101
|
Pla L, Aviñó A, Eritja R, Ruiz-Gaitán A, Pemán J, Friaza V, Calderón EJ, Aznar E, Martínez-Máñez R, Santiago-Felipe S. Triplex Hybridization-Based Nanosystem for the Rapid Screening of Pneumocystis Pneumonia in Clinical Samples. J Fungi (Basel) 2020; 6:E292. [PMID: 33213011 PMCID: PMC7712664 DOI: 10.3390/jof6040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pneumocystis pneumonia (PcP) is a disease produced by the opportunistic infection of the fungus Pneumocystis jirovecii. As delayed or unsuitable treatments increase the risk of mortality, the development of rapid and accurate diagnostic tools for PcP are of great importance. Unfortunately, current standard methods present severe limitations and are far from adequate. In this work, a time-competitive, sensitive and selective biosensor based on DNA-gated nanomaterials for the identification of P. jirovecii is presented. The biosensor consists of a nanoporous anodic alumina (NAA) scaffold which pores are filled with a dye reporter and capped with specific DNA oligonucleotides. In the presence of P. jirovecii genomic DNA, the gated biosensor is open, and the cargo is delivered to the solution where it is monitored through fluorescence spectroscopy. The use of capping oligonucleotides able to form duplex or triplex with P. jirovecii DNA is studied. The final diagnostic tool shows a limit of detection (LOD) of 1 nM of target complementary DNA and does not require previous amplification steps. The method was applied to identify DNA from P. jirovecii in unmodified bronchoalveolar lavage, nasopharyngeal aspirates, and sputum samples in 60 min. This is a promising alternative method for the routinely diagnosis of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
| | - Anna Aviñó
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramón Eritja
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alba Ruiz-Gaitán
- Grupo Acreditado de Infección Grave, Instituto de Investigación Sanitaria La Fe and Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell, 46026 Valencia, Spain; (A.R.-G.); (J.P.)
| | - Javier Pemán
- Grupo Acreditado de Infección Grave, Instituto de Investigación Sanitaria La Fe and Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell, 46026 Valencia, Spain; (A.R.-G.); (J.P.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain; (V.F.); (E.J.C.)
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain; (V.F.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.P.); (S.S.-F.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; (A.A.); (R.E.)
| |
Collapse
|
102
|
Wang C, Yu Y, Irfan M, Xu B, Li J, Zhang L, Qin Z, Yu C, Liu H, Su X. Rational Design of DNA Framework-Based Hybrid Nanomaterials for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002578. [PMID: 33029935 DOI: 10.1002/smll.202002578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 05/12/2023]
Abstract
Engineered DNA frameworks have been extensively exploited as affinity scaffolds for drug delivery. However, few studies focus on the rational design to comprehensively improve their stability, internalization kinetics, and drug loading efficiency. Herein, DNA framework-based hybrid nanomaterials are rationally engineered by using a molecular docking tool, where the framework acts as a template to support conjugated polymers. The hybrid materials exhibit high stability in biofluids owning to the multiple interactions between DNA and cationic conjugated polymer. Through molecular docking, it is found that a specific structure of the conjugated polymer at major grooves of DNA gives rise to a unique pocket for small-molecular drug doxorubicin (DOX) yielding lower binding energy than conventional DOX binding sites. This increases the binding affinity of DOX, allowing for high drug loading content and efficiency, and preventing drug leakage under physiological condition. As a proof of concept, the hybrid nanomaterials equipped with aptamer are used to carry DOX and antisense oligonucleotide G3139, which effectively inhibits solid tumor growth and shows negligible side effects on mice. It is anticipated that this approach would find broad applications in hybrid materials design and precise medicine.
Collapse
Affiliation(s)
- Congshan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Muhammad Irfan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Linghao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaohui Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
103
|
Lv Z, Jiang R, Chen J, Chen W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:880-891. [PMID: 32860436 DOI: 10.1111/tpj.14973] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 05/05/2023]
Abstract
Plant genetic engineering, a recent technological advancement in the field of plant science, is an important tool used to improve crop quality and yield, to enhance secondary metabolite content in medicinal plants or to develop crops for sustainable agriculture. A new approach based on nanoparticle-mediated gene transformation can overcome the obstacle of the plant cell wall and accurately transfer DNA or RNA into plants to produce transient or stable transformation. In this review, several nanoparticle-based approaches are discussed, taking into account recent advances and challenges to hint at potential applications of these approaches in transgenic plant improvement programs. This review also highlights challenges in implementing the nanoparticle-based approaches used in plant genetic engineering. A new technology that improves gene transformation efficiency and overcomes difficulties in plant regeneration has been established and will be used for the de novo production of transgenic plants, and CRISPR/Cas9 genome editing has accelerated crop improvement. Therefore, we outline future perspectives based on combinations of genome editing, nanoparticle-mediated gene transformation and de novo regeneration technologies to accelerate crop improvement. The information provided here will assist an effective exploration of the technological advances in plant genetic engineering to support plant breeding and important crop improvement programs.
