101
|
Bähr S, Brinkmann-Chen S, Garcia-Borràs M, Roberts JM, Katsoulis DE, Houk KN, Arnold FH. Selective Enzymatic Oxidation of Silanes to Silanols. Angew Chem Int Ed Engl 2020; 59:15507-15511. [PMID: 32212229 PMCID: PMC7511438 DOI: 10.1002/anie.202002861] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 11/08/2022]
Abstract
Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild-type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non-native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C-H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C-H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire.
Collapse
Affiliation(s)
- Susanne Bähr
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Present address: Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Girona, Spain
| | - John M Roberts
- Dow Core R&D, 633 Washington Street, Midland, MI, 48674, USA
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| |
Collapse
|
102
|
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG. In Vivo Selection for Formate Dehydrogenases with High Efficiency and Specificity toward NADP . ACS Catal 2020; 10:7512-7525. [PMID: 32733773 PMCID: PMC7384739 DOI: 10.1021/acscatal.0c01487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Indexed: 02/06/2023]
Abstract
The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.
Collapse
Affiliation(s)
| | - Carla Calvó-Tusell
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Gabriele M. M. Stoffel
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sílvia Osuna
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Tobias J. Erb
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 16, D-35043 Marburg, Germany
| | - Marc Garcia-Borràs
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
103
|
Knorrscheidt A, Püllmann P, Schell E, Homann D, Freier E, Weissenborn MJ. Identification of Novel Unspecific Peroxygenase Chimeras and Unusual YfeX Axial Heme Ligand by a Versatile High‐Throughput GC‐MS Approach. ChemCatChem 2020. [DOI: 10.1002/cctc.202000618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Pascal Püllmann
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Eugen Schell
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Dominik Homann
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Erik Freier
- CARS Microscopy Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Otto-Hahn-Str. 6b 4227 Dortmund Germany
| | - Martin J. Weissenborn
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
- Institute of Chemisty Martin Luther University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| |
Collapse
|
104
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
105
|
Lindenburg L, Huovinen T, van de Wiel K, Herger M, Snaith MR, Hollfelder F. Split & mix assembly of DNA libraries for ultrahigh throughput on-bead screening of functional proteins. Nucleic Acids Res 2020; 48:e63. [PMID: 32383757 PMCID: PMC7293038 DOI: 10.1093/nar/gkaa270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Site-saturation libraries reduce protein screening effort in directed evolution campaigns by focusing on a limited number of rationally chosen residues. However, uneven library synthesis efficiency leads to amino acid bias, remedied at high cost by expensive custom synthesis of oligonucleotides, or through use of proprietary library synthesis platforms. To address these shortcomings, we have devised a method where DNA libraries are constructed on the surface of microbeads by ligating dsDNA fragments onto growing, surface-immobilised DNA, in iterative split-and-mix cycles. This method-termed SpliMLiB for Split-and-Mix Library on Beads-was applied towards the directed evolution of an anti-IgE Affibody (ZIgE), generating a 160,000-membered, 4-site, saturation library on the surface of 8 million monoclonal beads. Deep sequencing confirmed excellent library balance (5.1% ± 0.77 per amino acid) and coverage (99.3%). As SpliMLiB beads are monoclonal, they were amenable to direct functional screening in water-in-oil emulsion droplets with cell-free expression. A FACS-based sorting of the library beads allowed recovery of hits improved in Kd over wild-type ZIgE by up to 3.5-fold, while a consensus mutant of the best hits provided a 10-fold improvement. With SpliMLiB, directed evolution workflows are accelerated by integrating high-quality DNA library generation with an ultra-high throughput protein screening platform.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Tuomas Huovinen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Kayleigh van de Wiel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Michael R Snaith
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
106
|
Bähr S, Brinkmann‐Chen S, Garcia‐Borràs M, Roberts JM, Katsoulis DE, Houk KN, Arnold FH. Selective Enzymatic Oxidation of Silanes to Silanols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susanne Bähr
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| | - Sabine Brinkmann‐Chen
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| | - Marc Garcia‐Borràs
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
- Present address: Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Girona Spain
| | | | | | - K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Blvd Pasadena CA 91125 USA
| |
Collapse
|
107
|
Xue P, Si T, Mishra S, Zhang L, Choe K, Sweedler JV, Zhao H. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. Biotechnol Bioeng 2020; 117:2131-2138. [PMID: 32219854 DOI: 10.1002/bit.27343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium-chain fatty acids (MCFAs). This is mainly due to the lack of high-throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony-based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography-MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild-type strain. Colony-based MALDI-ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high-throughput manner.
Collapse
Affiliation(s)
- Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Tong Si
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Linzixuan Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kisurb Choe
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan V Sweedler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
108
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
109
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
110
|
Gao X, Zhang X, Zhu N, Mou Y, Zhang H, Liu X, Wei P. Reshaping the substrate binding region of (R)-selective ω-transaminase for asymmetric synthesis of (R)-3-amino-1-butanol. Appl Microbiol Biotechnol 2020; 104:3959-3969. [PMID: 32185434 DOI: 10.1007/s00253-020-10539-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 01/27/2023]
Abstract
(R)-Selective ω-transaminase (ω-TA) is a key enzyme for the asymmetric reductive amination of carbonyl compounds to produce chiral amines which are essential parts of many therapeutic compounds. However, its practical industrial applications are hindered by the low catalytic efficiency and poor thermostability of naturally occurring enzymes. In this work, we report the molecular modification of (R)-selective ω-TA from Aspergillus terreus (AtTA) to allow asymmetric reductive amination of 4-hydroxy-2-butanone, producing (R)-3-amino-1-butanol. Based on substrate docking analysis, 4 residues in the substrate tunnel and binding pocket of AtTA were selected as mutation hotspots. The screening procedure was facilitated by the construction of a "small-intelligent" library and the use of thin-layer chromatography for preliminary screening. The resulting mutant AtTA-M5 exhibited a 9.6-fold higher kcat/Km value and 9.4 °C higher [Formula: see text] than that of wild-type AtTA. Furthermore, the conversion of 20 and 50 g L-1 4-hydroxy-2-butanone by AtTA-M5 reached 90.8% and 79.1%, suggesting significant potential for production of (R)-3-amino-1-butanol. Under the same conditions, wild-type AtTA achieved less than 5% conversion. Moreover, the key mutation (S215P in AtTA) was validated in 7 other (R)-selective ω-TAs, indicating its general applicability in improving the catalytic efficiency of homologous (R)-selective ω-TAs.
