101
|
Surdziel E, Clay I, Nigsch F, Thiemeyer A, Allard C, Hoffman G, Reece-Hoyes JS, Phadke T, Gambert R, Keller CG, Ludwig MG, Baumgarten B, Frederiksen M, Schübeler D, Seuwen K, Bouwmeester T, Fodor BD. Multidimensional pooled shRNA screens in human THP-1 cells identify candidate modulators of macrophage polarization. PLoS One 2017; 12:e0183679. [PMID: 28837623 PMCID: PMC5570424 DOI: 10.1371/journal.pone.0183679] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023] Open
Abstract
Macrophages are key cell types of the innate immune system regulating host defense, inflammation, tissue homeostasis and cancer. Within this functional spectrum diverse and often opposing phenotypes are displayed which are dictated by environmental clues and depend on highly plastic transcriptional programs. Among these the 'classical' (M1) and 'alternative' (M2) macrophage polarization phenotypes are the best characterized. Understanding macrophage polarization in humans may reveal novel therapeutic intervention possibilities for chronic inflammation, wound healing and cancer. Systematic loss of function screening in human primary macrophages is limited due to lack of robust gene delivery methods and limited sample availability. To overcome these hurdles we developed cell-autonomous assays using the THP-1 cell line allowing genetic screens for human macrophage phenotypes. We screened 648 chromatin and signaling regulators with a pooled shRNA library for M1 and M2 polarization modulators. Validation experiments confirmed the primary screening results and identified OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) as a novel mediator of M2 polarization in human macrophages. Our approach offers a possible avenue to utilize comprehensive genetic tools to identify novel candidate genes regulating macrophage polarization in humans.
Collapse
Affiliation(s)
- Ewa Surdziel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ieuan Clay
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Anke Thiemeyer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cyril Allard
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gregory Hoffman
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - John S. Reece-Hoyes
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - Tanushree Phadke
- Novartis Institutes for Biomedical Research, Cambridge, United States of America
| | - Romain Gambert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | - Dirk Schübeler
- Friedrich Miescher Institute for BioMedical Research, Basel, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Barna D. Fodor
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
102
|
Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci 2017; 36:7253-67. [PMID: 27383599 DOI: 10.1523/jneurosci.0319-16.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/02/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Chronic stress-induced aberrant gene expression in the brain and subsequent dysfunctional neuronal plasticity have been implicated in the etiology and pathophysiology of mood disorders. In this study, we examined whether altered expression of small, regulatory, noncoding microRNAs (miRNAs) contributes to the depression-like behaviors and aberrant neuronal plasticity associated with chronic stress. Mice exposed to chronic ultra-mild stress (CUMS) exhibited increased depression-like behaviors and reduced hippocampal expression of the brain-enriched miRNA-124 (miR-124). Aberrant behaviors and dysregulated miR-124 expression were blocked by chronic treatment with an antidepressant drug. The depression-like behaviors are likely not conferred directly by miR-124 downregulation because neither viral-mediated hippocampal overexpression nor intrahippocampal infusion of an miR-124 inhibitor affected depression-like behaviors in nonstressed mice. However, viral-mediated miR-124 overexpression in hippocampal neurons conferred behavioral resilience to CUMS, whereas inhibition of miR-124 led to greater behavioral susceptibility to a milder stress paradigm. Moreover, we identified histone deacetylase 4 (HDAC4), HDAC5, and glycogen synthase kinase 3β (GSK3β) as targets for miR-124 and found that intrahippocampal infusion of a selective HDAC4/5 inhibitor or GSK3 inhibitor had antidepressant-like actions on behavior. We propose that miR-124-mediated posttranscriptional controls of HDAC4/5 and GSK3β expressions in the hippocampus have pivotal roles in susceptibility/resilience to chronic stress. SIGNIFICANCE STATEMENT Depressive disorders are a major public health concern worldwide. Although a clear understanding of the etiology of depression is still lacking, chronic stress-elicited aberrant neuronal plasticity has been implicated in the pathophysiology of depression. We show that the hippocampal expression of microRNA-124 (miR-124), an endogenous small, noncoding RNA that represses gene expression posttranscriptionally, controls resilience/susceptibility to chronic stress-induced depression-like behaviors. These effects on depression-like behaviors may be mediated through regulation of the mRNA or protein expression levels of histone deacetylases HDAC4/5 and glycogen synthase kinase 3β, all highly conserved miR-124 targets. Moreover, miR-124 contributes to stress-induced dendritic hypotrophy and reduced spine density of dentate gyrus granule neurons. Modulation of hippocampal miR-124 pathways may have potential antidepressant effects.
