101
|
Romanini M, Barrio M, Macovez R, Ruiz-Martin MD, Capaccioli S, Tamarit JL. Thermodynamic Scaling of the Dynamics of a Strongly Hydrogen-Bonded Glass-Former. Sci Rep 2017; 7:1346. [PMID: 28465573 PMCID: PMC5431067 DOI: 10.1038/s41598-017-01464-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
We probe the temperature- and pressure-dependent specific volume (v) and dipolar dynamics of the amorphous phase (in both the supercooled liquid and glass states) of the ternidazole drug (TDZ). Three molecular dynamic processes are identified by means of dielectric spectroscopy, namely the α relaxation, which vitrifies at the glass transition, a Johari-Goldstein β JG relaxation, and an intramolecular process associated with the relaxation motion of the propanol chain of the TDZ molecule. The lineshapes of dielectric spectra characterized by the same relaxation time (isochronal spectra) are virtually identical, within the studied temperature and pressure ranges, so that the time-temperature-pressure superposition principle holds for TDZ. The α and β JG relaxation times fulfil the density-dependent thermodynamic scaling: master curves result when they are plotted against the thermodynamic quantity Tv γ , with thermodynamic exponent γ approximately equal to 2. These results show that the dynamics of TDZ, a system characterized by strong hydrogen bonding, is characterized by an isomorphism similar to that of van-der-Waals systems. The low value of γ can be rationalized in terms of the relatively weak density-dependence of the dynamics of hydrogen-bonded systems.
Collapse
Affiliation(s)
- Michela Romanini
- Grup de Caracterització de Materials, Universitat Politècnica de Catalunya, EEBE, Departament de Física, and Barcelona Research Center in Multiscale Science and Engineering, C. Eduard Maristany 10-14, E-08019, Barcelona, Spain
| | - María Barrio
- Grup de Caracterització de Materials, Universitat Politècnica de Catalunya, EEBE, Departament de Física, and Barcelona Research Center in Multiscale Science and Engineering, C. Eduard Maristany 10-14, E-08019, Barcelona, Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials, Universitat Politècnica de Catalunya, EEBE, Departament de Física, and Barcelona Research Center in Multiscale Science and Engineering, C. Eduard Maristany 10-14, E-08019, Barcelona, Spain
| | - María D Ruiz-Martin
- Grup de Caracterització de Materials, Universitat Politècnica de Catalunya, EEBE, Departament de Física, and Barcelona Research Center in Multiscale Science and Engineering, C. Eduard Maristany 10-14, E-08019, Barcelona, Spain
| | - Simone Capaccioli
- Dipartimento di Fisica, Università di Pisa, and IPCF-CNR, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Josep Ll Tamarit
- Grup de Caracterització de Materials, Universitat Politècnica de Catalunya, EEBE, Departament de Física, and Barcelona Research Center in Multiscale Science and Engineering, C. Eduard Maristany 10-14, E-08019, Barcelona, Spain.
| |
Collapse
|
102
|
Hecksher T, Olsen NB, Dyre JC. Model for the alpha and beta shear-mechanical properties of supercooled liquids and its comparison to squalane data. J Chem Phys 2017; 146:154504. [PMID: 28433033 DOI: 10.1063/1.4979658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents data for supercooled squalane's frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a "Cole-Cole retardation element" defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω-1/2, has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.
Collapse
Affiliation(s)
- Tina Hecksher
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Niels Boye Olsen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
103
|
Hopp M, Gross J. Thermal Conductivity of Real Substances from Excess Entropy Scaling Using PCP-SAFT. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04289] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madlen Hopp
- Institute of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| |
Collapse
|
104
|
Bernini S, Puosi F, Leporini D. Thermodynamic scaling of relaxation: insights from anharmonic elasticity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:135101. [PMID: 28102828 DOI: 10.1088/1361-648x/aa5a7e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time [Formula: see text] in terms of the quantity [Formula: see text], where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial-energy correlations. We propose a method for evaluating both the characteristic exponent [Formula: see text] and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent [Formula: see text] in terms of the lattice Grüneisen parameter [Formula: see text] and the isochoric anharmonicity [Formula: see text]. An analytic expression of the TS master curve of [Formula: see text] with [Formula: see text] as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent [Formula: see text] and (ii) the isochoric anharmonicity [Formula: see text], as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity [Formula: see text] is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.