Collapse
Affiliation(s)
- Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China.
| | - Xin Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Yi Mou
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai, 264005, Shandong, China
| | - Xin Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
111
|
Unbiased libraries in protein directed evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140321. [DOI: 10.1016/j.bbapap.2019.140321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
112
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Semi-rational hinge engineering: modulating the conformational transformation of glutamate dehydrogenase for enhanced reductive amination activity towards non-natural substrates. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02576f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hinge region was identified to be a promising hotspot for activity engineering of GluDHs, providing a potent alternative for developing high-performance biocatalysts toward valuable optically pure l-amino acid production.
Collapse
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yayun Liu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lijun Meng
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haisheng Zhou
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jianping Wu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lirong Yang
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
113
|
D'Ambrosio V, Pramanik S, Goroncy K, Jakočiūnas T, Schönauer D, Davari MD, Schwaneberg U, Keasling JD, Jensen MK. Directed evolution of VanR biosensor specificity in yeast. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotno.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
114
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
115
|
Zong XC, Li C, Xu YH, Hu D, Hu BC, Zang J, Wu MC. Substantially improving the enantioconvergence of PvEH1, a Phaseolus vulgaris epoxide hydrolase, towards m-chlorostyrene oxide by laboratory evolution. Microb Cell Fact 2019; 18:202. [PMID: 31739786 PMCID: PMC6859628 DOI: 10.1186/s12934-019-1252-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/09/2019] [Indexed: 12/01/2022] Open
Abstract
Background Epoxide hydrolase can regioselectively catalyze the oxirane ring-opening hydrolysis of rac-epoxides producing the corresponding chiral diols. In our laboratory, a gene named pveh1 encoding an EH from Phaseolus vulgaris was cloned. Although the directed modification of PvEH1 was carried out, the mutant PvEH1Y3 showed a limited degree of enantioconvergence towards racemic (rac-) m-chlorostyrene oxide (mCSO). Results PvEH1 and PvEH1Y3 were combinatively subjected to laboratory evolution to further enhance the enantioconvergence of PvEH1Y3 towards rac-mCSO. Firstly, the substrate-binding pocket of PvEH1 was identified using a CAVER 3.0 software, and divided into three zones. After all residues in zones 1 and 3 were subjected to leucine scanning, two E. coli transformants, E. coli/pveh1Y149L and /pveh1P184L, were selected, by which rac-mCSO was transformed into (R)-m-chlorophenyl-1,2-ethanediol (mCPED) having 55.1% and 27.2% eep. Secondly, two saturation mutagenesis libraries, E. coli/pveh1Y149X and /pveh1P184X (X: any one of 20 residues) were created at sites Y149 and P184 of PvEH1. Among all transformants, both E. coli/pveh1Y149L (65.8% αS and 55.1% eep) and /pveh1P184W (66.6% αS and 59.8% eep) possessed the highest enantioconvergences. Finally, the combinatorial mutagenesis was conducted by replacements of both Y149L and P184W in PvEH1Y3, constructing E. coli/pveh1Y3Z2, whose αS reached 97.5%, higher than that (75.3%) of E. coli/pveh1Y3. In addition, the enantioconvergent hydrolysis of 20 mM rac-mCSO was performed by E. coli/pveh1Y3Z2, giving (R)-mCPED with 95.2% eep and 97.2% yield. Conclusions In summary, the enantioconvergence of PvEH1Y3Z2 was successfully improved by laboratory evolution, which was based on the study of substrate-binding pocket by leucine scanning. Our present work introduced an effective strategy for the directed modification of enantioconvergence of PvEH1.
Collapse
Affiliation(s)
- Xun-Cheng Zong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chuang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao-Hui Xu
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jia Zang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
116
|
Wang X, Jing X, Deng Y, Nie Y, Xu F, Xu Y, Zhao YL, Hunt JF, Montelione GT, Szyperski T. Evolutionary coupling saturation mutagenesis: Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. FEBS Lett 2019; 594:799-812. [PMID: 31665817 DOI: 10.1002/1873-3468.13652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yi Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Fei Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, and Center for Biotechnology and Integrative Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, NY, USA
| |
Collapse
|
117
|
Bera K, Kamajaya A, Shivange AV, Muthusamy AK, Nichols AL, Borden PM, Grant S, Jeon J, Lin E, Bishara I, Chin TM, Cohen BN, Kim CH, Unger EK, Tian L, Marvin JS, Looger LL, Lester HA. Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum. Front Cell Neurosci 2019; 13:499. [PMID: 31798415 PMCID: PMC6874132 DOI: 10.3389/fncel.2019.00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.