Collapse
Affiliation(s)
- Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
104
|
Zhuang L, Xia W, Chen D, Ye Y, Hu T, Li S, Hou M. Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J Nanobiotechnology 2020; 18:157. [PMID: 33129330 PMCID: PMC7603694 DOI: 10.1186/s12951-020-00716-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The chemotherapy drug doxorubicin (Dox) is widely used for treating a variety of cancers. However, its high cardiotoxicity hampered its clinical use. Exosomes derived from stem cells showed a therapeutic effect against Dox-induced cardiomyopathy (DIC). Previous studies reported that exosomes derived from mesenchymal stem cells (MSCs) pretreated with macrophage migration inhibitory factor (MIF) (exosomeMIF) showed a cardioprotective effect through modulating long noncoding RNAs/microRNAs (lncRNAs/miRs). This study aimed to investigate the role of exosomeMIF in the treatment of DIC. Results Exosomes were isolated from control MSCs (exosome) and MIF-pretreated MSCs (exosomeMIF). Regulatory lncRNAs activated by MIF pretreatment were explored using genomics approaches. Fluorescence-labeled exosomes were tracked in vitro by fluorescence imaging. In vivo and in vitro, miR-221-3p mimic transfection enforced miR-221-3p overexpression, and senescence-associated β-galactosidase assay was applied to test cellular senescence. Exosomal delivering LncRNA-NEAT1 induced therapeutic effect in vivo was confirmed by echocardiography. It demonstrated that exosomesMIF recovered the cardiac function and exerted the anti-senescent effect through LncRNA–NEAT1 transfer against Dox. TargetScan and luciferase assay showed that miR-221-3p targeted the Sirt2 3′-untranslated region. Silencing LncRNA–NEAT1 in MSCs, miR-221-3p overexpression or Sirt2 silencing in cardiomyocytes decreased the exosomeMIF-induced anti-senescent effect against Dox. Conclusions The results indicated exosomeMIF serving as a promising anti-senescent effector against Dox-induced cardiotoxicity through LncRNA–NEAT1 transfer, thus inhibiting miR-221-3p and leading to Sirt2 activation. The study proposed that exosomeMIF might have the potential to serve as a cardioprotective therapeutic agent during cancer chemotherapy.![]()
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Didi Chen
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Yijia Ye
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Tingting Hu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
105
|
Sharma S, Banjare MK, Singh N, Korábečný J, Kuča K, Ghosh KK. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Adv 2020; 10:38873-38883. [PMID: 35518436 PMCID: PMC9057349 DOI: 10.1039/d0ra06323a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the formation of amyloid fibrils is a crucial step in the prevention of the human neurological disorder, Alzheimer's disease (AD). Ionic liquid (IL) mediated interactions are an expedient approach that exhibits inhibition effects on amyloid fibrils. In view of the beneficial role of ILs, in this work we have explored complexation of anti-Alzheimer's drugs (i.e., tacrine and PC-37) and an amino acid-functionalized IL [AIL (4-PyC8)]. Maintaining standard physiological conditions, the binding mechanism, thermo-dynamical properties and binding parameters were studied by employing UV-vis, fluorescence, FTIR, 1H NMR, COSY and NOESY spectroscopy. The present investigation uncovers the fact that the interaction of anti-Alzheimer's drugs with 4-PyC8 is mediated through H-bonding and van der Waals forces. The Benesi–Hildebrand relation was used to evaluate the binding affinity and PC-37 showed the highest binding when complexed with 4-PyC8. FTIR spectra showed absorption bands at 3527.98 cm−1 and 3527.09 cm−1 for the PC-37 + 4-PyC8 system which is quite promising compared to tacrine. 1H-NMR experiments recorded deshielding for tacrine at relatively higher concentrations than PC-37. COSY investigations suggest that anti-Alzheimer's drugs after complexation with 4-PyC8 show a 1 : 1 ratio. The cross-peaks of the NOESY spectra involve correlations between anti-Alzheimer's drugs and AIL protons, indicating complexation between them. The observed results indicate that these complexes are expected to have a possible therapeutic role in reducing/inhibiting amyloid fibrils when incorporated into drug formulations. Ionic liquids mediated interactions are an expedient approach that exhibit inhibition effect on amyloid fibrils which is beneficial for the treatment of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| | - Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India .,MATS School of Sciences, MATS University Pagaria Complex, Pandri Raipur-492009 C.G. India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University Nerul Navi Mumbai India.,Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic .,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic .,Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| |
Collapse
|
106
|