Collapse
|
103
|
Klieser E, Urbas R, Stättner S, Primavesi F, Jäger T, Dinnewitzer A, Mayr C, Kiesslich T, Holzmann K, Di Fazio P, Neureiter D, Swierczynski S. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum Pathol 2017; 65:41-52. [PMID: 28235630 DOI: 10.1016/j.humpath.2017.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Epigenetic factors contribute to carcinogenesis, tumor promotion, and chemoresistance. Histone deacetylases (HDACs) are epigenetic regulators that primarily cause chromatin compaction, leading to inaccessibility of promoter regions and eventually gene silencing. Many cancer entities feature overexpression of HDACs. Currently, the role of HDACs in pancreatic neuroendocrine tumors (pNETs) is unclear. We analyzed the expression patterns of all HDAC classes (classes I, IIA, IIB, III, and IV) in 5 human tissue microarrays representing 57 pNETs resected between 1997 and 2013 and corresponding control tissue. All pNET cases were characterized clinically and pathologically according to recent staging guidelines. The investigated cases included 32 (56.1%) female and 25 (43.9%) male pNET patients (total n=57, 47.4% immunohistochemically endocrine positive). Immunohistochemical profiling revealed a significant up-regulation of all HDAC classes in pNET versus control, with different levels of intensity and extensity ranging from 1.5- to >7-fold up-regulation. In addition, expression of several HDACs (HDAC1, HDAC2, HDAC5, HDAC11, and Sirt1) was significantly increased in G3 tumors. Correlation analysis showed a significant association between the protein expression of HDAC classes I, III, and IV and rate of the pHH3/Ki-67-associated mitotic and proliferation index. Furthermore, especially HDAC5 proved as a negative predictor of disease-free and overall survival in pNET patients. Overall, we demonstrate that specific members of all 4 HDAC classes are heterogeneously expressed in pNET. Moreover, expression of HDACs was associated with tumor grading, proliferation markers, and patient survival, therefore representing interesting new targets in pNET treatment.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Romana Urbas
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Stefan Stättner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Adam Dinnewitzer
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Klaus Holzmann
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University of Marburg, 35043 Marburg, Germany.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Stefan Swierczynski
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| |
Collapse
|
104
|
Stenzel K, Chakrabarti A, Melesina J, Hansen FK, Lancelot J, Herkenhöhner S, Lungerich B, Marek M, Romier C, Pierce RJ, Sippl W, Jung M, Kurz T. Isophthalic Acid-Based HDAC Inhibitors as Potent Inhibitors of HDAC8 fromSchistosoma mansoni. Arch Pharm (Weinheim) 2017. [DOI: 10.1002/ardp.201700096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Katharina Stenzel
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Jelena Melesina
- Institute of Pharmacy; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Finn K. Hansen
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
- Pharmaceutical/Medicinal Chemistry; Institute of Pharmacy; Leipzig University; Leipzig Germany
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019 UMR 8204CIIL - Centre d'Infection et d'Immunité de Lille; Lille France
| | - Simon Herkenhöhner
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| | - Martin Marek
- IGBMC; Université de Strasbourg; Illkirch France
| | | | - Raymond. J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille; U1019 UMR 8204CIIL - Centre d'Infection et d'Immunité de Lille; Lille France
| | - Wolfgang Sippl
- Institute of Pharmacy; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry; Heinrich-Heine-University; Düsseldorf Germany
| |
Collapse
|
105
|
Stenzel K, Hamacher A, Hansen FK, Gertzen CGW, Senger J, Marquardt V, Marek L, Marek M, Romier C, Remke M, Jung M, Gohlke H, Kassack MU, Kurz T. Alkoxyurea-Based Histone Deacetylase Inhibitors Increase Cisplatin Potency in Chemoresistant Cancer Cell Lines. J Med Chem 2017; 60:5334-5348. [DOI: 10.1021/acs.jmedchem.6b01538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Katharina Stenzel
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Finn K. Hansen
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Christoph G. W. Gertzen
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johanna Senger
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Viktoria Marquardt
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department
of Neuropathology, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Division of Pediatric
Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer
Research Center (DKFZ), Moorenstraße
5, 40225 Düsseldorf, Germany
| | - Linda Marek
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Marek
- Département
de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département
de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Marc Remke
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department
of Neuropathology, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Division of Pediatric
Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer
Research Center (DKFZ), Moorenstraße
5, 40225 Düsseldorf, Germany
| | - Manfred Jung
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Holger Gohlke
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institut
für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
106
|
Krieger V, Hamacher A, Gertzen CGW, Senger J, Zwinderman MRH, Marek M, Romier C, Dekker FJ, Kurz T, Jung M, Gohlke H, Kassack MU, Hansen FK. Design, Multicomponent Synthesis, and Anticancer Activity of a Focused Histone Deacetylase (HDAC) Inhibitor Library with Peptoid-Based Cap Groups. J Med Chem 2017; 60:5493-5506. [PMID: 28574690 DOI: 10.1021/acs.jmedchem.7b00197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work, we report the multicomponent synthesis of a focused histone deacetylase (HDAC) inhibitor library with peptoid-based cap groups and different zinc-binding groups. All synthesized compounds were tested in a cellular HDAC inhibition assay and an MTT assay for cytotoxicity. On the basis of their noteworthy activity in the cellular HDAC assays, four compounds were further screened for their inhibitory activity against recombinant HDAC1-3, HDAC6, and HDAC8. All four compounds showed potent inhibition of HDAC1-3 as well as significant inhibition of HDAC6 with IC50 values in the submicromolar concentration range. Compound 4j, the most potent HDAC inhibitor in the cellular HDAC assay, revealed remarkable chemosensitizing properties and enhanced the cisplatin sensitivity of the cisplatin-resistant head-neck cancer cell line Cal27CisR by almost 7-fold. Furthermore, 4j almost completely reversed the cisplatin resistance in Cal27CisR. This effect is related to a synergistic induction of apoptosis as seen in the combination of 4j with cisplatin.