Collapse
Affiliation(s)
- S Bernini
- Dipartimento di Fisica 'Enrico Fermi', Università di Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. Present address: Jawaharlal Nehru Center for Advanced Scientific Research, Theoretical Sciences Unit, Jakkur Campus, Bengaluru 560064, India
| | | | | |
Collapse
|
105
|
Olsen AE, Dyre JC, Schrøder TB. Communication: Pseudoisomorphs in liquids with intramolecular degrees of freedom. J Chem Phys 2016; 145:241103. [DOI: 10.1063/1.4972860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Elmerdahl Olsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B. Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
106
|
Puosi F, Chulkin O, Bernini S, Capaccioli S, Leporini D. Thermodynamic scaling of vibrational dynamics and relaxation. J Chem Phys 2016; 145:234904. [DOI: 10.1063/1.4971297] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Puosi
- Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - O. Chulkin
- Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - S. Bernini
- Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - S. Capaccioli
- Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- IPCF-CNR, UOS, Pisa, Italy
| | - D. Leporini
- Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- IPCF-CNR, UOS, Pisa, Italy
| |
Collapse
|
107
|
Gelin S, Tanaka H, Lemaître A. Anomalous phonon scattering and elastic correlations in amorphous solids. NATURE MATERIALS 2016; 15:1177-1181. [PMID: 27571450 DOI: 10.1038/nmat4736] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
A major issue in materials science is why glasses present low-temperature thermal and vibrational properties that sharply differ from those of crystals. In particular, long-wavelength phonons are considerably more damped in glasses, yet it remains unclear how structural disorder at atomic scales affects such a macroscopic phenomenon. A plausible explanation is that phonons are scattered by local elastic heterogeneities that are essentially uncorrelated in space, a scenario known as Rayleigh scattering, which predicts that the damping of acoustic phonons scales with wavenumber k as kd+1 (in dimension d). Here we demonstrate that phonon damping scales instead as - kd+1 ln k, with this logarithmic enhancement originating from long-range spatial correlations of elastic disorder caused by similar stress correlations. Our work suggests that the presence of long-range spatial correlations of local stress and elasticity may well be the crucial feature that distinguishes amorphous solids from crystals.
Collapse
Affiliation(s)
- Simon Gelin
- NAVIER, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, 77420 Champs-sur-Marne, France
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Anaël Lemaître
- NAVIER, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, 77420 Champs-sur-Marne, France
| |
Collapse
|
108
|
Rodríguez-Tinoco C, Ràfols-Ribé J, González-Silveira M, Rodríguez-Viejo J. Relaxation dynamics of glasses along a wide stability and temperature range. Sci Rep 2016; 6:35607. [PMID: 27767071 PMCID: PMC5073287 DOI: 10.1038/srep35607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
While lots of measurements describe the relaxation dynamics of the liquid state, experimental data of the glass dynamics at high temperatures are much scarcer. We use ultrafast scanning calorimetry to expand the timescales of the glass to much shorter values than previously achieved. Our data show that the relaxation time of glasses follows a super-Arrhenius behaviour in the high-temperature regime above the conventional devitrification temperature heating at 10 K/min. The liquid and glass states can be described by a common VFT-like expression that solely depends on temperature and limiting fictive temperature. We apply this common description to nearly-isotropic glasses of indomethacin, toluene and to recent data on metallic glasses. We also show that the dynamics of indomethacin glasses obey density scaling laws originally derived for the liquid. This work provides a strong connection between the dynamics of the equilibrium supercooled liquid and non-equilibrium glassy states.
