101
|
Maschietto F, Campetella M, Sanz García J, Adamo C, Ciofini I. Chasing unphysical TD-DFT excited states in transition metal complexes with a simple diagnostic tool. J Chem Phys 2021; 154:204102. [PMID: 34241186 DOI: 10.1063/5.0050680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transition Metal Complexes (TMCs) are known for the rich variety of their excited states showing different nature and degrees of locality. Describing the energies of these excited states with the same degree of accuracy is still problematic when using time-dependent density functional theory in conjunction with the most current density functional approximations. In particular, the presence of unphysically low lying excited states possessing a relevant Charge Transfer (CT) character may significantly affect the spectra computed at such a level of theory and, more relevantly, the interpretation of their photophysical behavior. In this work, we propose an improved version of the MAC index, recently proposed by the authors and collaborators, as a simple and computationally inexpensive diagnostic tool that can be used for the detection and correction of the unphysically predicted low lying excited states. The analysis, performed on five prototype TMCs, shows that spurious and ghost states can appear in a wide spectral range and that it is difficult to detect them only on the basis of their CT extent. Indeed, both delocalization of the excited state and CT extent are criteria that must be combined, as in the MAC index, to detect unphysical states.
Collapse
Affiliation(s)
- Federica Maschietto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Marco Campetella
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Juan Sanz García
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modelling, 75005 Paris, France
| |
Collapse
|
102
|
Xie J, Liang C, Luo S, Pan Z, Lai Y, He J, Chen H, Ren Q, Huang H, Zhang Q, Zhang P. Water-Soluble Iridic-Porphyrin Complex for Non-invasive Sonodynamic and Sono-oxidation Therapy of Deep Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27934-27944. [PMID: 34101408 DOI: 10.1021/acsami.1c06381] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.
Collapse
Affiliation(s)
- Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangling Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhihao Pan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi He
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Haijie Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qizhi Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
103
|
|
104
|
Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang JL. Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. J Am Chem Soc 2021; 143:7541-7552. [PMID: 33973784 DOI: 10.1021/jacs.1c03041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phototheranostics constitute an emerging cancer treatment wherein the core diagnostic and therapeutic functions are integrated into a single photosensitizer (PS). Achieving the full potential of this modality requires being able to tune the photosensitizing properties of the PS in question. Structural modification of the organic framework represents a time-honored strategy for tuning the photophysical features of a given PS system. Here we report an easy-to-implement metal selection approach that allows for fine-tuning of excited-state energy dissipation and phototheranostics functions as exemplified by a set of lanthanide (Ln = Gd, Yb, Er) carbazole-containing porphyrinoid complexes. Femto- and nanosecond time-resolved spectroscopic studies, in conjunction with density functional theory calculations, revealed that the energy dissipation pathways for this set of PSs are highly dependent on the energy gap between the lowest triplet excited state of the ligand and the excited states of the coordinated Ln ions. The Yb complex displayed a balance of deactivation mechanisms that made it attractive as a potential combined photoacoustic imaging and photothermal/photodynamic therapy agent. It was encapsulated into mesoporous silica nanoparticles (MSN) to provide a biocompatible construct, YbL@MSN, which displays a high photothermal conversion efficiency (η = 45%) and a decent singlet oxygen quantum yield (ΦΔ = 31%). Mouse model studies revealed that YbL@MSN allows for both photoacoustic imaging and synergistic photothermal- and photodynamic-therapy-based tumor reduction in vivo. Our results lead us to suggest that metal selection represents a promising approach to fine-tuning the excited state properties and functional features of phototheranostics.
