101
|
Varca GHC, Kadlubowski S, Wolszczak M, Lugão AB, Rosiak JM, Ulanski P. Synthesis of papain nanoparticles by electron beam irradiation - A pathway for controlled enzyme crosslinking. Int J Biol Macromol 2016; 92:654-659. [PMID: 27456124 DOI: 10.1016/j.ijbiomac.2016.07.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
Crosslinked enzyme aggregates comprise more stable and highly concentrated enzymatic preparations of current biotechnological and biomedical relevance. This work reports the development of crosslinked nanosized papain aggregates using electron beam irradiation as an alternative route for controlled enzyme crosslinking. The nanoparticles were synthesized in phosphate buffer using various ethanol concentrations and electron beam irradiation doses. Particle size increase was monitored using dynamic light scattering. The crosslinking formation by means of bityrosine linkages were measured by fluorescence spectra and the enzymatic activity was monitored using Na-Benzoyl-dl-arginine p-nitroanilide hydrochloride as a substrate. The process led to crosslinked papain nanoparticles with controlled sizes ranging from 6 to 11nm depending upon the dose and ethanol concentration. The irradiation atmosphere played an important role in the final bioactivity of the nanoparticles, whereas argon and nitrous oxide saturated systems were more effective than at atmospheric conditions in terms of preserving papain enzymatic activity. Highlighted advantages of the technique include the lack of monomers and crosslinking agents, quick processing with reduced bioactivity changes, and the possibility to be performed inside the final package simultaneously with sterilization.
Collapse
Affiliation(s)
- G H C Varca
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) - Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - S Kadlubowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| | - M Wolszczak
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - A B Lugão
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) - Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - J M Rosiak
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - P Ulanski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| |
Collapse
|
102
|
Cinar G, Orujalipoor I, Su CJ, Jeng US, Ide S, Guler MO. Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6506-6514. [PMID: 27267733 DOI: 10.1021/acs.langmuir.6b00704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Characterization of amyloid-like aggregates through converging approaches can yield deeper understanding of their complex self-assembly mechanisms and the nature of their strong mechanical stability, which may in turn contribute to the design of novel supramolecular peptide nanostructures as functional materials. In this study, we investigated the coassembly kinetics of oppositely charged short amyloid-inspired peptides (AIPs) into supramolecular nanostructures by using confocal fluorescence imaging of thioflavin T binding, turbidity assay and in situ small-angle X-ray scattering (SAXS) analysis. We showed that coassembly kinetics of the AIP nanostructures were consistent with nucleation-dependent amyloid-like aggregation, and aggregation behavior of the AIPs was affected by the initial monomer concentration and sonication. Moreover, SAXS analysis was performed to gain structural information on the size, shape, electron density, and internal organization of the coassembled AIP nanostructures. The scattering data of the coassembled AIP nanostructures were best fitted into to a combination of polydisperse core-shell cylinder (PCSC) and decoupling flexible cylinder (FCPR) models, and the structural parameters were estimated based on the fitting results of the scattering data. The stability of the coassembled AIP nanostructures in both fiber organization and bulk viscoelastic properties was also revealed via temperature-dependent SAXS analysis and oscillatory rheology measurements, respectively.
Collapse
Affiliation(s)
- Goksu Cinar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , 06800 Ankara, Turkey
| | - Ilghar Orujalipoor
- Department of Nanotechnology and Nanoscience, Hacettepe University , 06800 Beytepe, Ankara, Turkey
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Park, Hsinchu, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Park, Hsinchu, Taiwan
| | - Semra Ide
- Department of Nanotechnology and Nanoscience, Hacettepe University , 06800 Beytepe, Ankara, Turkey
- Department of Physics Engineering, Hacettepe University , 06800 Beytepe, Ankara, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , 06800 Ankara, Turkey
| |
Collapse
|
103
|
Cao XZ, Merlitz H, Wu CX, Ungar G, Sommer JU. A theoretical study of dispersion-to-aggregation of nanoparticles in adsorbing polymers using molecular dynamics simulations. NANOSCALE 2016; 8:6964-6968. [PMID: 26965335 DOI: 10.1039/c5nr08576d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The properties of polymer-nanoparticle (NP) mixtures significantly depend on the dispersion of the NPs. Using molecular dynamics simulations, we demonstrate that, in the presence of polymer-NP attraction, the dispersion of NPs in semidilute and concentrated polymers can be stabilized by increasing the polymer concentration. A lower polymer concentration facilitates the aggregation of NPs bridged by polymer chains, as well as a further increase of the polymer-NP attraction. Evaluating the binding of NPs through shared polymer segments in an adsorption blob, we derive a linear relationship between the polymer concentration and the polymer-NP attraction at the phase boundary between dispersed and aggregated NPs. Our theoretical findings are directly relevant for understanding and controlling many self-assembly processes that use either dispersion or aggregation of NPs to yield the desired materials.