Collapse
Affiliation(s)
- Viktoria Krieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johanna Senger
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Martijn R H Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9712 Groningen, The Netherlands
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9712 Groningen, The Netherlands
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany.,Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University , Brüderstraße 34, 04103 Leipzig, Germany
| |
Collapse
|
107
|
Alves Avelar LA, Held J, Engel JA, Sureechatchaiyan P, Hansen FK, Hamacher A, Kassack MU, Mordmüller B, Andrews KT, Kurz T. Design and Synthesis of Novel Anti-Plasmodial Histone Deacetylase Inhibitors Containing an Alkoxyamide Connecting Unit. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201600347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Leandro A. Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Jana Held
- Institut für Tropenmedizin; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Jessica A. Engel
- Griffith Institute for Drug Discovery; Griffith University; Nathan Queensland Australia
| | - Parichat Sureechatchaiyan
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Finn K. Hansen
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy; Leipzig University; Leipzig Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| | - Benjamin Mordmüller
- Institut für Tropenmedizin; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery; Griffith University; Nathan Queensland Australia
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie; Heinrich-Heine-Universität Düsseldorf; Düsseldorf Germany
| |
Collapse
|
108
|
Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine-based zinc binding groups. Bioorg Med Chem 2017; 25:2981-2994. [PMID: 28511906 DOI: 10.1016/j.bmc.2017.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/23/2022]
Abstract
As a hot topic of epigenetic studies, histone deacetylases (HDACs) are related to lots of diseases, especially cancer. Further researches indicated that different HDAC isoforms played various roles in a wide range of tumor types. Herein a novel series of HDAC inhibitors with isatin-based caps and o-phenylenediamine-based zinc binding groups have been designed and synthesized through scaffold hopping strategy. Among these compounds, the most potent compound 9n exhibited similar if not better HDAC inhibition and antiproliferative activities against multiple tumor cell lines compared with the positive control entinostat (MS-275). Additionally, compared with MS-275 (IC50 values for HDAC1, 2 and 3 were 0.163, 0.396 and 0.605µM, respectively), compound 9n with IC50 values of 0.032, 0.256 and 0.311µM for HDAC1, 2 and 3 respectively, showed a moderate HDAC1 selectivity.
Collapse
|
109
|
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 2017; 132:42-62. [PMID: 28340413 DOI: 10.1016/j.ejmech.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 01/26/2023]
Abstract
Histone deacetylases (HDACs) are attractive therapeutic targets for the treatment of cancer and other diseases. It has four classes (I-IV), among them especially class I isozyme are involved in promoting tumor cells proliferation, angiogenesis, differentiation, invasion and metastasis and also viable targets for cancer therapeutics. A novel series of coumarin-based benzamides was designed and synthesized as HDAC inhibitors. The cytotoxic activity of the synthesized compounds (8a-u) was evaluated against six human cancer cell lines including HCT116, A2780, MCF7, PC3, HL60 and A549 and a single normal cell line (Huvec). We evaluated their inhibitory activities against pan HDAC and HDAC1 isoform. Four compounds (8f, 8q, 8r and 8u) showed significant cytotoxicity with IC50 in the range of 0.53-57.59 μM on cancer cells and potent pan-HDAC inhibitory activity (consists of HDAC isoenzymes) (IC50 = 0.80-14.81 μM) and HDAC1 inhibitory activity (IC50 = 0.47-0.87 μM and also, had no effect on Huvec (human normal cell line) viability (IC50 > 100 μM). Among them, 8u displayed a higher potency for HDAC1 inhibition with IC50 value of 0.47 ± 0.02 μM near equal to the reference drug Entinostat (IC50 = 0.41 ± 0.06 μM). Molecular docking studies and Molecular dynamics simulation of compound 8a displayed possible mode of interaction between this compound and HDAC1enzyme.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Kalani
- School of Cell and Molecular Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Molecular Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
110
|
Stoney PN, Rodrigues D, Helfer G, Khatib T, Ashton A, Hay EA, Starr R, Kociszewska D, Morgan P, McCaffery P. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain Behav Immun 2017; 61:340-352. [PMID: 27993690 PMCID: PMC5325119 DOI: 10.1016/j.bbi.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.