Collapse
Affiliation(s)
- C. Rodríguez-Tinoco
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J. Ràfols-Ribé
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - J. Rodríguez-Viejo
- Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
109
|
Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci Rep 2016; 6:34296. [PMID: 27694814 PMCID: PMC5046104 DOI: 10.1038/srep34296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.
Collapse
|
110
|
Hu YC, Shang BS, Guan PF, Yang Y, Bai HY, Wang WH. Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid. J Chem Phys 2016; 145:104503. [DOI: 10.1063/1.4962324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuan-Chao Hu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Mechanical and Biomedical Engineering, Centre for Advanced Structural Materials, City University of Hong Kong, Hong Kong, China
| | - Bao-Shuang Shang
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Peng-Fei Guan
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Yong Yang
- Department of Mechanical and Biomedical Engineering, Centre for Advanced Structural Materials, City University of Hong Kong, Hong Kong, China
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
111
|
Veldhorst AA, Schrøder TB, Dyre JC. Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids. J Phys Chem B 2016; 120:7970-4. [PMID: 27494438 DOI: 10.1021/acs.jpcb.6b04424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material-dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ρ(γ). However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density range.
Collapse
Affiliation(s)
- Arno A Veldhorst
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark.,Laboratório de Espectroscopia Molecular, Chemistry Institute, University of São Paulo , CP 26077, CEP 05513-970 São Paulo, SP, Brazil
| | - Thomas B Schrøder
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
112
|
Abstract
Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. Melting is a classic first-order phase transition, but an accurate thermodynamic description is still lacking. Here, Pedersen et al. develop a theory, validated by simulations of the Lennard-Jones system, for the melting thermodynamics applicable to all systems characterized by hidden scale invariance.
Collapse
|
113
|
Dyre JC. Simple liquids' quasiuniversality and the hard-sphere paradigm. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:323001. [PMID: 27345623 DOI: 10.1088/0953-8984/28/32/323001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This topical review discusses the quasiuniversality of simple liquids' structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues that all quasiuniversal liquids to a good approximation conform to the same equation of motion, referring to the exponentially repulsive pair-potential system as the basic reference system. The paper, which is aimed at non-experts, ends by listing a number of open problems in the field.
Collapse
Affiliation(s)
- Jeppe C Dyre
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
114
|
Ingebrigtsen TS, Tanaka H. Effect of Energy Polydispersity on the Nature of Lennard-Jones Liquids. J Phys Chem B 2016; 120:7704-13. [PMID: 27434103 DOI: 10.1021/acs.jpcb.6b05486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the companion paper [ Ingebrigtsen , T. S. ; Tanaka , H. J. Phys. Chem. B 2015 , 119 , 11052 ] the effect of size polydispersity on the nature of Lennard-Jones (LJ) liquids, which represent most molecular liquids without hydrogen bonds, was studied. More specifically, it was shown that even highly size polydisperse LJ liquids are Roskilde-simple (RS) liquids. RS liquids are liquids with strong correlation between constant volume equilibrium fluctuations of virial and potential energy and are simpler than other types of liquids. Moreover, it was shown that size polydisperse LJ liquids have isomorphs to a good approximation. Isomorphs are curves in the phase diagram of RS liquids along which structure, dynamics, and some thermodynamic quantities are invariant in dimensionless (reduced) units. In this paper, we study the effect of energy polydispersity on the nature of LJ liquids. We show that energy polydisperse LJ liquids are RS liquids. However, a tendency of particle segregation, which increases with the degree of polydispersity, leads to a loss of strong virial-potential energy correlation but is mitigated by increasing temperature and/or density. Isomorphs are a good approximation also for energy polydisperse LJ liquids, although particle-resolved quantities display a somewhat poorer scaling compared to the mean quantities along the isomorph.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
115
|