Collapse
Affiliation(s)
- Xue-Zheng Cao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China.
| | - Holger Merlitz
- Department of Physics and ITPA, Xiamen University, Xiamen 361005, P.R. China and Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany
| | - Chen-Xu Wu
- Department of Physics and ITPA, Xiamen University, Xiamen 361005, P.R. China
| | - Goran Ungar
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China. and Department of Engineering Materials University of Sheffield Mappin Street, Sheffield S1 3JD, UK
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany and Technische Universität Dresden, Institute of Theoretical Physics, D-01069 Dresden, Germany
| |
Collapse
|
104
|
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 2016; 34:1-20. [PMID: 26361719 DOI: 10.1016/j.actbio.2015.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
From the first microfluidic devices used for analysis of single metabolic by-products to highly complex multicompartmental co-culture organ-on-chip platforms, efforts of many multidisciplinary teams around the world have been invested in overcoming the limitations of conventional research methods in the biomedical field. Close spatial and temporal control over fluids and physical parameters, integration of sensors for direct read-out as well as the possibility to increase throughput of screening through parallelization, multiplexing and automation are some of the advantages of microfluidic over conventional, 2D tissue culture in vitro systems. Moreover, small volumes and relatively small cell numbers used in experimental set-ups involving microfluidics, can potentially decrease research cost. On the other hand, these small volumes and numbers of cells also mean that many of the conventional molecular biology or biochemistry assays cannot be directly applied to experiments that are performed in microfluidic platforms. Development of different types of assays and evidence that such assays are indeed a suitable alternative to conventional ones is a step that needs to be taken in order to have microfluidics-based platforms fully adopted in biomedical research. In this review, rather than providing a comprehensive overview of the literature on microfluidics, we aim to discuss developments in the field of microfluidics that can aid advancement of biomedical research, with emphasis on the field of biomaterials. Three important topics will be discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties. While important technical aspects of various platforms will be discussed, the focus is mainly on their applications, including the state-of-the-art, future perspectives and challenges. STATEMENT OF SIGNIFICANCE Microfluidics, being a technology characterized by the engineered manipulation of fluids at the submillimeter scale, offers some interesting tools that can advance biomedical research and development. Screening platforms based on microfluidic technologies that allow high-throughput and combinatorial screening may lead to breakthrough discoveries not only in basic research but also relevant to clinical application. This is further strengthened by the fact that reliability of such screens may improve, since microfluidic systems allow close mimicking of physiological conditions. Finally, microfluidic systems are also very promising as micro factories of a new generation of natural or synthetic biomaterials and constructs, with finely controlled properties.
