: 10.1016/j.biomaterials.2017.07.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 02/04/2023]
Abstract
We have established a novel approach for the covalent coupling of large polypeptides to the surface of fully assembled adeno-associated viral gene transfer vector (AAV) particles via split-intein mediated protein-trans-splicing (PTS). This way, we achieved selective gene transfer to distinct cell types. Single-chain variable fragments (scFvs) or designed ankyrin repeat proteins (DARPins), exhibiting high-affinity binding to cell surface receptors selectively expressed on the surface of target cells, were coupled to AAV particles harboring mutations in the capsid proteins which ablate natural receptor usage. Both, the AAV capsid protein VP2 and multiple separately produced targeting ligands recognizing Her2/neu, EpCAM, CD133 or CD30 were genetically fused with complementary split-intein domains. Optimized coupling conditions led to an effective conjugation of each targeting ligand to the universal AAV capsid and translated into specific gene transfer into target receptor-positive cell types in vitro and in vivo. Interestingly, PTS-based AAVs exhibited significantly less gene transfer into target receptor-negative cells than AAVs displaying the same targeting ligand but coupled genetically. Another important consequence of the PTS technology is the possibility to now display scFvs or other antibody-derived domain formats harboring disulfide-bonds in a functionally active form on the surface of AAV particles. Hence, the custom combination of a universal AAV vector particle and targeting ligands of various formats allows for an unprecedented flexibility in the generation of gene transfer vectors targeted to distinct cell types.
Collapse
Affiliation(s)
- Alexander Muik
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Johanna Reul
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Thorsten Friedel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Anke Muth
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | | | - Irene C Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robert C Münch
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
119
|
A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A 2017; 114:8538-8543. [PMID: 28739907 DOI: 10.1073/pnas.1701083114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein trans-splicing (PTS) activity of naturally split inteins has found widespread use in chemical biology and biotechnology. However, currently used naturally split inteins suffer from an "extein dependence," whereby residues surrounding the splice junction strongly affect splicing efficiency, limiting the general applicability of many PTS-based methods. To address this, we describe a mechanism-guided protein engineering approach that imbues ultrafast DnaE split inteins with minimal extein dependence. The resulting "promiscuous" inteins are shown to be superior reagents for protein cyclization and protein semisynthesis, with the latter illustrated through the modification of native cellular chromatin. The promiscuous inteins reported here thus improve the applicability of existing PTS methods and should enable future efforts to engineer promiscuity into other naturally split inteins.
Collapse
|
120
|
|
121
|
Zhang H, van Ingen H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 2016; 38:75-82. [PMID: 27295425 DOI: 10.1016/j.sbi.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Proteins come together in macromolecular assemblies, recognizing and binding to each other through their structures, and operating on their substrates through their motions. Detailed characterization of these processes is particularly suited to NMR, a high-resolution technique sensitive to structure, dynamics, and interactions. Advances in isotope-labeling have enabled such studies to an ever-increasing range of systems. Here we highlight recent applications and bring to the fore the range of options to produce labeled proteins and to control the specific placement of isotopes. The increased labeling control and affordability, together with the possibility to combine strategies will further deepen and extend the range of protein assembly investigations.
Collapse
Affiliation(s)
- Heyi Zhang
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands.
| |
Collapse
|
122
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
123
|
A super-splicing split intein. Nat Methods 2016. [DOI: 10.1038/nmeth.3821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|