Collapse
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangliu Ran
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiao Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - JianXin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
105
|
Karges J, Díaz-García D, Prashar S, Gómez-Ruiz S, Gasser G. Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4394-4405. [PMID: 35006851 DOI: 10.1021/acsabm.1c00151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is the leading cause of death in the developed world. In the last few decades, photodynamic therapy (PDT) has augmented the number of medical techniques to treat this disease in the clinics. As the pharmacological active species to kill cancer cells are only generated upon light irradiation, PDT is associated with an intrinsic first level of selectivity. However, since PDT agents also accumulate in the surrounding, healthy tissue and since it is practically very challenging to only expose the tumor site to light, some side effects can be observed. Consequently, there is a need for a selective drug delivery system, which would give a second level of selectivity. In this work, a dual tumor targeting approach is presented based on mesoporous silica nanoparticles, which act by the enhanced permeability and retention effect, and the conjugation to folic acid, which acts as a targeting moiety for folate receptor-overexpressed cancer cells. The conjugates were found to be nontoxic in noncancerous human normal lung fibroblast cells while showing a phototoxic effect upon irradiation at 480 or 540 nm in the low nanomolar range in folate receptor overexpressing cancerous human ovarian carcinoma cells, demonstrating their potential for cancer targeted treatment.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, Paris 75005, France
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, Paris 75005, France
| |
Collapse
|
106
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
107
|
Sarkar T, Kumar A, Sahoo S, Hussain A. Mixed-Ligand Cobalt(III) Complexes of a Naturally Occurring Coumarin and Phenanthroline Bases as Mitochondria-Targeted Dual-Purpose Photochemotherapeutics. Inorg Chem 2021; 60:6649-6662. [PMID: 33855849 DOI: 10.1021/acs.inorgchem.1c00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bioessential nature of cobalt and the rich photochemistry of its coordination complexes can be exploited to develop potential next-generation photochemotherapeutics. A series of six novel mixed-ligand cobalt(III) complexes of the formulation [Co(B)2(L)]ClO4 (1-6), where B is an N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1 and 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2 and 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3 and 6), and L is an O,O-donor dianionic ligand derived from catechol (1,2-dihydroxybenzene, cat2-, in 1-3) or esculetin (6,7-dihydoxycoumarin, esc2-, in 4-6), have been prepared and characterized, and their light-triggered cytotoxicity has been studied in cancer cells. The single-crystal X-ray diffraction structures of complexes 1 (as PF6- salt, 1a) and 2 show distorted octahedral geometries around the cobalt(III) center formed by the set of N4O2 donor atoms. The low-spin and 1:1 electrolytic complexes 1-6 display a d-d transition around 700 nm. Complexes 4-6 with a coordinated esc2- ligand additionally display a π → π* intraligand transition centered at 403 nm. Complexes 4-6 possessing a naturally occurring and photoactive esc2- ligand show high visible-light-triggered cytotoxicity against HeLa and MCF-7 cancer cells, yielding remarkably low micromolar IC50 values while being much less toxic under dark conditions. Control complexes 1-3 possessing the photoinactive cat2- ligand show significantly less cytotoxicity either in the presence of light or in the dark. The complex-induced cell death is apoptotic in nature caused by the formation of reactive oxygen species via a type 1 photoredox pathway. Fluorescence microscopy of HeLa cells treated with complex 6 reveals mitochondrial localization of the complex. A significant decrease in the dark toxicity of free esculetin and dppz base is observed upon coordination to cobalt(III). Complexes bind to calf-thymus DNA with significant affinity, but 6 binds with the greatest affinity. Complex 6 efficiently photocleaves supercoiled DNA to its nicked circular form when irradiated with visible light via a photoredox type 1 pathway involving hydroxyl radicals (HO•). Thus, complex 6 showing remarkable visible-light-triggered cytotoxicity but negligible toxicity in the dark is a good candidate for cancer photochemotherapy applications.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| |