Collapse
Affiliation(s)
- Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aron Kamajaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elaine Lin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elizabeth K Unger
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
118
|
Viña-Gonzalez J, Martinez AT, Guallar V, Alcalde M. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140293. [PMID: 31676448 DOI: 10.1016/j.bbapap.2019.140293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Furan-2,5-dicarboxylic acid (FDCA) is a building block of biodegradable plastics that can be used to replace those derived from fossil carbon sources. In recent years, much interest has focused on the synthesis of FDCA from the bio-based 5-hydroxymethylfurfural (HMF) through a cascade of enzyme reactions. Aryl-alcohol oxidase (AAO) and 5-hydroxymethylfurfural oxidase (HMFO) are glucose-methanol-choline flavoenzymes that may be used to produce FDCA from HMF through three sequential oxidations, and without the assistance of auxiliary enzymes. Such a challenging process is dependent on the degree of hydration of the original aldehyde groups and of those formed, the rate-limiting step lying in the final oxidation of the intermediate 5-formyl-furancarboxylic acid (FFCA) to FDCA. While HMFO accepts FFCA as a final substrate in the HMF reaction pathway, AAO is virtually incapable of oxidizing it. Here, we have engineered AAO to perform the stepwise oxidation of HMF to FDCA through its structural alignment with HMFO and directed evolution. With a 3-fold enhanced catalytic efficiency for HMF and a 6-fold improvement in overall conversion, this evolved AAO is a promising point of departure for further engineering aimed at generating an efficient biocatalyst to synthesize FDCA from HMF.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angel T Martinez
- Biological Research Center, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 31, 08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
119
|
Santos YLDL, Chew-Fajardo YL, Brault G, Doucet N. Dissecting the evolvability landscape of the CalB active site toward aromatic substrates. Sci Rep 2019; 9:15588. [PMID: 31666622 PMCID: PMC6821916 DOI: 10.1038/s41598-019-51940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/07/2019] [Indexed: 01/17/2023] Open
Abstract
A key event in the directed evolution of enzymes is the systematic use of mutagenesis and selection, a process that can give rise to mutant libraries containing millions of protein variants. To this day, the functional analysis and identification of active variants among such high numbers of mutational possibilities is not a trivial task. Here, we describe a combinatorial semi-rational approach to partly overcome this challenge and help design smaller and smarter mutant libraries. By adapting a liquid medium transesterification assay in organic solvent conditions with a combination of virtual docking, iterative saturation mutagenesis, and residue interaction network (RIN) analysis, we engineered lipase B from P. antarctica (CalB) to improve enzyme recognition and activity against the bulky aromatic substrates and flavoring agents methyl cinnamate and methyl salicylate. Substrate-imprinted docking was used to target active-site positions involved in enzyme-substrate and enzyme-product complexes, in addition to identifying 'hot spots' most likely to yield active variants. This iterative semi-rational design strategy allowed selection of CalB variants exhibiting increased activity in just two rounds of site-saturation mutagenesis. Beneficial replacements were observed by screening only 0.308% of the theoretical library size, illustrating how semi-rational approaches with targeted diversity can quickly facilitate the discovery of improved activity variants relevant to a number of biotechnological applications.
Collapse
Affiliation(s)
- Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Ying Lian Chew-Fajardo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Brault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
- PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
120
|
Enhancing thermostability by modifying flexible surface loops in an evolved high‐redox potential laccase. AIChE J 2019. [DOI: 10.1002/aic.16747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
121
|
Tonin F, Otten LG, Arends IWCE. NAD + -Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. CHEMSUSCHEM 2019; 12:3192-3203. [PMID: 30265441 PMCID: PMC6681466 DOI: 10.1002/cssc.201801862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Indexed: 05/12/2023]
Abstract
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α-OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β-OH). With a view to developing robust and active biocatalysts, novel NADH-active 7β-HSDH species are necessary to enable a solely NAD+ -dependent redox-neutral cascade for UDCA production. A wild-type NADH-dependent 7β-HSDH from Lactobacillus spicheri (Ls7β-HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD+ -dependent 7β-HSDH enzyme in combination with 7α-HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD+ , resulting in high yields (>90 %) of UCA and UDCA.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Linda G. Otten
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Isabel W. C. E. Arends
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
- Present address: Faculty of ScienceUtrecht UniversityBudapestlaan 63584 CDUtrechtThe Netherlands
| |
Collapse
|
122
|
Li J, Yu L, Li J, Xie L, Zhang R, Wang H. Establishment of a high throughput-screening system for nucleoside deoxyribosyltransferase II mutant enzymes with altered substrate specificity. J Biosci Bioeng 2019; 128:22-27. [DOI: 10.1016/j.jbiosc.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
|
123
|
Burke AJ, Lovelock SL, Frese A, Crawshaw R, Ortmayer M, Dunstan M, Levy C, Green AP. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 2019; 570:219-223. [PMID: 31132786 DOI: 10.1038/s41586-019-1262-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.
Collapse
Affiliation(s)
- Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Amina Frese
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mary Ortmayer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mark Dunstan
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
124
|
Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int J Mol Sci 2019; 20:ijms20092343. [PMID: 31083552 PMCID: PMC6539999 DOI: 10.3390/ijms20092343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5–7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.
Collapse
Affiliation(s)
- Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Matthias Hauf
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Florian Richter
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
125
|
Cho I, Jia ZJ, Arnold FH. RETRACTED: Site-selective enzymatic C‒H amidation for synthesis of diverse lactams. Science 2019; 364:575-578. [PMID: 31073063 DOI: 10.1126/science.aaw9068] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 02/23/2024]
Abstract
A major challenge in carbon‒hydrogen (C‒H) bond functionalization is to have the catalyst control precisely where a reaction takes place. In this study, we report engineered cytochrome P450 enzymes that perform unprecedented enantioselective C‒H amidation reactions and control the site selectivity to divergently construct β-, γ-, and δ-lactams, completely overruling the inherent reactivities of the C‒H bonds. The enzymes, expressed in Escherichia coli cells, accomplish this abiological carbon‒nitrogen bond formation via reactive iron-bound carbonyl nitrenes generated from nature-inspired acyl-protected hydroxamate precursors. This transformation is exceptionally efficient (up to 1,020,000 total turnovers) and selective (up to 25:1 regioselectivity and 97%, please refer to compound 2v enantiomeric excess), and can be performed easily on preparative scale.