Collapse
Affiliation(s)
- Patrick N. Stoney
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Diana Rodrigues
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK,Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elizabeth A. Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Robert Starr
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Dagmara Kociszewska
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
111
|
Ben-Shalom IY, Pfeiffer-Marek S, Baringhaus KH, Gohlke H. Efficient Approximation of Ligand Rotational and Translational Entropy Changes upon Binding for Use in MM-PBSA Calculations. J Chem Inf Model 2017; 57:170-189. [DOI: 10.1021/acs.jcim.6b00373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ido Y. Ben-Shalom
- Institute
for Pharmaceutical and Medicinal Chemistry, Department of Mathematics
and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefania Pfeiffer-Marek
- LGCR/Pharmaceutical
Sciences Operations, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karl-Heinz Baringhaus
- R&D Resources/Site Direction, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Department of Mathematics
and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
112
|
Oya Y, Mondal A, Rawangkan A, Umsumarng S, Iida K, Watanabe T, Kanno M, Suzuki K, Li Z, Kagechika H, Shudo K, Fujiki H, Suganuma M. Down-regulation of histone deacetylase 4, -5 and -6 as a mechanism of synergistic enhancement of apoptosis in human lung cancer cells treated with the combination of a synthetic retinoid, Am80 and green tea catechin. J Nutr Biochem 2017; 42:7-16. [PMID: 28103535 DOI: 10.1016/j.jnutbio.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 12/15/2016] [Accepted: 12/31/2016] [Indexed: 01/26/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG), a green tea catechin, acts as a synergist with various anticancer drugs, including retinoids. Am80 is a synthetic retinoid with a different structure from all-trans-retinoic acid: Am80 is now clinically utilized as a new drug for relapsed and intractable acute promyelocytic leukemia patients. Our experiments showed that the combination of EGCG and Am80 synergistically induced both apoptosis in human lung cancer cell line PC-9 and up-regulated expressions of growth arrest and DNA damage-inducible gene 153 (GADD153), death receptor 5, and p21waf1 genes in the cells. To understand the mechanisms of synergistic anticancer activity of the combination, we gave special attention to the lysine acetylation of proteins. Proteomic analysis using nanoLC-ESI-MS/MS revealed that PC-9 cells treated with the combination contained 331 acetylated proteins, while nontreated cells contained 553 acetylated proteins, and 59 acetylated proteins were found in both groups. Among them, the combination increased acetylated-p53 and acetylated-α-tubulin through reduction of histone deacetylase (HDAC) activity in cytosol fraction, although the levels of acetylation in histones H3 or H4 did not change, and the combination reduced protein levels of HDAC4, -5 and -6 by 20% to 80%. Moreover, we found that a specific inhibitor of HDAC4 and -5 strongly induced p21waf1 gene expression, and that of HDAC6 induced both GADD153 and p21waf1 gene expression, which resulted in apoptosis. All results demonstrate that EGCG in combination with Am80 changes levels of acetylation in nonhistone proteins via down-regulation of HDAC4, -5 and -6 and stimulates apoptotic induction.
Collapse
Affiliation(s)
- Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Anupom Mondal
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Sonthaya Umsumarng
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Tatsuro Watanabe
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan.
| | - Miki Kanno
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Kaori Suzuki
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Zhenghao Li
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan.
| | - Koichi Shudo
- Japan Pharmaceutical Information Center, Shibuya, Tokyo 150-0002, Japan.
| | - Hirota Fujiki
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan.
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan; Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
113
|
Bricambert J, Favre D, Brajkovic S, Bonnefond A, Boutry R, Salvi R, Plaisance V, Chikri M, Chinetti-Gbaguidi G, Staels B, Giusti V, Caiazzo R, Pattou F, Waeber G, Froguel P, Abderrahmani A. Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Mol Metab 2016; 5:1200-1207. [PMID: 27900262 PMCID: PMC5123204 DOI: 10.1016/j.molmet.2016.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023] Open
Abstract
Objective The goal of the study was to investigate the role of histone deacetylases (HDACs) in adipocyte function associated with obesity and hypoxia. Methods Total proteins and RNA were prepared from human visceral adipose tissues (VAT) of human obese and normal weight subjects and from white adipose tissue (WAT) of C57Bl6-Rj mice fed a normal or high fat diet (HFD) for 16 weeks. HDAC activity was measured by colorimetric assay whereas the gene and protein expression were monitored by real-time PCR and by western blotting, respectively. RNA interference (RNAi) was used to silence the expression of genes in 3T3-L1 adipocytes. Results Total HDAC activity was decreased in VAT and WAT from obese individuals and from mice fed a HFD, respectively. The HDAC activity reduction was associated with decreased HDAC5/Hdac5 and HDAC6/Hdac6 expression in human and mice adipocyte fraction. Similarly, hypoxia hampered total Hdac activity and reduced the expression of Hdac5 and Hdac6 in 3T3-L1 adipocytes. The decrease of both Hdac5 and Hdac6 by hypoxia was associated with altered expression of adipokines and of the inducible cAMP early repressor (Icer), a key repressor that is defective in human and mice obesity. Silencing of Icer in adipocytes reproduced the changes in adipokine levels under hypoxia and obesity, suggesting a causative effect. Finally, modeling the defect of the two Hdacs in adipocytes by RNAi or selective inhibitors mimicked the effects of hypoxia on the expression of Icer, leading to impairment of insulin-induced glucose uptake. Conclusion Hdac5 and Hdac6 expression are required for the adequate expression of Icer and adipocyte function. Altered adipose expression of the two Hdacs in obesity by hypoxia may contribute to the development of metabolic abnormalities. Impaired adipose HDAC activity in human obese subjects and obese mice. HDAC5 and HDAC6 expression is reduced in adipocytes of obese mice and human. The expression of HDAC5, HDAC6 and ICER is altered by hypoxia in 3T3-L1 adipocytes. ICER regulates hypoxia-sensitive adipokines expression. Hdac5 and Hdac6 control the expression of ICER and glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Julien Bricambert
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Dimitri Favre
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Saška Brajkovic
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Amélie Bonnefond
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Raphael Boutry
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Roberto Salvi
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France
| | - Mohamed Chikri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Univ. Sidi Mohammed Ben Abdellah, FMPF, Fes, Morocco
| | - Giulia Chinetti-Gbaguidi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France; Inserm, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice-Sophia Antipolis, Nice and Clinical Chemistry Laboratory, University Hospital, Nice, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Vittorio Giusti
- Metabolic Center, Fribourg Hospital HFR, Fribourg, Switzerland
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000 Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000 Lille, France
| | - Gérard Waeber
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Froguel
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Department of Genomic of Common Disease, Imperial College London, UK
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France; Department of Genomic of Common Disease, Imperial College London, UK.