Mausbach P, Köster A, Rutkai G, Thol M, Vrabec J. Comparative study of the Grüneisen parameter for 28 pure fluids. J Chem Phys 2016; 144:244505. [DOI: 10.1063/1.4954282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
116
|
Yadav HOS, Shrivastav G, Agarwal M, Chakravarty C. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly. J Chem Phys 2016; 144:244901. [DOI: 10.1063/1.4954325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
117
|
Costigliola L, Schrøder TB, Dyre JC. Communication: Studies of the Lennard-Jones fluid in 2, 3, and 4 dimensions highlight the need for a liquid-state 1/d expansion. J Chem Phys 2016; 144:231101. [DOI: 10.1063/1.4954239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lorenzo Costigliola
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B. Schrøder
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
118
|
Dunn NJH, Noid WG. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures. J Chem Phys 2016; 144:204124. [DOI: 10.1063/1.4952422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
119
|
Veldhorst AA, Dyre JC, Schrøder TB. Scaling of the dynamics of flexible Lennard-Jones chains: Effects of harmonic bonds. J Chem Phys 2016; 143:194503. [PMID: 26590538 DOI: 10.1063/1.4934973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The previous paper [A. A. Veldhorst et al., J. Chem. Phys. 141, 054904 (2014)] demonstrated that the isomorph theory explains the scaling properties of a liquid of flexible chains consisting of ten Lennard-Jones particles connected by rigid bonds. We here investigate the same model with harmonic bonds. The introduction of harmonic bonds almost completely destroys the correlations in the equilibrium fluctuations of the potential energy and the virial. According to the isomorph theory, if these correlations are strong a system has isomorphs, curves in the phase diagram along which structure, dynamics, and the excess entropy are invariant. The Lennard-Jones chain liquid with harmonic bonds does have curves in the phase diagram along which the structure and dynamics are invariant. The excess entropy is not invariant on these curves, which we refer to as "pseudoisomorphs." In particular, this means that Rosenfeld's excess-entropy scaling (the dynamics being a function of excess entropy only) does not apply for the Lennard-Jones chain with harmonic bonds.
Collapse
Affiliation(s)
- Arno A Veldhorst
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
120
|
Ben Hassine B, Negrier P, Romanini M, Barrio M, Macovez R, Kallel A, Mondieig D, Tamarit JL. Structure and reorientational dynamics of 1-F-adamantane. Phys Chem Chem Phys 2016; 18:10924-30. [DOI: 10.1039/c6cp01144f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimodal reorientational relaxations along the twofold (α) and threefold (α′) axes of the disordered Phase II (P4̄21c) of 1-F-adamantane.
Collapse
Affiliation(s)
| | - Ph. Negrier
- Univ. Bordeaux
- LOMA
- UMR 5798
- F-33400 Talence
- France
| | - M. Romanini
- Grup de Caracterització de Materials
- Department de Física
- ETSEIB
- Diagonal 647
- Universitat Politècnica de Catalunya
| | - M. Barrio
- Grup de Caracterització de Materials
- Department de Física
- ETSEIB
- Diagonal 647
- Universitat Politècnica de Catalunya
| | - R. Macovez
- Grup de Caracterització de Materials
- Department de Física
- ETSEIB
- Diagonal 647
- Universitat Politècnica de Catalunya
| | - A. Kallel
- Laboratoire des Matériaux Céramiques Composites et Polymères
- Département Physique
- Faculté des Sciences de Sfax
- 3000 Sfax
- Tunisie
| | - D. Mondieig
- Univ. Bordeaux
- LOMA
- UMR 5798
- F-33400 Talence
- France
| | - J. Ll. Tamarit
- Grup de Caracterització de Materials
- Department de Física
- ETSEIB
- Diagonal 647
- Universitat Politècnica de Catalunya
| |
Collapse
|
121
|
Dunn NJH, Noid WG. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids. J Chem Phys 2015; 143:243148. [DOI: 10.1063/1.4937383] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
122
|
Abstract
The location of the melting line (ML) of the Lennard-Jones (LJ) system and its associated physical properties are investigated using molecular dynamics computer simulation. The radial distribution function and the behavior of the repulsive and attractive parts of the potential energy indicate that the ML is not a single isomorph, but the isomorphic state evolves gradually with temperature, i.e., it is only "locally isomorphic." The state point dependence of the unitless isomorphic number, X̃, for a range of static and dynamical properties of the LJ system in the solid and fluid states, and for fluid argon, are also reported. The quantity X̃ typically varies most with state point in the vicinity of the triple point and approaches a plateau in the high density (temperature) limit along the ML.