Collapse
|
105
|
Fettis MM, Wei Y, Restuccia A, Kurian JJ, Wallet SM, Hudalla GA. Microgels with tunable affinity-controlled protein release via desolvation of self-assembled peptide nanofibers. J Mater Chem B 2016; 4:3054-3064. [PMID: 32263044 DOI: 10.1039/c5tb02446c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a growing number of bioactive protein drugs approved for clinical use each year, there is increasing need for vehicles for localized protein delivery to reduce administered doses, prevent off-target activity, and maintain protein bioactivity. Ideal protein delivery vehicles provide high encapsulation efficiency of bioactive drug, enable fine-tuning of protein release profiles, are biocompatible, and can be administered via minimally-invasive routes. Here we developed an approach to create micron-sized hydrated gels (i.e."microgels") for protein delivery that fulfill these requirements via desolvation of self-assembled β-sheet peptide nanofibers. Specifically, aqueous solutions of peptide nanofibers were diluted under stirring conditions in a "desolvating agent", such as ethanol, which is miscible with water but poorly solvates peptides. The desolvating agent induced nanofiber physical crosslinking into microgels that retained β-sheet secondary structure and were stable in aqueous solutions. Microgels did not activate dendritic cells in vitro, suggesting they are biocompatible. Peptide nanofibers and proteins having similar non-solvent immiscibility properties were co-desolvated to produce protein-loaded microgels with loading efficiencies of ∼85%. Encapsulated bioactive proteins rapidly diffused into bulk aqueous media, as expected for hydrated gels. Modifying peptide nanofibers with a protein-binding ligand provided tunable affinity-controlled protein release. Biocompatible microgels formed via desolvation of self-assembled peptide nanofibers are therefore likely to be broadly useful as vehicles for localized delivery of bioactive proteins, as well as other therapeutic molecules.
Collapse
Affiliation(s)
- Margaret M Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Gao Y, Zou Y, Ma Y, Wang D, Sun Y, Ma G. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:937-946. [PMID: 26796491 DOI: 10.1021/acs.langmuir.5b03616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amyloid fibrils are unique fibrous polypeptide aggregates. They have been associated with more than 20 serious human diseases including Alzheimer's disease and Parkinson's disease. Besides their pathological significance, amyloid fibrils are also gaining increasing attention as emerging nanomaterials with novel functions. Structural characterization of amyloid fibril is no doubt fundamentally important for the development of therapeutics for amyloid-related diseases and for the rational design of amyloid-based materials. In this study, we explored to use side-chain-based infrared (IR) probe to gain detailed structural insights into the amyloid fibril by a 21-residue model amyloidogenic peptide, Aβ(8-28). We first proposed an approach to incorporate thiocyanate (SCN) IR probe in a site-specific manner into amyloidogenic peptide using 1-cyano-4-dimethylaminopyridinium tetrafluoroborate as cyanylating agent. Using this approach, we obtained three Aβ(8-28) variants, labeled with SCN probe at three different positions. We then showed with thioflavin T fluorescence assay, Congo red assay, and atomic force microscopy that the three labeled Aβ(8-28) peptides can quickly form amyloid fibrils under high concentration and high salt conditions. Finally, we performed a detailed IR spectral analysis of the Aβ(8-28) fibril in both amide I and probe regions and proposed a millipede-like structure for the Aβ(8-28) fibril.
Collapse
Affiliation(s)
- Yachao Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ye Zou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Yan Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Ying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, China
| |
Collapse
|
107
|
Hettiarachchi CA, Melton LD, McGillivray DJ, Loveday SM, Gerrard JA, Williams MAK. β-Lactoglobulin nanofibrils can be assembled into nanotapes via site-specific interactions with pectin. SOFT MATTER 2016; 12:756-768. [PMID: 26517088 DOI: 10.1039/c5sm01530h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling the self-assembly of individual supramolecular entities, such as amyloid fibrils, into hierarchical architectures enables the 'bottom-up' fabrication of useful bionanomaterials. Here, we present the hierarchical assembly of β-lactoglobulin nanofibrils into the form of 'nanotapes' in the presence of a specific pectin with a high degree of methylesterification. The nanotapes produced were highly ordered, and had an average width of 180 nm at pH 3. Increasing the ionic strength or the pH of the medium led to the disassembly of nanotapes, indicating that electrostatic interactions stabilised the nanotape architecture. Small-angle X-ray scattering experiments conducted on the nanotapes showed that adequate space is available between adjacent nanofibrils to accommodate pectin molecules. To locate the interaction sites on the pectin molecule, it was subjected to endopolygalacturonase digestion, and the resulting products were analysed using capillary electrophoresis and size-exclusion chromatography for their charge and molecular weight, respectively. Results suggested that the functional pectin molecules carry short (<10 residues) enzyme-susceptible blocks of negatively charged, non-methylesterified galacturonic acid residues in the middle of their homogalacturonan backbones (and possibly near their ends), that specifically bind to sites on the nanofibrils. Blocking the interaction sites on the nanofibril surface using small oligomers of non-methylesterified galacturonic acid residues similar in size to the interaction sites of the pectin molecule decreased the nanotape formation, indicating that site-specific electrostatic interactions are vital for the cross-linking of nanofibrils. We propose a structural model for the pectin-cross-linked β-lactoglobulin nanotapes, the elements of which will inform the future design of bionanomaterials.