Saini M, Ghosh S, Kumar V, Roy P, Sadhu KK. Selective Release of Doxorubicin from Cucurbit[8]uril Stabilized Gold Supra-Pyramid Host at pH of Small Intestine. Chemistry 2020; 26:15150-15158. [PMID: 32463129 DOI: 10.1002/chem.202002048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Gold supra-pyramid structures were obtained by the addition of acidic solution of cucurbit[8]uril (CB[8]) to an aqueous solution of citrate stabilized gold nanoparticles (AuNP). The reaction resulted in the precipitation of supra-pyramid from the solution after just 1 min of shaking. Microscopic images confirmed formation of the supra-pyramid. The stepwise structural transformation towards the supra-pyramid was examined with variable concentrations of CB[8] to AuNP solution. Anionic counter parts of these acids (Br- , NO3 - , SO4 2- and Cl- ) controlled the size of the synthesized supra-pyramids. These supra-pyramid hosts showed uptake of three anticancer drugs: oral drugs etoposide, prednisolone and intravenous drug doxorubicin. Releases of drugs from these hosts were emulated at acidic stomach pH, basic small intestinal pH and in the presence of human serum albumin (HSA). The specific release of doxorubicin was confirmed at small intestinal pH 7.4. Poor release of drugs in presence of CB[8] specific guest 1-adamantanamine confirmed the role of the supra-pyramid as the exclusive host. The release of doxorubicin from the supra-pyramid at pH 7.4 was confirmed by fluorescence microscopic imaging with prostate cancer DU-145 cell line.
Collapse
Affiliation(s)
- Meenaxi Saini
- Department of Chemistry, Indian Institution of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biotechnology, Indian Institution of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Viney Kumar
- Department of Biotechnology, Indian Institution of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institution of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institution of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
107
|
Xue C, Zhang S, Yu X, Hu S, Lu Y, Wu Z. Periodically Ordered, Nuclease‐Resistant DNA Nanowires Decorated with Cell‐Specific Aptamers as Selective Theranostic Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
- College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 China
| | - Xin Yu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Shuyao Hu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Yi Lu
- Department of Chemistry Cancer Center at Illinois University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Zai‐Sheng Wu
- Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
108
|
Yang Y, He Y, Deng Z, Li J, Huang J, Zhong S. Intelligent Nanoprobe: Acid-Responsive Drug Release and In Situ Evaluation of Its Own Therapeutic Effect. Anal Chem 2020; 92:12371-12378. [PMID: 32786256 DOI: 10.1021/acs.analchem.0c02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of an intelligent nanoprobe capable of intracellular controlled release of apoptosis inducers and subsequent high-fidelity imaging of the drug-induced apoptosis is highly desirable for precise cancer treatment. Herein, we report an intelligent nanoprobe that combined therapeutic and imaging functions in one agent. Briefly, a gold nanoparticle is designed to be conjugated with acid-responsive DNA duplexes (Dox intercalates in this region) and caspase-3-specific cleavable peptides (labeled with fluorophore). We demonstrated that the nanoprobe could efficiently deliver an anticancer drug (Dox) into cancer cells and achieve acid-responsive drug release. Furthermore, the apoptotic process was in situ-monitored by detection of fluorescence through the cleavage of the peptide linker by caspase-3, which is one of the executioner caspases involved in apoptosis. This newly developed nanoprobe could serve as a theranostic agent for targeted responsive chemotherapy and also provide feedback apoptosis imaging of the self-therapeutic effect.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
109
|
Xue C, Zhang S, Yu X, Hu S, Lu Y, Wu ZS. Periodically Ordered, Nuclease-Resistant DNA Nanowires Decorated with Cell-Specific Aptamers as Selective Theranostic Agents. Angew Chem Int Ed Engl 2020; 59:17540-17547. [PMID: 32613705 DOI: 10.1002/anie.202004805] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Indexed: 12/21/2022]
Abstract
DNA nanostructures have shown potential in cancer therapy. However, their clinical application is hampered by the difficulty to deliver them into cancer cells and susceptibility to nuclease degradation. To overcome these limitations, we report herein a periodically ordered nick-hidden DNA nanowire (NW) with high serum stability and active targeting functionality. The inner core is made of multiple connected DNA double helices, and the outer shell is composed of regularly arranged standing-up hairpin aptamers. All termini of the components are hidden from nuclease attack, whereas the target-binding sites are exposed to allow delivery to the cancer target. The DNA NW remained intact during incubation for 24 h in serum solution. Animal imaging and cell apoptosis showed that NWs loaded with an anticancer drug displayed long blood-circulation time and high specificity in inducing cancer-cell apoptosis, thus validating this approach for the targeted imaging and therapy of cancers.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.,College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China
| | - Xin Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Shuyao Hu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Yi Lu
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of, Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
110
|