Collapse
Affiliation(s)
- D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
123
|
Roed LA, Niss K, Jakobsen B. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid. J Chem Phys 2015; 143:221101. [PMID: 26671349 DOI: 10.1063/1.4936867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying "inner clock." Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measured liquid, comply to the isomorph theory.
Collapse
Affiliation(s)
- Lisa Anita Roed
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Bo Jakobsen
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
124
|
Dell ZE, Schweizer KS. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2015; 115:205702. [PMID: 26613453 DOI: 10.1103/physrevlett.115.205702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 06/05/2023]
Abstract
We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.
Collapse
Affiliation(s)
- Zachary E Dell
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
125
|
Lötgering-Lin O, Gross J. Group Contribution Method for Viscosities Based on Entropy Scaling Using the Perturbed-Chain Polar Statistical Associating Fluid Theory. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01698] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Lötgering-Lin
- Institute of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| |
Collapse
|
126
|
Bollinger JA, Jain A, Truskett TM. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics. J Phys Chem B 2015; 119:9103-13. [PMID: 25350488 DOI: 10.1021/jp508887r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computer simulations and a stochastic Fokker-Planck equation based approach are used to compare the single-particle diffusion coefficients of equilibrium hard-sphere fluids exhibiting identical inhomogeneous static structure and governed by either Brownian (i.e., overdamped Langevin) or Newtonian microscopic dynamics. The physics of inhomogeneity is explored via the imposition of one-dimensional sinusoidal density profiles of different wavelengths and amplitudes. When imposed density variations are small in magnitude for distances on the scale of a particle diameter, bulk-like average correlations between local structure and mobility are observed. In contrast, when density variations are significant on that length scale, qualitatively different structure-mobility correlations emerge that are sensitive to the governing microscopic dynamics. Correspondingly, a previously proposed scaling between long-time diffusivities for bulk isotropic fluids of particles exhibiting Brownian versus Newtonian dynamics [Pond et al. Soft Matter 2011, 7, 9859-9862] cannot be generalized to describe the position-dependent behaviors of strongly inhomogeneous fluids. While average diffusivities in the inhomogeneous and homogeneous directions are coupled, their qualitative dependencies on inhomogeneity wavelength are sensitive to the details of the microscopic dynamics. Nonetheless, average diffusivities of the inhomogeneous fluids can be approximately predicted for either type of dynamics based on knowledge of bulk isotropic fluid behavior and how inhomogeneity modifies the distribution of available volume. Analogous predictions for average diffusivities of experimental, inhomogeneous colloidal dispersions (based on known bulk behavior) suggest that they will exhibit qualitatively different trends than those predicted by models governed by overdamped Langevin dynamics that do not account for hydrodynamic interactions.