Collapse
|
108
|
Karges J, Tharaud M, Gasser G. Polymeric Encapsulation of a Ru(II)-Based Photosensitizer for Folate-Targeted Photodynamic Therapy of Drug Resistant Cancers. J Med Chem 2021; 64:4612-4622. [PMID: 33818111 DOI: 10.1021/acs.jmedchem.0c02006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The currently used photodynamic therapy (PDT) photosensitizers (PSs) are generally associated with a poor cancer cell selectivity, which is responsible for some undesirable side effects. To overcome these problems, there is an urgent need for a selective drug delivery system for PDT PSs. Herein, the encapsulation of a promising Ru(II) polypyridine complex in a polymer with terminal folate groups to form nanoparticles is presented. While the Ru(II) complex itself has a cytotoxic effect in the dark, the encapsulation is able to overcome this drawback. Upon light exposure, the nanoparticles were found to be highly phototoxic in 2D monolayer cells as well as 3D multicellular tumor spheroids upon 480 or 595 nm irradiation. Importantly, the nanoparticles demonstrated a high selectivity for cancerous cells over noncancerous cells and were found to be active in drug resistant cancer cells lines, indicating that they are able to overcome drug resistances.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
109
|
Wang K, Liu L, Qi G, Chao X, Ma W, Yu Z, Pan Q, Mao Z, Liu B. Light-Driven Cascade Mitochondria-to-Nucleus Photosensitization in Cancer Cell Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004379. [PMID: 33898198 PMCID: PMC8061408 DOI: 10.1002/advs.202004379] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Indexed: 05/13/2023]
Abstract
Nuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect. Herein, a light-driven, mitochondria-to-nucleus cascade dual organelle cancer cell ablation strategy is reported. A functionalized iridium complex, named BT-Ir, is designed as a photosensitizer, which targets mitochondria first for photosensitization and subsequently is translocated to a cell nucleus for continuous photodynamic cancer cell ablation. This strategy opens new opportunities for efficient photodynamic therapy.
Collapse
Affiliation(s)
- Kang‐Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Xi‐Juan Chao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhiqiang Yu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiling Pan
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New CityFuzhou350207China
| |
Collapse
|
110
|
Li Y, Wang C, Zhou L, Wei S. A 2-pyridone modified zinc phthalocyanine with three-in-one multiple functions for photodynamic therapy. Chem Commun (Camb) 2021; 57:3127-3130. [PMID: 33630986 DOI: 10.1039/d1cc00645b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A 2-pyridone modified zinc phthalocyanine (denoted ZnPc-PYR) achieves a one stone for three birds outcome in the photodynamic therapy (PDT) treatment of cancer. ZnPc-PYR can be excited by both 665 and 808 nm light to treat superficial and deep tumors, store and slowly release singlet oxygen (1O2) to improve its utilization and downregulate the HIF-1 (hypoxia-inducible factor 1) expression level to enhance the tumor cell's sensitivity to PDT treatment under hypoxic conditions.
Collapse
Affiliation(s)
- Yanqing Li
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | | | | | | |
Collapse
|
111
|
Song WJ, Su H, Zhou P, Zhu YH, Khan MA, Song JB, Li H. Controllable synthesis of two adenosine 5'-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chirality. Dalton Trans 2021; 50:4713-4719. [PMID: 33729226 DOI: 10.1039/d1dt00133g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of Cu(ii)-AMP-4,4'-bipy coordination polymers, {[Cu(AMP)(4,4'-bipy)(H2O)3]·5H2O}n (1) and {[Cu2(HAMP)2(4,4'-bipy)2(H2O)4]·2NO3·11H2O}n (2) (Na2AMP = adenosine 5'-monophosphate disodium salt), were synthesised through pH control. X-ray single-crystal diffraction analysis revealed that 1 and 2 are one-dimensional (1D) coordinating coordination polymers. The nucleotide in 1 was not protonated whereas that in 2 was protonated. With the protonated NO3- in 2 entering the crystal lattice, it plays a role in balancing the charge. The chirality was studied using solid-state circular dichroism (CD) spectroscopy based on the analysis of crystal structures.