Jiang YJ, Wang N, Cheng F, Lin HR, Zhen SJ, Li YF, Li CM, Huang CZ. Dual Energy Transfer-Based DNA/Graphene Oxide Nanocomplex Probe for Highly Robust and Accurate Monitoring of Apoptosis-Related microRNAs. Anal Chem 2020; 92:11565-11572. [DOI: 10.1021/acs.analchem.0c00307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong Jian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Na Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Hua Rong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
111
|
Zhang J, Wang Z, Gao Y, Wu ZS. Simple Self-Assembled Targeting DNA Nano Sea Urchin as a Multivalent Drug Carrier. ACS APPLIED BIO MATERIALS 2020; 3:4514-4521. [PMID: 35025450 DOI: 10.1021/acsabm.0c00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ideal drug delivery platform with high cell selectivity, drug payload capacity, and cellular internalization capability is usually of the essence for targeted cancer chemotherapy. Herein, by combining palindromic DNA strands with a targeting aptamer probe, we demonstrated a self-assembled nanoscale sea urchin-shaped structure (called aptamer-NSU) as a multivalent carrier capable of executing targeted cancer cell imaging and drug delivery. The DNA nanostructure is composed of a spherical trunk and surface-confined spines: the former is assembled from only one biotinylated DNA containing four different palindrome domains, and the latter is a biotinylated aptamer (Sgc8) conjugated to the trunk surface via streptavidin-biotin affinity interaction. The spherical trunk can densely load doxorubicin (Dox), and the surface-confined Sgc8 probes can function as targeting moieties to specifically bind to target cells in a polyvalent-binding fashion. Atomic force microscopy (AFM) and gel electrophoresis show the assembly of Sgc8-NSU. The confocal fluorescence imaging demonstrates that fluorescently labeled Sgc8-NSU can specifically image CEM cells. Flow cytometric analyses indicate that Sgc8-NSU exhibits the multivalent binding effect, achieving the significant improvement in binding affinity and selectivity compared with free Sgc8. Moreover, the CCK-8 assay confirmed that Dox-loaded Sgc8-NSU induces an enhanced cellular cytotoxicity to target cancer cells but not to negative nontarget cells. The developed DNA nanoplatform is expected to provide a valuable insight into constructing structural DNA nanotechnology-based drug delivery nanovehicles suitable for targeted cancer therapy.
Collapse
Affiliation(s)
- Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zhenmeng Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
112
|
Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020; 326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
The application of bacteria and bacteria-derived membrane vesicles (MVs) has promising potential to make a great impact on the development of controllable targeted drug delivery for combatting cancer. Comparing to most other traditional drug delivery systems, bacteria and their MVs have unique capabilities as drug carriers for cancer treatment. They can overcome physical barriers to target and accumulate in tumor tissues and initiate antitumor immune responses. Furtherly, they are able to be modified both genetically and chemically, to produce and transport anticancer agents into tumor tissues with improved safety and efficacy of cancer treatment but decreased cytotoxic effects to normal cells. In this review, we present some examples of tumor-targeting bacteria and bacteria-derived MVs for the delivery of anticancer drugs, including chemo-therapeutic, radio-therapeutic, photothermal-therapeutic, and immuno-therapeutic agents. We also discuss the advantages as well as the limitations of these tumor-targeting bacteria and their MVs used as platforms for controlled delivery of anticancer therapeutic agents, and further highlight their great potential on clinical translation.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
113
|
Dong J, Wang M, Zhou Y, Zhou C, Wang Q. DNA‐Based Adaptive Plasmonic Logic Gates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Meng Wang
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing 210023 P. R. China
| | - Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
114
|
Dong J, Wang M, Zhou Y, Zhou C, Wang Q. DNA‐Based Adaptive Plasmonic Logic Gates. Angew Chem Int Ed Engl 2020; 59:15038-15042. [DOI: 10.1002/anie.202006029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Meng Wang
- College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing 210023 P. R. China
| | - Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
115
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
116
|
Sharma S, Banjare MK, Singh N, Korábečný J, Kuča K, Ghosh KK. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Adv 2020; 10:38873-38883. [DOI: https:/doi.org/10.1039/d0ra06323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023] Open
Abstract
Ionic liquids mediated interactions are an expedient approach that exhibit inhibition effect on amyloid fibrils which is beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Manoj Kumar Banjare
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
- MATS School of Sciences
| | - Namrata Singh
- Ramrao Adik Institute of Technology
- DY Patil University
- Navi Mumbai
- India
- Department of Chemistry
| | - Jan Korábečný
- Biomedical Research Center
- University Hospital Hradec Kralove
- 500 05 Hradec Kralove
- Czech Republic
- Department of Toxicology and Military Pharmacy
| | - Kamil Kuča
- Biomedical Research Center
- University Hospital Hradec Kralove
- 500 05 Hradec Kralove
- Czech Republic
- Department of Chemistry
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|