Collapse
Affiliation(s)
- Jonathan A Bollinger
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Avni Jain
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
127
|
Orea P, Romero-Martínez A, Basurto E, Vargas CA, Odriozola G. Corresponding states law for a generalized Lennard-Jones potential. J Chem Phys 2015; 143:024504. [DOI: 10.1063/1.4926464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P. Orea
- Instituto Mexicano del Petróleo, Dirección de Investigación en Transformación de Hidrocarburos, Eje Central Lázaro Cárdenas 152, 07730 México D.F., Mexico
| | - A. Romero-Martínez
- Instituto Mexicano del Petróleo, Dirección de Investigación en Exploración y Producción, Eje Central Lázaro Cárdenas 152, 07730 México D.F., Mexico
| | - E. Basurto
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Ave. San Pablo 180, 02200 México D.F., Mexico
| | - C. A. Vargas
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Ave. San Pablo 180, 02200 México D.F., Mexico
| | - G. Odriozola
- Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Ave. San Pablo 180, 02200 México D.F., Mexico
| |
Collapse
|
128
|
Ingebrigtsen TS, Tanaka H. Effect of Size Polydispersity on the Nature of Lennard-Jones Liquids. J Phys Chem B 2015; 119:11052-62. [PMID: 26069998 DOI: 10.1021/acs.jpcb.5b02329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polydisperse fluids are encountered everywhere in biological and industrial processes. These fluids naturally show a rich phenomenology exhibiting fractionation and shifts in critical point and freezing temperatures. We study here the effect of size polydispersity on the basic nature of Lennard-Jones (LJ) liquids, which represent most molecular liquids without hydrogen bonds, via two- and three-dimensional molecular dynamics computer simulations. A single-component liquid constituting spherical particles and interacting via the LJ potential is known to exhibit strong correlations between virial and potential energy equilibrium fluctuations at constant volume. This correlation significantly simplifies the physical description of the liquid, and these liquids are now known as Roskilde-simple (RS) liquids. We show that this simple nature of the single-component LJ liquid is preserved even for very high polydispersities (above 40% polydispersity for the studied uniform distribution). We also investigate isomorphs of moderately polydisperse LJ liquids. Isomorphs are curves in the phase diagram of RS liquids along which structure, dynamics, and some thermodynamic quantities are invariant in dimensionless units. We find that isomorphs are a good approximation even for polydisperse LJ liquids. The theory of isomorphs thus extends readily to size polydisperse fluids and can be used to improve even further the understanding of these intriguing systems.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
129
|
Schrøder TB, Dyre JC. Simplicity of condensed matter at its core: generic definition of a Roskilde-simple system. J Chem Phys 2015; 141:204502. [PMID: 25429949 DOI: 10.1063/1.4901215] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The isomorph theory is reformulated by defining Roskilde-simple systems by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. If the potential energy as a function of all particle coordinates is denoted by U(R), this requirement translates into U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach.
Collapse
Affiliation(s)
- Thomas B Schrøder
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
130
|
Khrapak SA, Kryuchkov NP, Yurchenko SO, Thomas HM. Practical thermodynamics of Yukawa systems at strong coupling. J Chem Phys 2015; 142:194903. [DOI: 10.1063/1.4921223] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sergey A. Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
- Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20, France
| | - Nikita P. Kryuchkov
- Bauman Moscow State Technical University, 2-nd Baumanskaya St. 5, Moscow 105005, Russia
| | | | - Hubertus M. Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
131
|
Delage-Santacreu S, Galliero G, Hoang H, Bazile JP, Boned C, Fernandez J. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures. J Chem Phys 2015; 142:174501. [DOI: 10.1063/1.4919296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephanie Delage-Santacreu
- Laboratoire de Mathématiques et leurs Applications (UMR-5142 with CNRS), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex, France
| | - Guillaume Galliero
- Laboratoire des Fluides Complexes et leurs Reservoirs (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex, France
| | - Hai Hoang
- Laboratoire des Fluides Complexes et leurs Reservoirs (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex, France
| | - Jean-Patrick Bazile
- Laboratoire des Fluides Complexes et leurs Reservoirs (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex, France
| | - Christian Boned
- Laboratoire des Fluides Complexes et leurs Reservoirs (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex, France
| | - Josefa Fernandez
- Laboratorio de Propiedades Termofisicas, Universidade Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
132
|
Bollinger JA, Jain A, Carmer J, Truskett TM. Communication: Local structure-mobility relationships of confined fluids reverse upon supercooling. J Chem Phys 2015; 142:161102. [DOI: 10.1063/1.4919688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan A. Bollinger
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Avni Jain
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - James Carmer
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
133
|
Carmer J, Jain A, Bollinger JA, van Swol F, Truskett TM. Tuning structure and mobility of solvation shells surrounding tracer additives. J Chem Phys 2015; 142:124501. [PMID: 25833590 DOI: 10.1063/1.4916053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.