Collapse
Affiliation(s)
- Inha Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi-Jun Jia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
126
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
127
|
Machine learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad Sci U S A 2019; 116:8852-8858. [PMID: 30979809 DOI: 10.1073/pnas.1901979116] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To reduce experimental effort associated with directed protein evolution and to explore the sequence space encoded by mutating multiple positions simultaneously, we incorporate machine learning into the directed evolution workflow. Combinatorial sequence space can be quite expensive to sample experimentally, but machine-learning models trained on tested variants provide a fast method for testing sequence space computationally. We validated this approach on a large published empirical fitness landscape for human GB1 binding protein, demonstrating that machine learning-guided directed evolution finds variants with higher fitness than those found by other directed evolution approaches. We then provide an example application in evolving an enzyme to produce each of the two possible product enantiomers (i.e., stereodivergence) of a new-to-nature carbene Si-H insertion reaction. The approach predicted libraries enriched in functional enzymes and fixed seven mutations in two rounds of evolution to identify variants for selective catalysis with 93% and 79% ee (enantiomeric excess). By greatly increasing throughput with in silico modeling, machine learning enhances the quality and diversity of sequence solutions for a protein engineering problem.
Collapse
|
128
|
Mateljak I, Monza E, Lucas MF, Guallar V, Aleksejeva O, Ludwig R, Leech D, Shleev S, Alcalde M. Increasing Redox Potential, Redox Mediator Activity, and Stability in a Fungal Laccase by Computer-Guided Mutagenesis and Directed Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00531] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ivan Mateljak
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| | - Emanuele Monza
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Maria Fatima Lucas
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Olga Aleksejeva
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Roland Ludwig
- Department of Food Sciences and Technology, VIBT—Vienna Institute of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Donal Leech
- Department of Chemistry, National University of Ireland, Galway University Road, SW4 794 Galway, Ireland
| | - Sergey Shleev
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| |
Collapse
|
129
|
Viña‐Gonzalez J, Jimenez‐Lalana D, Sancho F, Serrano A, Martinez AT, Guallar V, Alcalde M. Structure‐Guided Evolution of Aryl Alcohol Oxidase from
Pleurotus eryngii
for the Selective Oxidation of Secondary Benzyl Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Javier Viña‐Gonzalez
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| | - Diego Jimenez‐Lalana
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| | - Ferran Sancho
- Barcelona Supercomputing Center Jordi Girona 31 08034 Barcelona Spain
| | - Ana Serrano
- Biological Research CenterCSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Angel T. Martinez
- Biological Research CenterCSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Victor Guallar
- Barcelona Supercomputing Center Jordi Girona 31 08034 Barcelona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of CatalysisCSIC, Cantoblanco 28049 Madrid Spain Fax: (+31)-91 5854760; phone: (+34)-91 5854806
| |
Collapse
|
130
|
Liang AD, Serrano-Plana J, Peterson RL, Ward TR. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Acc Chem Res 2019; 52:585-595. [PMID: 30735358 PMCID: PMC6427477 DOI: 10.1021/acs.accounts.8b00618] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Artificial metalloenzymes (ArMs) result from
anchoring a metal-containing
moiety within a macromolecular scaffold (protein or oligonucleotide).
The resulting hybrid catalyst combines attractive features of both
homogeneous catalysts and enzymes. This strategy includes the possibility
of optimizing the reaction by both chemical (catalyst design) and
genetic means leading to achievement of a novel degree of (enantio)selectivity,
broadening of the substrate scope, or increased activity, among others.
In the past 20 years, the Ward group has exploited, among others,
the biotin–(strept)avidin technology to localize a catalytic
moiety within a well-defined protein environment. Streptavidin has
proven versatile for the implementation of ArMs as it offers the following
features: (i) it is an extremely robust protein scaffold, amenable
to extensive genetic manipulation and mishandling, (ii) it can be
expressed in E. coli to very high titers (up to >8
g·L–1 in fed-batch cultures), and (iii) the
cavity surrounding the biotinylated cofactor is commensurate with
the size of a typical metal-catalyzed transition state. Relying on
a chemogenetic optimization strategy, varying the orientation and
the nature of the biotinylated cofactor within genetically engineered
streptavidin, 12 reactions have been reported by the Ward group thus
far. Recent efforts within our group have focused on extending the
ArM technology to create complex systems for integration into biological
cascade reactions and in vivo. With the long-term
goal of complementing in vivo natural enzymes with
ArMs, we summarize herein three complementary
research lines: (i) With the aim of mimicking complex cross-regulation
mechanisms prevalent in metabolism, we have engineered enzyme cascades,
including cross-regulated reactions, that rely on ArMs. These efforts
highlight the remarkable (bio)compatibility and complementarity of
ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis
in the cytoplasm of aerobic organisms was achieved with ArMs that
are compatible with a glutathione-rich environment. This feat is demonstrated
in HEK-293T cells that are engineered with a gene switch that is upregulated
by an ArM equipped with a cell-penetrating module. (iii) Finally,
ArMs offer the fascinating prospect of “endowing organometallic
chemistry with a genetic memory.” With this goal in mind, we
have identified E. coli’s periplasmic space
and surface display to compartmentalize an ArM, while maintaining
the critical phenotype–genotype linkage. This strategy offers
a straightforward means to optimize by directed evolution the catalytic
performance of ArMs. Five reactions have been optimized following
these compartmentalization strategies: ruthenium-catalyzed olefin
metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer
hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion
in C–H bonds. Importantly, >100 turnovers were achieved
with
ArMs in E. coli whole cells, highlighting the multiple
turnover catalytic nature of these systems.