| |
Collapse
|
114
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 773] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
115
|
Manal M, Chandrasekar M, Gomathi Priya J, Nanjan M. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem 2016; 67:18-42. [DOI: 10.1016/j.bioorg.2016.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
|
116
|
Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G, Rimondini R, Kurz T, Bartesaghi R, Ciani E. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 2016; 25:3887-3907. [PMID: 27466189 DOI: 10.1093/hmg/ddw231] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Rocchina Viggiano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Emanuele Valli
- Department of Pharmacy and Biotechnology, and CIRI Health Sciences and Technologies
| | - Paulina Jedynak
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Düsseldorf, Germany
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, and CIRI Health Sciences and Technologies
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Düsseldorf, Germany
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
117
|
Choi SY, Kee HJ, Kurz T, Hansen FK, Ryu Y, Kim GR, Lin MQ, Jin L, Piao ZH, Jeong MH. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med 2016; 20:2289-2298. [PMID: 27420561 PMCID: PMC5134402 DOI: 10.1111/jcmm.12919] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/01/2016] [Indexed: 11/29/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.
Collapse
Affiliation(s)
- Sin Y Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Hae J Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Finn K Hansen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Gwi R Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Ming Q Lin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Jilin Hospital Affiliated with Jilin University, Jilin, China
| | - Zhe H Piao
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,The Second Hospital of Jilin University, Changchun, China
| | - Myung H Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
118
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
119
|
Yun T, Yu K, Yang S, Cui Y, Wang Z, Ren H, Chen S, Li L, Liu X, Fang M, Jiang X. Acetylation of p53 Protein at Lysine 120 Up-regulates Apaf-1 Protein and Sensitizes the Mitochondrial Apoptotic Pathway. J Biol Chem 2016; 291:7386-95. [PMID: 26851285 DOI: 10.1074/jbc.m115.706341] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor controls cell growth, metabolism, and death by regulating the transcription of various target genes. The target-specific transcriptional activity of p53 is highly regulated. Here we demonstrate that acetylation of p53 at Lys-120 up-regulates its transcriptional activity toward Apaf-1, a core component in the mitochondrial apoptotic pathway, and thus sensitizes caspase activation and apoptosis. We found that histone deacetylase (HDAC) inhibitors, including butyrate, augment Lys-120 acetylation of p53 and thus Apaf-1 expression by inhibiting HDAC1. In p53-null cells, transfection of wild-type but not K120R mutant p53 can restore the p53-dependent sensitivity to butyrate. Strikingly, transfection of acetylation-mimicking K120Q mutant p53 is sufficient to up-regulates Apaf-1 in a manner independent of butyrate treatment. Therefore, HDAC inhibitors can induce p53 acetylation at lysine 120, which in turn enhances mitochondrion-mediated apoptosis through transcriptional up-regulation of Apaf-1.
Collapse
Affiliation(s)
- Tao Yun
- From the Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Division of Cell Biology, School of Life Sciences, the Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, and
| | - ShuangShuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Yiheyuan Avenue 5, Haidian District, Beijing 100875, China
| | - Yifan Cui
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - Zixi Wang
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - Huiyu Ren
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences
| | - She Chen
- the National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, and
| | - Lin Li
- the National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China, and
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, and
| | - Min Fang
- From the Peking-Tsinghua Center for Life Sciences, Division of Cell Biology, School of Life Sciences,
| | - Xuejun Jiang
- the Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
120
|
Cao X, Liu DH, Zhou Y, Yan XM, Yuan LQ, Pan J, Fu MC, Zhang T, Wang J. Histone deacetylase 5 promotes Wilms' tumor cell proliferation through the upregulation of c-Met. Mol Med Rep 2016; 13:2745-50. [PMID: 26847592 DOI: 10.3892/mmr.2016.4828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
The histone deacetylase (HDAC) family is comprised of enzymes, which are involved in modulating the majority of critical cellular processes, including transcriptional regulation, apoptosis, proliferation and cell cycle progression. However, the biological function of HDAC5 in Wilms' tumor remains to be fully elucidated. The present study aimed to investigate the expression and function of HDAC5 in Wilm's tumor. It was demonstrated that the mRNA and protein levels of HDAC5 were upregulated in human Wilms' tumor tissues. Overexpression of HDAC5 in G401 cells was observed to significantly promote cellular proliferation, as demonstrated by the results of an MTT assay and bromodeoxyuridine incorporation assay. By contrast, HDAC5 knockdown using small interfering RNA suppressed the proliferation of the G401 cells. At the molecular level, the present study demonstrated that HDAC5 promoted the expression of c‑Met, which has been previously identified as an oncogene. In addition, downregulation of c‑Met inhibited the proliferative effects of HDAC5 in human Wilms' tumor cells. Taken together, these results suggested that HDAC5 promotes cellular proliferation through the upregulation of c‑Met, and may provide a novel therapeutic target for the treatment of patients with Wilms' tumor.