Collapse
|
108
|
Santangelo MG, Foderà V, Militello V, Vetri V. Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers. RSC Adv 2016. [DOI: 10.1039/c6ra16690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Changes in solution pH may result in modifications of energy landscape shape making readily accessible or more favourable native or oligomeric intermediate minima with respect to the fibrillar one.
Collapse
Affiliation(s)
- M. G. Santangelo
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
| | - V. Foderà
- Section for Biologics
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Copenhagen
| | - V. Militello
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
| | - V. Vetri
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
- Aten Center
| |
Collapse
|
109
|
Arya S, Kumari A, Dalal V, Bhattacharya M, Mukhopadhyay S. Appearance of annular ring-like intermediates during amyloid fibril formation from human serum albumin. Phys Chem Chem Phys 2015; 17:22862-71. [PMID: 26264974 DOI: 10.1039/c5cp03782d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The self-assembly of proteins triggered by a conformational switch into highly ordered β-sheet rich amyloid fibrils has captivated burgeoning interest in recent years due to the involvement of amyloids in a variety of human diseases and a diverse range of biological functions. Here, we have investigated the mechanism of fibrillogenesis of human serum albumin (HSA), an all-α-helical protein, using an array of biophysical tools that include steady-state as well as time-resolved fluorescence, circular dichroism and Raman spectroscopy in conjunction with atomic force microscopy (AFM). Investigations into the temporal evolution of nanoscale morphology using AFM revealed the presence of ring-like intermediates that subsequently transformed into worm-like fibrils presumably by a ring-opening mechanism. Additionally, a multitude of morphologically-diverse oligomers were observed on the pathway to amyloid formation. Kinetic analysis using multiple structural probes in-tandem indicated that HSA amyloid assembly is a concerted process encompassing a major structural change that is primarily mediated by hydrophobic interactions between thermally-induced disordered segments originating in various domains. A slower growth kinetics of aggregates suggested that the protein structural reorganization is a prerequisite for fibril formation. Moreover, time-dependent Raman spectroscopic studies of HSA aggregation provided key molecular insights into the conformational transitions occurring within the protein amide backbone and at the residue-specific level. Our data revealed the emergence of conformationally-diverse disulfides as a consequence of structural reorganization and sequestration of tyrosines into the hydrophobic amyloid core comprising antiparallel cross β-sheets.
Collapse
Affiliation(s)
- Shruti Arya
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali 140306, Punjab, India.
| | | | | | | | | |
Collapse
|
110
|
Zhou XM, Shimanovich U, Herling TW, Wu S, Dobson CM, Knowles TPJ, Perrett S. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS NANO 2015; 9:5772-81. [PMID: 26030507 PMCID: PMC4537113 DOI: 10.1021/acsnano.5b00061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ulyana Shimanovich
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Address correspondence to ,
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Address correspondence to ,
| |
Collapse
|
111
|
Bäcklund FG, Solin N. Tuning the aqueous self-assembly process of insulin by a hydrophobic additive. RSC Adv 2015. [DOI: 10.1039/c5ra16144d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of a fluorescent hydrophobic oligothiophene (6T) dramatically influences the process where insulin self-assembles into spherulites, resulting in large (up to 1.4 mm) fluorescent spherulites.
Collapse
Affiliation(s)
- Fredrik G. Bäcklund
- Department of Physics, Chemistry, and Biology
- Biomolecular and Organic Electronics
- Linköping University
- 581 83 Linköping
- Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology
- Biomolecular and Organic Electronics
- Linköping University
- 581 83 Linköping
- Sweden
| |
Collapse
|