Collapse
Affiliation(s)
- Alexandria Deliz Liang
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Joan Serrano-Plana
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Ryan L. Peterson
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| |
Collapse
|
131
|
Li TB, Zhao FJ, Liu Z, Jin Y, Liu Y, Pei XQ, Zhang ZG, Wang G, Wu ZL. Structure-guided engineering of ChKRED20 from Chryseobacterium sp. CA49 for asymmetric reduction of aryl ketoesters. Enzyme Microb Technol 2019; 125:29-36. [PMID: 30885322 DOI: 10.1016/j.enzmictec.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
Abstract
ChKRED20 is a robust NADH-dependent ketoreductase identified from the genome of Chryseobacterium sp. CA49 that can use 2-propanol as the ultimate reducing agent. The wild-type can reduce over 100 g/l ketones for some pharmaceutical relevant substrates, exhibiting a remarkable potential for industrial application. In this work, to overcome the limitation of ChKRED20 to aryl ketoesters, we first refined the X-ray crystal structure of ChKRED20/NAD+ complex at a resolution of 1.6 Å, and then performed three rounds of iterative saturation mutagenesis at critical amino acid sites to reshape the active cavity of the enzyme. For methyl 2-oxo-2-phenylacetate and ethyl 3-oxo-3-phenylpropanoate, several gain-of-activity mutants were achieved, and for ethyl 2-oxo-4-phenylbutanoate, improved mutants were achieved with kcat/Km increasing to 196-fold of the wild-type. All three substrates were completely reduced at 100 g/l loading catalyzed with selected ChKRED20 mutants, and deliver the corresponding chiral alcohols with >90% isolated yield and 97 - >99%ee.
Collapse
Affiliation(s)
- Tong-Biao Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Jiao Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yun Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Xiao-Qiong Pei
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Zhong-Liu Wu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
132
|
Chen K, Huang X, Zhang SQ, Zhou AZ, Kan SBJ, Hong X, Arnold FH. Engineered Cytochrome c-Catalyzed Lactone-Carbene B-H Insertion. Synlett 2019; 30:378-382. [PMID: 30930550 PMCID: PMC6436545 DOI: 10.1055/s-0037-1611662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous work has demonstrated that variants of a heme protein, Rhodothermus marinus cytochrome c (Rma cyt c), catalyze abiological carbene boron-hydrogen (B-H) bond insertion with high efficiency and selectivity. Here we investigated this carbon-boron bondforming chemistry with cyclic, lactone-based carbenes. Using directed evolution, we obtained a Rma cyt c variant BOR LAC that shows high selectivity and efficiency for B-H insertion of 5- and 6-membered lactone carbenes (up to 24,500 total turnovers and 97.1:2.9 enantiomeric ratio). The enzyme shows low activity with a 7-membered lactone carbene. Computational studies revealed a highly twisted geometry of the 7membered lactone carbene intermediate relative to 5- and 6-membered ones. Directed evolution of cytochrome c together with computational characterization of key iron-carbene intermediates has allowed us to expand the scope of enzymatic carbene B-H insertion to produce new lactone-based organoborons.
Collapse
Affiliation(s)
- Kai Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 31007, P. R. of China
| | - Andrew Z Zhou
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - S B Jennifer Kan
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 31007, P. R. of China
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
133
|
Su C, Gong JS, Sun YX, Qin J, Zhai S, Li H, Li H, Lu ZM, Xu ZH, Shi JS. Combining Pro-peptide Engineering and Multisite Saturation Mutagenesis To Improve the Catalytic Potential of Keratinase. ACS Synth Biol 2019; 8:425-433. [PMID: 30668109 DOI: 10.1021/acssynbio.8b00442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keratinases are becoming biotechnologically important since they have shown potential in hydrolysis of recalcitrant keratins with highly rigid and strongly cross-linked structures. However, the large-scale application of keratinases has been limited by the inefficient expression level and low enzyme activity. In this work, we employed pro-peptide engineering and saturation mutagenesis to construct excellent keratinase variants with improved activities. It turned out that amino acid substitutions at the pro-peptide cleavage site (P1) could accelerate the release of active mature enzymes, resulting in a 3-fold activity increase. Eighteen sites of the pro-peptide area were targeted for codon mutagenesis, and a multisite saturation mutagenesis library of the six potential sites was generated, achieving a significant improvement of keratinase activity from 179 to 1114 units/mL. Also, the mutants exhibited alterant catalytic properties. Finally, fermentation for keratinase production in a 15 L fermenter was carried out, and the enzyme activity reached up to over 3000 units/mL. Our results demonstrated that pro-peptide engineering played a crucial role in high expression and engineering of proteases. This study provides a universal route toward improvement of industrial enzymes that were first synthesized as precursors in the form of pre-pro-protein.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Yu-Xin Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Shen Zhai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen-Ming Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
134
|
Identification of Thermus aquaticus DNA polymerase variants with increased mismatch discrimination and reverse transcriptase activity from a smart enzyme mutant library. Sci Rep 2019; 9:590. [PMID: 30679705 PMCID: PMC6345897 DOI: 10.1038/s41598-018-37233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
DNA polymerases the key enzymes for several biotechnological applications. Obviously, nature has not evolved these enzymes to be compatible with applications in biotechnology. Thus, engineering of a natural scaffold of DNA polymerases may lead to enzymes improved for several applications. Here, we investigated a two-step approach for the design and construction of a combinatorial library of mutants of KlenTaq DNA polymerase. First, we selected amino acid sites for saturation mutagenesis that interact with the primer/template strands or are evolutionarily conserved. From this library, we identified mutations that little interfere with DNA polymerase activity. Next, these functionally active mutants were combined randomly to construct a second library with enriched sequence diversity. We reasoned that the combination of mutants that have minuscule effect on enzyme activity and thermostability, will result in entities that have an increased mutation load but still retain activity. Besides activity and thermostability, we screened the library for entities with two distinct properties. Indeed, we identified two different KlenTaq DNA polymerase variants that either exhibit increased mismatch extension discrimination or increased reverse transcription PCR activity, respectively.