Collapse
Affiliation(s)
- Xu Cao
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - De-Hong Liu
- Department of Pediatric Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yun Zhou
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiang-Ming Yan
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Qun Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jian Pan
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Ming-Cui Fu
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Ting Zhang
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Wang
- Department of Surgery, Childrens' Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
121
|
Xiao H, Jiao J, Wang L, O'Brien S, Newick K, Wang LCS, Falkensammer E, Liu Y, Han R, Kapoor V, Hansen FK, Kurz T, Hancock WW, Beier UH. HDAC5 controls the functions of Foxp3(+) T-regulatory and CD8(+) T cells. Int J Cancer 2016; 138:2477-86. [PMID: 26704363 DOI: 10.1002/ijc.29979] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Histone/protein deacetylases (HDACs) are frequently upregulated in human malignancies and have therefore become therapeutic targets in cancer therapy. However, inhibiting certain HDAC isoforms can have protolerogenic effects on the immune system, which could make it easier for tumor cells to evade the host immune system. Therefore, a better understanding of how each HDAC isoform affects immune biology is needed to develop targeted cancer therapy. Here, we studied the immune phenotype of HDAC5(-/-) mice on a C57BL/6 background. While HDAC5(-/-) mice replicate at expected Mendelian ratios and do not develop overt autoimmune disease, their T-regulatory (Treg) cells show reduced suppressive function in vitro and in vivo. Likewise, CD4(+) T-cells lacking HDAC5 convert poorly to Tregs under appropriately polarizing conditions. To test if this attenuated Treg formation and suppressive function translated into improved anticancer immunity, we inoculated HDAC5(-/-) mice and littermate controls with a lung adenocarcinoma cell line. Cumulatively, lack of HDAC5 did not lead to better anticancer immunity. We found that CD8(+) T cells missing HDAC5 had a reduced ability to produce the cytokine, IFN-γ, in vitro and in vivo, which may offset the benefit of weakened Treg function and formation. Taken together, targeting HDAC5 weakens suppressive function and de-novo induction of Tregs, but also reduces the ability of CD8(+) T cells to produce IFN-γ.
Collapse
Affiliation(s)
- Haiyan Xiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jing Jiao
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Liqing Wang
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Shaun O'Brien
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kheng Newick
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang-Chuan S Wang
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Eva Falkensammer
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Yujie Liu
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Rongxiang Han
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Veena Kapoor
- Pulmonary, Allergy & Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Wayne W Hancock
- Division of Transplant Immunology and Biesecker Center for Pediatric Liver Disease, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
122
|
Diedrich D, Hamacher A, Gertzen CGW, Alves Avelar LA, Reiss GJ, Kurz T, Gohlke H, Kassack MU, Hansen FK. Rational design and diversity-oriented synthesis of peptoid-based selective HDAC6 inhibitors. Chem Commun (Camb) 2016; 52:3219-22. [DOI: 10.1039/c5cc10301k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A mini library of selective HDAC6 inhibitors with peptoid-based cap groups was synthesized using an efficient multicomponent approach.
Collapse
Affiliation(s)
- D. Diedrich
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - A. Hamacher
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - C. G. W. Gertzen
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - L. A. Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - G. J. Reiss
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - T. Kurz
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - H. Gohlke
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - M. U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - F. K. Hansen
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
123
|
Meyer H, Brenner M, Höfert SP, Knedel TO, Kunz PC, Schmidt AM, Hamacher A, Kassack MU, Janiak C. Synthesis of oxime-based CO-releasing molecules, CORMs and their immobilization on maghemite nanoparticles for magnetic-field induced CO release. Dalton Trans 2016; 45:7605-15. [DOI: 10.1039/c5dt04888e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Labile and intensely colored CORMs are stabilized in alginate–dextran composites.
Collapse
Affiliation(s)
- Hajo Meyer
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Markus Brenner
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Simon-P. Höfert
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Tim-O. Knedel
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Peter C. Kunz
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | | | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| |
Collapse
|
124
|
Meyer H, Winkler F, Kunz P, Schmidt AM, Hamacher A, Kassack MU, Janiak C. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating. Inorg Chem 2015; 54:11236-46. [DOI: 10.1021/acs.inorgchem.5b01675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hajo Meyer
- Institut für Anorganische Chemie
und Strukturchemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Felix Winkler
- Institut für Anorganische Chemie
und Strukturchemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Peter Kunz
- Institut für Anorganische Chemie
und Strukturchemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Annette M. Schmidt
- Institut für Physikalische Chemie, Universität zu Köln, Luxemburger Str. 116, 50939 Köln, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie
und Strukturchemie, Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
125
|
Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N. AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 2015; 14:2520-36. [PMID: 26061431 PMCID: PMC4614078 DOI: 10.1080/15384101.2015.1055426] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) transcriptionally promotes production of adenosine triphosphate (ATP) whereas AMPK senses and regulates cellular energy homeostasis. A histone deacetylase (HDAC) activity has been proven to be critical for HIF-1 activation but the underlying mechanism and its role in energy homesostasis remain unclear. Here, we demonstrate that HIF-1 activation depends on a cytosolic, enzymatically active HDAC5. HDAC5 knockdown impairs hypoxia-induced HIF-1α accumulation and HIF-1 transactivation, whereas HDAC5 overexpression enhances HIF-1α stabilization and nuclear translocation. Mechanistically, we show that Hsp70 is a cytosolic substrate of HDAC5; and hyperacetylation renders Hsp70 higher affinity for HIF-1α binding, which correlates with accelerated degradation and attenuated nuclear accumulation of HIF-1α. Physiologically, AMPK-triggered cytosolic shuttling of HDAC5 is critical; inhibition of either AMPK or HDAC5 impairs HIF-1α nuclear accumulation under hypoxia or low glucose conditions. Finally, we show specifically suppressing HDAC5 is sufficient to inhibit tumor cell proliferation under hypoxic conditions. Our data delineate a novel link between AMPK, the energy sensor, and HIF-1, the major driver of ATP production, indicating that specifically inhibiting HDAC5 may selectively suppress the survival and proliferation of hypoxic tumor cells.