Collapse
Affiliation(s)
- Wen-Jing Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
112
|
Karges J, Stokes RW, Cohen SM. Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. Dalton Trans 2021; 50:2757-2765. [PMID: 33564808 PMCID: PMC7944940 DOI: 10.1039/d0dt04290k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adoption of compounds that target metalloenzymes comprises a relatively low (<5%) percentage of all FDA approved therapeutics. Metalloenzyme inhibitors typically coordinate to the active site metal ions and therefore contain ligands with charged or highly polar functional groups. While these groups may generate highly water-soluble compounds, this functionalization can also limit their pharmacological properties. To overcome this drawback, drug candidates can be formulated as prodrugs. While a variety of protecting groups have been developed, increasing efforts have been devoted towards the use of caging groups that can be removed upon exposure to light to provide spatial and temporal control over the treatment. Among these, the application of Ru(ii) polypyridine complexes is receiving increased attention based on their attractive biological and photophysical properties. Herein, a conjugate consisting of a metalloenzyme inhibitor and a Ru(ii) polypyridine complex as a photo-cage is presented. The conjugate was designed using density functional theory calculations and docking studies. The conjugate is stable in an aqueous solution, but irradiation of the complex with 450 nm light releases the inhibitor within several minutes. As a model system, the biochemical properties were investigated against the endonucleolytic active site of the influenza virus. While showing no inhibition in the dark in an in vitro assay, the conjugate generated inhibition upon light exposure at 450 nm, demonstrating the ability to liberate the metalloenzyme inhibitor. The presented inhibitor-Ru(ii) polypyridine conjugate is an example of computationally-guided drug design for light-activated drug release and may help reveal new avenues for the prodrugging of metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
113
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 523] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
114
|
DiLuzio S, Mdluli V, Connell TU, Lewis J, VanBenschoten V, Bernhard S. High-Throughput Screening and Automated Data-Driven Analysis of the Triplet Photophysical Properties of Structurally Diverse, Heteroleptic Iridium(III) Complexes. J Am Chem Soc 2021; 143:1179-1194. [DOI: 10.1021/jacs.0c12290] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Velabo Mdluli
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U. Connell
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jacqueline Lewis
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Victoria VanBenschoten
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
115
|
Liu ZN, He CX, Yin HJ, Yu SW, Xu JB, Dong JW, Liu Y, Xia SB, Cheng FX. Novel Ru(II)/Os(II)‐Exchange Homo‐ and Heterometallic Polypyridyl Complexes with Effective Energy Transfer. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zi Ning Liu
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Chi Xian He
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Hong Ju Yin
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Shi Wen Yu
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Jian Bin Xu
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Jian Wei Dong
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Yan Liu
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Shu Biao Xia
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| | - Fei Xiang Cheng
- College of Chemistry and Environment Science Qujing Normal University 655011 Qujing P. R. China
| |
Collapse
|
116
|
Karges J, Li J, Zeng L, Chao H, Gasser G. Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted One- and Two-Photon Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54433-54444. [PMID: 33238711 DOI: 10.1021/acsami.0c16119] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photodynamic therapy is a medical technique, which is gaining increasing attention to treat various types of cancer. Among the investigated classes of photosensitizers (PSs), the use of Ru(II) polypyridine complexes is gaining momentum. However, the currently investigated compounds generally show poor cancer cell selectivity. As a consequence, high drug doses are needed, which can cause side effects. To overcome this limitation, there is a need for the development of a suitable drug delivery system to increase the amount of PS delivered to the tumor. Herein, we report the encapsulation of a promising Ru(II) polypyridyl complex into polymeric nanoparticles with terminal biotin groups. Thanks to this design, the particles showed much higher selectivity for cancer cells in comparison to noncancerous cells in a 2D monolayer and 3D multicellular tumor spheroid model. As a highlight, upon intravenous injection of an identical amount of the Ru(II) polypyridine complex of the nanoparticle formulation, an improved accumulation inside an adenocarcinomic human alveolar basal epithelial tumor of a mouse up to a factor of 8.7 compared to the Ru complex itself was determined. The nanoparticles were found to have a high phototoxic effect upon one-photon (500 nm) or two-photon (800 nm) excitation with eradication of adenocarcinomic human alveolar basal epithelial tumor inside a mouse model. Overall, this work describes, to the best of our knowledge, the first in vivo study demonstrating the cancer cell selectivity of a very promising Ru(II)-based PDT photosensitizer encapsulated into polymeric nanoparticles with terminal biotin groups.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Jia Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
- Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
117
|
Karges J, Kuang S, Ong YC, Chao H, Gasser G. One‐ and Two‐Photon Phototherapeutic Effects of Ru
II
Polypyridine Complexes in the Hypoxic Centre of Large Multicellular Tumor Spheroids and Tumor‐Bearing Mice**. Chemistry 2020; 27:362-370. [DOI: 10.1002/chem.202003486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes Karges
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University 510275 Guangzhou People's Republic of China
| | - Yih Ching Ong
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University 510275 Guangzhou People's Republic of China
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
118
|
Karges J, Chao H, Gasser G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. J Biol Inorg Chem 2020; 25:1035-1050. [DOI: 10.1007/s00775-020-01829-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
|
119
|
Alexander OT, Roodt A. The crystal structure of ( E)-1-(quinolin-2-ylmethyl)-2-((1-(quinolin-2-ylmethyl)pyridin-2(1 H)-ylidene)amino)pyridin-1-ium, C 30H 25BrN 5. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C30H25BrN5, monoclinic, P21/c (no. 14), a = 15.685(4) Å, b = 9.317(2) Å, c = 18.373(4) Å, β = 114.422(7)°, V = 2444.8(10) Å3, Z = 4, R
gt(F) = 0.0377, wR
ref(F
2) = 0.0849, T = 112(2) K.
Collapse
Affiliation(s)
- Orbett T. Alexander
- Department of Chemistry , University of the Free State , Bloemfontein 9301 , South Africa
| | - Andreas Roodt
- Department of Chemistry , University of the Free State , Bloemfontein 9301 , South Africa
| |
Collapse
|
120
|
Pierce S, Jennings MP, Juliano SA, Angeles-Boza AM. Peptide–Ruthenium Conjugate as an Efficient Photosensitizer for the Inactivation of Multidrug-Resistant Bacteria. Inorg Chem 2020; 59:14866-14870. [DOI: 10.1021/acs.inorgchem.0c02491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Scott Pierce
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Murphy P. Jennings
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A. Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
121
|
Karges J. Combining Inorganic Chemistry and Biology: The Underestimated Potential of Metal Complexes in Medicine. Chembiochem 2020; 21:3044-3046. [PMID: 32896976 DOI: 10.1002/cbic.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Indexed: 11/06/2022]
Abstract
The vast majority of investigated compounds in modern medicine are based on organic molecules. Within the last decades, the field of medicinial chemistry is shifting towards the application of metal complexes. These compounds offer different mechanisms of action in comparison to organic molecules due to their unique properties, making them novel drug candidates. Herein, the successful combination of metal containing compounds and medicine is highlighted by their application for photodynamic therapy.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
122
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
123
|
Sánchez-Murcia PA, Nogueira JJ, Plasser F, González L. Orbital-free photophysical descriptors to predict directional excitations in metal-based photosensitizers. Chem Sci 2020; 11:7685-7693. [PMID: 32864087 PMCID: PMC7425079 DOI: 10.1039/d0sc01684e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/02/2022] Open
Abstract
The development of dye-sensitized solar cells, metalloenzyme photocatalysis or biological labeling heavily relies on the design of metal-based photosensitizes with directional excitations. Directionality is most often predicted by characterizing the excitations manually via canonical frontier orbitals. Although widespread, this traditional approach is, at the very least, cumbersome and subject to personal bias, as well as limited in many cases. Here, we demonstrate how two orbital-free photophysical descriptors allow an easy and straightforward quantification of the degree of directionality in electron excitations using chemical fragments. As proof of concept we scrutinize the effect of 22 chemical modifications on the archetype [Ru(bpy)3]2+ with a new descriptor coined "substituent-induced exciton localization" (SIEL), together with the concept of "excited-electron delocalization length" (EEDL n ). Applied to quantum ensembles of initially excited singlet and the relaxed triplet metal-to-ligand charge-transfer states, the SIEL descriptor allows quantifying how much and whereto the exciton is promoted, as well as anticipating the effect of single modifications, e.g. on C-4 atoms of bpy units of [Ru(bpy)3]2+. The general applicability of SIEL and EEDL n is further established by rationalizing experimental trends through quantification of the directionality of the photoexcitation. We thus demonstrate that SIEL and EEDL descriptors can be synergistically employed to design improved photosensitizers with highly directional and localized electron-transfer transitions.