Collapse
|
135
|
Wang X, Nie Y, Xu Y. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13236-13242. [PMID: 30499289 DOI: 10.1021/acs.jafc.8b06002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pullulanases are well-known debranching enzymes that hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. However, most of the pullulanases exhibit limited activity for practical applications. Here, two sites (787 and 621) lining the catalytic pocket of Bacillus naganoensis pullulanase were identified as being critical for enzymatic activity by triple-code saturation mutagenesis. Subsequently, both sites were subjected to NNK-based saturation mutagenesis to obtain positive variants. Among the variants showing enhanced activity, the enzymatic activity and specific activity of D787C were 1.5-fold higher than those of the wild-type (WT). D787C also showed a 1.8-fold increase in kcat and a 1.7-fold increase in kcat/ Km. In addition, D787C maintained higher activity compared with that of WT at temperatures over 60 °C. All the positive variants showed higher acid resistance, with D787C maintaining 90% residual activity at pH 4.0. Thus, enzymes with improved properties were obtained by saturation mutagenesis at the active site.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , China
| |
Collapse
|
136
|
Zorn K, Oroz‐Guinea I, Brundiek H, Dörr M, Bornscheuer UT. Alteration of Chain Length Selectivity of Candida antarctica Lipase A by Semi-Rational Design for the Enrichment of Erucic and Gondoic Fatty Acids. Adv Synth Catal 2018; 360:4115-4131. [PMID: 30555288 PMCID: PMC6283244 DOI: 10.1002/adsc.201800889] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 11/07/2022]
Abstract
Biotechnological strategies using renewable materials as starting substrates are a promising alternative to traditional oleochemical processes for the isolation of different fatty acids. Among them, long chain mono-unsaturated fatty acids are especially interesting in industrial lipid modification, since they are precursors of several economically relevant products, including detergents, plastics and lubricants. Therefore, the aim of this study was to develop an enzymatic method in order to increase the percentage of long chain mono-unsaturated fatty acids from Camelina and Crambe oil ethyl ester derivatives, by using selective lipases. Specifically, the focus was on the enrichment of gondoic (C20:1 cisΔ11) and erucic acid (C22:1 cisΔ13) from Camelina and Crambe oil derivatives, respectively. The pursuit of this goal entailed several steps, including: (i) the choice of a suitable lipase scaffold to serve as a protein engineering template (Candida antarctica lipase A); (ii) the identification of potential amino acid targets to disrupt the binding tunnel at the adequate location; (iii) the design, creation and high-throughput screening of lipase mutant libraries; (iv) the study of the selectivity towards different chain length p-nitrophenyl fatty acid esters of the best hits found, as well as the analysis of the contribution of each amino acid change and the outcome of combining several of the aforementioned residue alterations and, finally, (v) the selection and application of the most promising candidates for the fatty acid enrichment biocatalysis. As a result, enrichment of C22:1 from Crambe ethyl esters was achieved either, in the free fatty acid fraction (wt, 78%) or in the esterified fraction (variants V1, 77%; V9, 78% and V19, 74%). Concerning the enrichment of C20:1 when Camelina oil ethyl esters were used as substrate, the best variant was the single mutant V290W, which doubled its content in the esterified fraction from approximately 15% to 34%. A moderately lower increase was achieved by V9 and its two derived triple mutant variants V19 and V20 (27%).
Collapse
Affiliation(s)
- Katja Zorn
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Isabel Oroz‐Guinea
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | | | - Mark Dörr
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Uwe T. Bornscheuer
- University of Greifswald, Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
137
|
Saito Y, Oikawa M, Nakazawa H, Niide T, Kameda T, Tsuda K, Umetsu M. Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins. ACS Synth Biol 2018; 7:2014-2022. [PMID: 30103599 DOI: 10.1021/acssynbio.8b00155] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular evolution based on mutagenesis is widely used in protein engineering. However, optimal proteins are often difficult to obtain due to a large sequence space. Here, we propose a novel approach that combines molecular evolution with machine learning. In this approach, we conduct two rounds of mutagenesis where an initial library of protein variants is used to train a machine-learning model to guide mutagenesis for the second-round library. This enables us to prepare a small library suited for screening experiments with high enrichment of functional proteins. We demonstrated a proof-of-concept of our approach by altering the reference green fluorescent protein (GFP) so that its fluorescence is changed into yellow. We successfully obtained a number of proteins showing yellow fluorescence, 12 of which had longer wavelengths than the reference yellow fluorescent protein (YFP). These results show the potential of our approach as a powerful method for directed evolution of fluorescent proteins.
Collapse
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Misaki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koji Tsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
138
|
Tao X, Wang T, Su L, Wu J. Enhanced 2- O-α-d-Glucopyranosyl-l-ascorbic Acid Synthesis through Iterative Saturation Mutagenesis of Acceptor Subsite Residues in Bacillus stearothermophilus NO2 Cyclodextrin Glycosyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9052-9060. [PMID: 30091914 DOI: 10.1021/acs.jafc.8b03080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low synthesis yields of the l-ascorbic acid (l-AA) derivative 2- O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) limit its application in the food industry. In this work, the AA-2G synthesis yield of Bacillus stearothermophilus NO2 cyclodextrin glycosyltransferase (CGTase) was improved. Nine residues within 10 Å of the catalytic residue Glu253 displaying ≤30% conservation and located in the acceptor subsite were selected for iterative saturation mutagenesis. The best mutant, K228R/M230L, produced a higher AA-2G yield with maltodextrin as the glucosyl donor than that produced by its parent wild-type. The l-AA Km values of the mutant K228R/M230L decreased by 35%, whereas the kcat/ Km increased by 2.69-fold. Kinetic analysis indicated that K228R/M230L displayed enhanced l-AA specificity. These results demonstrate that acceptor subsite residues play an important role in acceptor substrate specificity. Mutant K228R/M230L afforded the highest AA-2G concentration (211 g L-1, 624 mM) reported to date after optimization of the reaction conditions.