Collapse
Affiliation(s)
- Shuyang Chen
- a Department of Biology and Graduate Program of Biological Sciences; CoAS; Department of Pathology & Laboratory Medicine; DUCOM; Drexel University ; Philadelphia , PA USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Dhole S, Selvaraju M, Maiti B, Chanda K, Sun CM. Microwave Controlled Reductive Cyclization: A Selective Synthesis of Novel Benzimidazole-alkyloxypyrrolo[1,2-a]quinoxalinones. ACS COMBINATORIAL SCIENCE 2015; 17:310-6. [PMID: 25897944 DOI: 10.1021/acscombsci.5b00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient cascade synthesis of novel benzimidazole linked alkyloxypyrrolo[1,2-a]quinoxalinones was explored on soluble polymer support under microwave irradiation. Two exclusive protocols have been developed for the partial and full reductive cyclization by controlling the microwave energy. Commencing from the same substrate, ortho nitro pyrrol carboxylates, N-hydroxy pyrroloquinoxalinones were obtained by partial reductive cyclization (60 °C, 7 min), and the synthesis of pyrroloquinoxalinones was accomplished by full reductive cyclization (85 °C, 12 min). This method represents the first synthesis of N-hydroxy pyrroloquinoxalinones using Pd/C and ammonium formate as reducing agents. Further employing a variety of alkyl bromides, the obtained pyrroloquinoxalinones were transformed to their corresponding O- and N-alkylated analogues to deliver the diversified, novel molecular entities.
Collapse
Affiliation(s)
- Sandip Dhole
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Manikandan Selvaraju
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Barnali Maiti
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Kaushik Chanda
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Chiao Tung University, 1001 Ta-Hseuh
Road, Hsinchu 300-10, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
127
|
Fischer C, Leithner K, Wohlkoenig C, Quehenberger F, Bertsch A, Olschewski A, Olschewski H, Hrzenjak A. Panobinostat reduces hypoxia-induced cisplatin resistance of non-small cell lung carcinoma cells via HIF-1α destabilization. Mol Cancer 2015; 14:4. [PMID: 25608569 PMCID: PMC4320451 DOI: 10.1186/1476-4598-14-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/16/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancer types and the leading cause of cancer death worldwide. Cisplatin is a widely used chemotherapeutic for non-small cell lung carcinoma (NSCLC), however, its positive effects are diminished under hypoxia. We wanted to determine if co-treatment with cisplatin and histone deacetalyse (HDAC) inhibitor panobinostat can reduce hypoxia-induced cisplatin resistance in NSCLC cells, and to elucidate mechanism involved. METHODS Expression status of different HDACS was determined in two cell lines and in tumor tissue from 20 patients. Cells were treated with cisplatin, panobinostat, or with combination of both under normoxic and hypoxic (1% O(2)) conditions. Cell cycle, viability, acetylation of histones, and activation of apoptosis were determined. HIF-1α stability and its interaction with HDAC4 were analyzed. RESULTS Most class I and II HDACs were expressed in NSCLC cells and tumor samples. Co-treatment of tumor cells with cisplatin and panobinostat decreased cell viability and increased apoptosis more efficiently than in primary, non-malignant bronchial epithelial cells. Co-treatment induced apoptosis by causing chromatin fragmentation, activation of caspases-3 and 7 and PARP cleavage. Toxic effects were more pronounced under hypoxic conditions. Co-treatment resulted in destabilization and degradation of HIF-1α and HDAC4, a protein responsible for acetylation and de/stabilization of HIF-1α. Direct interaction between HDAC4 and HIF-1α proteins in H23 cells was detected. CONCLUSIONS Here we show that hypoxia-induced cisplatin resistance can be overcome by combining cisplatin with panobinostat, a potent HDAC inhibitor. These findings may contribute to the development of a new therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| |
Collapse
|
128
|
Di Giorgio E, Gagliostro E, Brancolini C. Selective class IIa HDAC inhibitors: myth or reality. Cell Mol Life Sci 2015; 72:73-86. [PMID: 25189628 PMCID: PMC11113455 DOI: 10.1007/s00018-014-1727-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Enrico Gagliostro
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| |
Collapse
|
129
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
130
|
Design, synthesis and evaluation of novel HDAC inhibitors as potential antitumor agents. Bioorg Med Chem Lett 2014; 24:4768-4772. [DOI: 10.1016/j.bmcl.2014.06.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/21/2014] [Accepted: 06/27/2014] [Indexed: 12/19/2022]
|
131
|
Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens. Adv Bioinformatics 2014; 2014:104823. [PMID: 25214833 PMCID: PMC4158260 DOI: 10.1155/2014/104823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/26/2023] Open
Abstract
Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations.