Collapse
Affiliation(s)
- Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
| | - Juan J Nogueira
- Department of Chemistry and Institute for Advanced Research in Chemistry , Universidad Autónoma de Madrid , Madrid , 28049 , Spain
| | - Felix Plasser
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , UK
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
- Vienna Research Platform for Accelerating Photoreaction Discovery , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria
| |
Collapse
|
124
|
Karges J, Chao H, Gasser G. Synthesis, Characterization, and Biological Evaluation of the Polymeric Encapsulation of a Ruthenium(II) Polypyridine Complex with Pluronic F‐127/Poloxamer‐407 for Photodynamic Therapy Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Karges
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Chimie ParisTech, PSL University, CNRS 75005 Paris France
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou People's Republic of China
| | - Gilles Gasser
- Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Chimie ParisTech, PSL University, CNRS 75005 Paris France
| |
Collapse
|
125
|
Li S, Zhao J, Wang X, Xu G, Gou S, Zhao Q. Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorg Chem 2020; 59:11193-11204. [DOI: 10.1021/acs.inorgchem.0c01860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, People’s Republic of China
| |
Collapse
|
126
|
Jana B, Thomas AP, Kim S, Lee IS, Choi H, Jin S, Park SA, Min SK, Kim C, Ryu JH. Self-Assembly of Mitochondria-Targeted Photosensitizer to Increase Photostability and Photodynamic Therapeutic Efficacy in Hypoxia. Chemistry 2020; 26:10695-10701. [PMID: 32428292 DOI: 10.1002/chem.202001366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/08/2020] [Indexed: 12/19/2022]
Abstract
The development of photosensitizers for cancer photodynamic therapy has been challenging due to their low photostability and therapeutic inefficacy in hypoxic tumor microenvironments. To overcome these issues, we have developed a mitochondria-targeted photosensitizer consisting of an indocyanine moiety with triphenylphosphonium arms, which can self-assemble into spherical micelles directed to mitochondria. Self-assembly of the photosensitizer resulted in a higher photostability by preventing free rotation of the indoline ring of the indocyanine moiety. The mitochondria targeting capability of the photosensitizer allowed it to utilize intramitochondrial oxygen. We found that the mitochondria-targeted photosensitizer localized to mitochondria and induced apoptosis of cancer cells both normoxic and hypoxic conditions through generation of ROS. The micellar self-assemblies of the photosensitizer were further confirmed to selectively localize to tumor tissues in a xenograft tumor mouse model through passive targeting and showed efficient tumor growth inhibition.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Ajesh P Thomas
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangpil Kim
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Seong Lee
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Huyeon Choi
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seongeon Jin
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Soo Ah Park
- In Vivo Research Center, UNIST, Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Chaekyu Kim
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Ja-Hyoung Ryu
- Department of chemistry, Ulsan National Institute of, Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
127
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020; 59:16631-16637. [PMID: 32533618 DOI: 10.1002/anie.202006089] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Inducing necroptosis in cancer cells is an effective approach to circumvent drug-resistance. Metal-based triggers have, however, rarely been reported. Ruthenium(II) complexes containing 1,1-(pyrazin-2-yl)pyreno[4,5-e][1,2,4]triazine were developed with a series of different ancillary ligands (Ru1-7). The combination of the main ligand with bipyridyl and phenylpyridyl ligands endows Ru7 with superior nucleus-targeting properties. As a rare dual catalytic inhibitor, Ru7 effectively inhibits the endogenous activities of topoisomerase (topo) I and II and kills cancer cells by necroptosis. The cell signaling pathway from topo inhibition to necroptosis was elucidated. Furthermore, Ru7 displays significant antitumor activity against drug-resistant cancer cells in vivo. To the best of our knowledge, Ru7 is the first Ru-based necroptosis-inducing chemotherapeutic agent.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lin Wei