Collapse
Affiliation(s)
- Xiumei Tao
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Tian Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| |
Collapse
|
139
|
Xu GC, Wang Y, Tang MH, Zhou JY, Zhao J, Han RZ, Ni Y. Hydroclassified Combinatorial Saturation Mutagenesis: Reshaping Substrate Binding Pockets of KpADH for Enantioselective Reduction of Bulky–Bulky Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guo-Chao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming-Hui Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jie-Yu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rui-Zhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
140
|
Kawai F, Nakamura A, Visootsat A, Iino R. Plasmid-Based One-Pot Saturation Mutagenesis and Robot-Based Automated Screening for Protein Engineering. ACS OMEGA 2018; 3:7715-7726. [PMID: 30221239 PMCID: PMC6130897 DOI: 10.1021/acsomega.8b00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 05/24/2023]
Abstract
We evaluated a method for protein engineering using plasmid-based one-pot saturation mutagenesis and robot-based automated screening. When the biases in nucleotides and amino acids were assessed for a loss-of-function point mutation in green fluorescent protein, the ratios of gain-of-function mutants were not significantly different from the expected values for the primers among the three different suppliers. However, deep sequencing analysis revealed that the ratios of nucleotides in the primers were highly biased among the suppliers. Biases for NNB were less severe than for NNN. We applied this method to screen a fusion protein of two chitinases, ChiA and ChiB (ChiAB). Three NNB codons as well as tyrosine and serine (X1YSX2X3) were inserted to modify the surface structure of ChiAB. We observed significant amino acid bias at the X3 position in water-soluble, active ChiAB-X1YSX2X3 mutants. Examination of the crystal structure of one active mutant, ChiAB-FYSFV, revealed that the X3 residue plays an important role in structure stabilization.
Collapse
Affiliation(s)
- Fumihiro Kawai
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Akasit Visootsat
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Ryota Iino
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
141
|
Abstract
Directed evolution is a powerful technique for generating tailor-made enzymes for a wide range of biocatalytic applications. Following the principles of natural evolution, iterative cycles of mutagenesis and screening or selection are applied to modify protein properties, enhance catalytic activities, or develop completely new protein catalysts for non-natural chemical transformations. This review briefly surveys the experimental methods used to generate genetic diversity and screen or select for improved enzyme variants. Emphasis is placed on a key challenge, namely how to generate novel catalytic activities that expand the scope of natural reactions. Two particularly effective strategies, exploiting catalytic promiscuity and rational design, are illustrated by representative examples of successfully evolved enzymes. Opportunities for extending these approaches to more complex biocatalytic systems are also considered.
Collapse
Affiliation(s)
- Cathleen Zeymer
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland;,
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland;,
| |
Collapse
|
142
|
Abstract
Directed evolution (DE) is a powerful tool for optimizing an enzyme's properties toward a particular objective, such as broader substrate scope, greater thermostability, or increased kcat. A successful DE project requires the generation of genetic diversity and subsequent screening or selection to identify variants with improved fitness. In contrast to random methods (error-prone PCR or DNA shuffling), site-directed mutagenesis enables the rational design of variant libraries and provides control over the nature and frequency of the encoded mutations. Knowledge of protein structure, dynamics, enzyme mechanisms, and natural evolution demonstrates that multiple (combinatorial) mutations are required to discover the most improved variants. To this end, we describe an experimentally straightforward and low-cost method for the preparation of combinatorial variant libraries. Our approach employs a two-step PCR protocol, first producing mutagenic megaprimers, which can then be combined in a "mix-and-match" fashion to generate diverse sets of combinatorial variant libraries both quickly and accurately.
Collapse
|
143
|
Heinisch T, Schwizer F, Garabedian B, Csibra E, Jeschek M, Vallapurackal J, Pinheiro VB, Marlière P, Panke S, Ward TR. E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chem Sci 2018; 9:5383-5388. [PMID: 30079176 PMCID: PMC6048633 DOI: 10.1039/c8sc00484f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-OmpA anchor. The system was used for the high throughput screening of a bioorthogonal CpRu-based artificial deallylase (ADAse) that uncages an allylcarbamate-protected aminocoumarin 1. Two rounds of directed evolution afforded the double mutant S112M-K121A that displayed a 36-fold increase in surface activity vs. cellular background and a 5.7-fold increased in vitro activity compared to the wild type enzyme. The crystal structure of the best ADAse reveals the importance of mutation S112M to stabilize the cofactor conformation inside the protein.
Collapse
Affiliation(s)
- Tillmann Heinisch
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Fabian Schwizer
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Brett Garabedian
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Eszter Csibra
- Institute of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , UK
| | - Markus Jeschek
- Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 26 , Basel CH-4058 , Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Vitor B Pinheiro
- Institute of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , UK
| | | | - Sven Panke
- Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 26 , Basel CH-4058 , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| |
Collapse
|
144
|
Li A, Acevedo-Rocha CG, Reetz MT. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl Microbiol Biotechnol 2018; 102:6095-6103. [PMID: 29785500 PMCID: PMC6013526 DOI: 10.1007/s00253-018-9041-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Site-saturation mutagenesis (SSM) has been used in directed evolution of proteins for a long time. As a special form of saturation mutagenesis, it involves individual randomization at a given residue with formation of all 19 amino acids. To date, the most efficient embodiment of SSM is a one-step PCR-based approach using NNK codon degeneracy. However, in the case of difficult-to-randomize genes, SSM may not deliver all of the expected 19 mutants, which compels the user to invest further efforts by applying site-directed mutagenesis for the construction of the missing mutants. To solve this problem, we developed a two-step PCR-based technique in which a mutagenic primer and a non-mutagenic (silent) primer are used to generate a short DNA fragment, which is recovered and then employed as a megaprimer to amplify the whole plasmid. The present two-step and older one-step (partially overlapped primer approach) procedures were compared by utilizing cytochrome P450-BM3, which is a "difficult-to-randomize" gene. The results document the distinct superiority of the new method by checking the library quality on DNA level based on massive sequence data, but also at amino acid level. Various future applications in biotechnology can be expected, including the utilization when constructing mutability landscapes, which provide semi-rational information for identifying hot spots for protein engineering and directed evolution.