Collapse
|
132
|
Hansen FK, Sumanadasa SDM, Stenzel K, Duffy S, Meister S, Marek L, Schmetter R, Kuna K, Hamacher A, Mordmüller B, Kassack MU, Winzeler EA, Avery VM, Andrews KT, Kurz T. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur J Med Chem 2014; 82:204-13. [PMID: 24904967 DOI: 10.1016/j.ejmech.2014.05.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage Plasmodium falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against Plasmodium berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages.
Collapse
Affiliation(s)
- Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Subathdrage D M Sumanadasa
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Katharina Stenzel
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sandra Duffy
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Stephan Meister
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| | - Linda Marek
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebekka Schmetter
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Krystina Kuna
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany; Medical Research Laboratory, Albert Schweitzer Hospital, Lambaréné, Gabon
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| | - Vicky M Avery
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Don Young Road, Nathan Campus, Griffith University, QLD 4111, Australia.
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
133
|
Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules. Antimicrob Agents Chemother 2014; 58:3666-78. [PMID: 24733477 DOI: 10.1128/aac.02721-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.
Collapse
|
134
|
Hansen FK, Skinner-Adams TS, Duffy S, Marek L, Sumanadasa SDM, Kuna K, Held J, Avery VM, Andrews KT, Kurz T. Synthesis, antimalarial properties, and SAR studies of alkoxyurea-based HDAC inhibitors. ChemMedChem 2014; 9:665-70. [PMID: 24497437 DOI: 10.1002/cmdc.201300469] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Indexed: 11/06/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are an emerging class of potential antimalarial drugs. We investigated the antiplasmodial properties of 16 alkoxyurea-based HDAC inhibitors containing various cap and zinc binding groups (ZBGs). Ten compounds displayed sub-micromolar activity against the 3D7 line of Plasmodium falciparum. Structure-activity relationship studies revealed that a hydroxamic acid ZBG is crucial for antiplasmodial activity, and that the introduction of bulky alkyl substituents to cap groups increases potency against asexual blood-stage parasites. We also demonstrate that selected compounds cause hyperacetylation of P. falciparum histone H4, indicating inhibition of one or more PfHDACs. To assess the selectivity of alkoxyurea-based HDAC inhibitors for parasite over normal mammalian cells, the cytotoxicity of representative compounds was evaluated against neonatal foreskin fibroblast (NFF) cells. The most active compound, 6-((3-(4-(tert-butyl)phenyl)ureido)oxy)-N-hydroxyhexanamide (1 e, Pf3D7 IC50 : 0.16 μM) was 31-fold more toxic against the asexual blood stages than towards normal mammalian cells. Moreover, a subset of four structurally diverse HDAC inhibitors revealed moderate activity against late-stage (IV-V) gametocytes.
Collapse
Affiliation(s)
- Finn K Hansen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Pachaiyappan B, Woster PM. Design of small molecule epigenetic modulators. Bioorg Med Chem Lett 2013; 24:21-32. [PMID: 24300735 DOI: 10.1016/j.bmcl.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described.
Collapse
Affiliation(s)
- Boobalan Pachaiyappan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States.
| |
Collapse
|
136
|
Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J. Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 2013; 21:6973-80. [DOI: 10.1016/j.bmc.2013.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
|
137
|
Amin J, Puglisi A, Clarke J, Milton J, Wang M, Paranal RM, Bradner JE, Spencer J. A cyclodextrin-capped histone deacetylase inhibitor. Bioorg Med Chem Lett 2013; 23:3346-8. [DOI: 10.1016/j.bmcl.2013.03.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
|
138
|
Jin Y, Roycik MD, Bosco DB, Cao Q, Constantino MH, Schwartz MA, Sang QXA. Matrix metalloproteinase inhibitors based on the 3-mercaptopyrrolidine core. J Med Chem 2013; 56:4357-73. [PMID: 23631440 DOI: 10.1021/jm400529f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New series of pyrrolidine mercaptosulfide, 2-mercaptocyclopentane arylsulfonamide, and 3-mercapto-4-arylsulfonamidopyrrolidine matrix metalloproteinase inhibitors (MMPIs) were designed, synthesized, and evaluated. Exhibiting unique properties over other MMPIs (e.g., hydroxamates), these newly reported compounds are capable of modulating activities of several MMPs in the low nanomolar range, including MMP-2 (~2 to 50 nM), MMP-13 (~2 to 50 nM), and MMP-14 (~4 to 60 nM). Additionally these compounds are selective to intermediate- and deep-pocket MMPs but not shallow-pocketed MMPs (e.g., MMP-1, ~850 to >50,000 nM; MMP-7, ~4000 to >25,000 nM). Our previous work with the mercaptosulfide functionality attached to both cyclopentane and pyrrolidine frameworks demonstrated that the cis-(3S,4R)-stereochemistry was optimal for all of the MMPs tested. However, in our newest compounds an interesting shift of preference to the trans form of the mercaptosulfonamides was observed with increased oxidative stability and biological compatibility. We also report several kinetic and biological characteristics showing that these compounds may be used to probe the mechanistic activities of MMPs in disease.
Collapse
Affiliation(s)
- Yonghao Jin
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | | | | | | | | | |
Collapse
|