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jian Wan
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
128
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lin Wei
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jian Wan
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518071 P. R. China
| |
Collapse
|
129
|
Roy S, Colombo E, Vinck R, Mari C, Rubbiani R, Patra M, Gasser G. Increased Lipophilicity of Halogenated Ruthenium(II) Polypyridyl Complexes Leads to Decreased Phototoxicity in vitro when Used as Photosensitizers for Photodynamic Therapy. Chembiochem 2020; 21:2966-2973. [PMID: 32473056 DOI: 10.1002/cbic.202000289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Indexed: 01/19/2023]
Abstract
In the fight against cancer, photodynamic therapy is generating great interest thanks to its ability to selectively kill cancer cells without harming healthy tissues. In this field, ruthenium(II) polypyridyl complexes, and more specifically, complexes with dipyrido[3,2-a:2',3'-c]phenazine (dppz) as a ligand are of particular interest due to their DNA-binding and photocleaving properties. However, ruthenium(II) polypyridyl complexes can sometimes suffer from low lipophilicity, which hampers cellular internalisation through passive diffusion. In this study, four new [Ru(dppz-X2 )3 ]2+ complexes (X=H, F, Cl, Br, I) were synthesized and their lipophilicity (logP), cytotoxicity and phototoxicity on cancerous and noncancerous cell lines were assessed. This study shows that, counterintuitively, the phototoxicity of these complexes decreases as their lipophilicity increases; this could be due solely to the atomic radius of the halogen substituents.
Collapse
Affiliation(s)
- Saonli Roy
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Elisa Colombo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Cristina Mari
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Malay Patra
- Department of Chemical Sciences, Tata Institute of fundamental Research, Laboratory of Medicinal Chemistry and Cell Biology, Homi Bhabha Road, Navy nagar, 400005, Mumbai, India
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
130
|
Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nat Commun 2020; 11:3262. [PMID: 32591538 PMCID: PMC7320011 DOI: 10.1038/s41467-020-16993-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
The use of photodynamic therapy (PDT) against cancer has received increasing attention over recent years. However, the application of the currently approved photosensitizers (PSs) is limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E′)-4,4′-bisstyryl-2,2′-bipyridine ligands show impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While nontoxic in the dark, these compounds are phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and are able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2-Photon excitation. Photosensitizers that are stable in biological conditions with absorption in the biological spectral window are needed for photodynamic therapy. Here, the authors report on the development of a Ruthenium complex for 1 and 2-photon therapy to address these issues and demonstrate application in vivo.
Collapse
|
131
|
Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J. Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chem Commun (Camb) 2020; 56:10301-10304. [DOI: 10.1039/d0cc02417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii) complexes exhibit phototherapeutic indexes higher than 750 in cancer HeLa cells with low nanomolar IC50 values under low doses of non-harmful green light and are active in normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|