Collapse
Affiliation(s)
- James Carmer
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Avni Jain
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Jonathan A Bollinger
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Frank van Swol
- Sandia National Laboratories, Department 1814, P.O. Box 5800, Albuquerque, New Mexico 87185, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
134
|
Harris KR, Kanakubo M. Self-diffusion, velocity cross-correlation, distinct diffusion and resistance coefficients of the ionic liquid [BMIM][Tf2N] at high pressure. Phys Chem Chem Phys 2015; 17:23977-93. [DOI: 10.1039/c5cp04277a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Distinct diffusion coefficients for 1-alkyl-3-imidazolium [Tf2N] salts show very similar viscosity dependence; thermodynamic scaling parameters for the reduced transport properties are equal.
Collapse
Affiliation(s)
- Kenneth R. Harris
- School of Physical
- Environmental and Mathematical Sciences
- University College
- University of New South Wales
- Canberra BC
| | - Mitsuhiro Kanakubo
- National Institute of Advanced Industrial Science and Technology (AIST)
- Sendai 983-8551
- Japan
| |
Collapse
|
135
|
Bacher AK, Schrøder TB, Dyre JC. Explaining why simple liquids are quasi-universal. Nat Commun 2014; 5:5424. [DOI: 10.1038/ncomms6424] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 11/09/2022] Open
|
136
|
Lerner E, Bailey NP, Dyre JC. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052304. [PMID: 25493793 DOI: 10.1103/physreve.90.052304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 06/04/2023]
Abstract
Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established "hidden scale invariance" of simple liquids to the glass phase. The resulting scaling of flow-event properties reveals quasiuniversality, i.e., that the probability distributions of energy drops, stress drops, and strain intervals in properly reduced units are virtually independent of the microscopic pair potentials.
Collapse
Affiliation(s)
- Edan Lerner
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003
| | - Nicholas P Bailey
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
137
|
Affiliation(s)
- Evan H. Abramson
- Department of Earth and Space
Sciences, University of Washington, Seattle, Washington 98195-1310, United States
| |
Collapse
|
138
|
Casalini R, Roland CM. Determination of the thermodynamic scaling exponent for relaxation in liquids from static ambient-pressure quantities. PHYSICAL REVIEW LETTERS 2014; 113:085701. [PMID: 25192107 DOI: 10.1103/physrevlett.113.085701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 06/03/2023]
Abstract
An equation is derived that expresses the thermodynamic scaling exponent, γ, which superposes relaxation times τ and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated γ are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition T(g) is isochronal (i.e., τ(α) is constant at T(g), which is true by definition) and that the pressure derivative of the glass temperature is given by the first Ehrenfest relation. The latter, derived assuming continuity of the entropy at the glass transition, has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure; this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient-pressure data. The ability to determine, from ambient-pressure measurements, the scaling exponent describing the high-pressure dynamics extends the applicability of this approach to a broader range of materials. Since γ is linked to the intermolecular potential, the new equation thus provides ready access to information about the forces between molecules.
Collapse
Affiliation(s)
- R Casalini
- Chemistry Division, Naval Research Laboratory, Code 6120, Washington, D.C. 20375-5342, USA
| | - C M Roland
- Chemistry Division, Naval Research Laboratory, Code 6120, Washington, D.C. 20375-5342, USA
| |
Collapse
|