Collapse
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany.,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | | | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany. .,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany.
| |
Collapse
|
145
|
Rubat S, Varas I, Sepúlveda R, Almonacid D, González-Nilo F, Agosin E. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase. FEMS Yeast Res 2018; 17:3869469. [PMID: 28854674 DOI: 10.1093/femsyr/fox032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/16/2017] [Indexed: 11/13/2022] Open
Abstract
Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.
Collapse
Affiliation(s)
- Sebastián Rubat
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Ignacio Varas
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Romina Sepúlveda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Daniel Almonacid
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago 8370146, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| |
Collapse
|
146
|
Boville CE, Romney DK, Almhjell PJ, Sieben M, Arnold FH. Improved Synthesis of 4-Cyanotryptophan and Other Tryptophan Analogues in Aqueous Solvent Using Variants of TrpB from Thermotoga maritima. J Org Chem 2018; 83:7447-7452. [PMID: 29651849 DOI: 10.1021/acs.joc.8b00517] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of enzymes has become increasingly widespread in synthesis as chemists strive to reduce their reliance on organic solvents in favor of more environmentally benign aqueous media. With this in mind, we previously endeavored to engineer the tryptophan synthase β-subunit (TrpB) for production of noncanonical amino acids that had previously been synthesized through multistep routes involving water-sensitive reagents. This enzymatic platform proved effective for the synthesis of analogues of the amino acid tryptophan (Trp), which are frequently used in pharmaceutical synthesis as well as chemical biology. However, certain valuable compounds, such as the blue fluorescent amino acid 4-cyanotryptophan (4-CN-Trp), could only be made in low yield, even at elevated temperature (75 °C). Here, we describe the engineering of TrpB from Thermotoga maritima that improved synthesis of 4-CN-Trp from 24% to 78% yield. Remarkably, although the final enzyme maintains high thermostability ( T50 = 93 °C), its temperature profile is shifted such that high reactivity is observed at ∼37 °C (76% yield), creating the possibility for in vivo 4-CN-Trp production. The improvements are not specific to 4-CN-Trp; a boost in activity at lower temperature is also demonstrated for other Trp analogues.
Collapse
Affiliation(s)
- Christina E Boville
- Division of Chemistry and Chemical Engineering 210-41 , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - David K Romney
- Division of Chemistry and Chemical Engineering 210-41 , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Patrick J Almhjell
- Division of Chemistry and Chemical Engineering 210-41 , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Michaela Sieben
- Division of Chemistry and Chemical Engineering 210-41 , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41 , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| |
Collapse
|
147
|
Gomez de Santos P, Cañellas M, Tieves F, Younes SHH, Molina-Espeja P, Hofrichter M, Hollmann F, Guallar V, Alcalde M. Selective Synthesis of the Human Drug Metabolite 5′-Hydroxypropranolol by an Evolved Self-Sufficient Peroxygenase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Marina Cañellas
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, van der Massweg 9, 2629HZ Delft, The Netherlands
| | - Sabry H. H. Younes
- Department of Biotechnology, Delft University of Technology, van der Massweg 9, 2629HZ Delft, The Netherlands
| | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Mark 23, 02763 Zittau, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Massweg 9, 2629HZ Delft, The Netherlands
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| |
Collapse
|
148
|
Chen K, Huang X, Kan SBJ, Zhang RK, Arnold FH. Enzymatic construction of highly strained carbocycles. Science 2018; 360:71-75. [PMID: 29622650 DOI: 10.1126/science.aar4239] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Small carbocycles are structurally rigid and possess high intrinsic energy due to their ring strain. These features lead to broad applications but also create challenges for their construction. We report the engineering of hemeproteins that catalyze the formation of chiral bicyclobutanes, one of the most strained four-membered systems, via successive carbene addition to unsaturated carbon-carbon bonds. Enzymes that produce cyclopropenes, putative intermediates to the bicyclobutanes, were also identified. These genetically encoded proteins are readily optimized by directed evolution, function in Escherichia coli, and act on structurally diverse substrates with high efficiency and selectivity, providing an effective route to many chiral strained structures. This biotransformation is easily performed at preparative scale, and the resulting strained carbocycles can be derivatized, opening myriad potential applications.
Collapse
Affiliation(s)
- Kai Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - S B Jennifer Kan
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruijie K Zhang
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
149
|
Mora-Villalobos JA, Zeng AP. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. J Biol Eng 2018; 12:3. [PMID: 29568327 PMCID: PMC5856393 DOI: 10.1186/s13036-018-0094-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
Background Tryptophan derivatives such as 5-hydroxytryptophan (5HTP) and serotonin are valuable molecules with pharmaceutical interest. 5HTP is presently mainly obtained by extraction from the plant Griffonia simplicifolia and serotonin is produced by chemical synthesis. A simple biotechnological method for the production of these compounds is desired. Results In a first attempt to synthesize serotonin from glucose, we used a single engineered Escherichia coli strain and observed a low production of maximal 0.8 ± 0.2 mg/L of serotonin, probably due to the undesired site-reaction of direct decarboxylation of tryptophan and the consequent decrease of the precursor 5HTP. To circumvent this problem, we have constructed a stepwise system in which the 5HTP production and the serotonin conversion are separated. 962 ± 58 mg/L of 5HTP was produced in the first step using a recombinant strain with a semi-rationally engineered aromatic amino acid hydroxylase, the highest concentration reported so far. In a subsequent step of 5HTP bioconversion using a recombinant strain harboring a tryptophan decarboxylase, 154.3 ± 14.3 mg/L of serotonin was produced. Conclusions We present results of a two-stage fermentation process for the production of 5HTP and serotonin. The first strain is a highly efficient 5HTP producer, and after fermentation the supernatant is separated and used for the production of serotonin. This is the first report for the microbial production of serotonin from glucose.
Collapse
Affiliation(s)
- José-Aníbal Mora-Villalobos
- 1Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany.,Centro Nacional de Innovaciones Biotecnológicas, Centro Nacional de Alta Tecnología, San José, Costa Rica
| | - An-Ping Zeng
- 1Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
150
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|