101
|
Cui ZK, Sun JA, Baljon JJ, Fan J, Kim S, Wu BM, Aghaloo T, Lee M. Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair. Acta Biomater 2017; 58:214-224. [PMID: 28578107 DOI: 10.1016/j.actbio.2017.05.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 01/15/2023]
Abstract
The use of small molecular drugs with gene manipulation offers synergistic therapeutic efficacy by targeting multiple signaling pathways for combined treatment. Stimulation of mesenchymal stem cells (MSCs) with osteoinductive small molecule phenamil combined with suppression of noggin is a promising therapeutic strategy that increases bone morphogenetic protein (BMP) signaling and bone repair. Our cationic Sterosome formulated with stearylamine (SA) and cholesterol (Chol) is an attractive co-delivery system that not only forms stable complexes with small interfering RNA (siRNA) molecules but also solubilizes hydrophobic small molecules in a single vehicle, for directing stem cell differentiation. Herein, we demonstrate the ability of SA/Chol Sterosomes to simultaneously deliver hydrophobic small molecule phenamil and noggin-directed siRNA to enhance osteogenic differentiation of MSCs both in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. These results suggest a novel liposomal platform to simultaneously deliver therapeutic genes and small molecules for combined therapy. STATEMENT OF SIGNIFICANCE Application of phenamil, a small molecular bone morphogenetic protein (BMP) stimulator, combined with suppression of natural BMP antagonists such as noggin is a promising therapeutic strategy to enhance bone regeneration. Here, we present a novel strategy to co-deliver hydrophobic small molecule phenamil and noggin-targeted siRNA via cationic Sterosomes formed with stearylamine (SA) and high content of cholesterol (Chol) to enhance osteogenesis and bone repair. SA/Chol Sterosomes demonstrated high phenamil encapsulation efficiency, supported sustained release of encapsulated drugs, and significantly reduced drug dose requirements to induce osteogenic differentiation of mesenchymal stem cells (MSCs). Simultaneous deliver of phenamil and noggin siRNA in a single vehicle synergistically enhanced MSC osteogenesis and calvarial bone repair. This study suggests a new non-phospholipid liposomal formulation to simultaneously deliver small molecules and therapeutic genes for combined treatment.
Collapse
|
102
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
103
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
104
|
Wagner MJ, Mitra R, McArthur MJ, Baze W, Barnhart K, Wu SY, Rodriguez-Aguayo C, Zhang X, Coleman RL, Lopez-Berestein G, Sood AK. Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Mol Cancer Ther 2017; 16:1114-1123. [PMID: 28265009 PMCID: PMC5457703 DOI: 10.1158/1535-7163.mct-16-0541] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
Abstract
To address the need for efficient and biocompatible delivery systems for systemic siRNA delivery, we developed 1,2-Dioleoyl-sn-Glycero-3-Phosphatidylcholine (DOPC) nanoliposomal EphA2-targeted therapeutic (EPHARNA). Here, we performed safety studies of EPHARNA in murine and primate models. Single dosing of EPHARNA was tested at 5 concentrations in mice (N = 15 per group) and groups were sacrificed on days 1, 14, and 28 for evaluation of clinical pathology and organ toxicity. Multiple dosing of EPHARNA was tested in mice and Rhesus macaques twice weekly at two dose levels in each model. Possible effects on hematologic parameters, serum chemistry, coagulation, and organ toxicity were assessed. Following single-dose EPHARNA administration to mice, no gross pathologic or dose-related microscopic findings were observed in either the acute (24 hours) or recovery (14 and 28 days) phases. The no-observed-adverse-effect level (NOAEL) for EPHARNA is considered >225 μg/kg when administered as a single injection intravenously in CD-1 mice. With twice weekly injection, EPHARNA appeared to stimulate a mild to moderate inflammatory response in a dose-related fashion. There appeared to be a mild hemolytic reaction in the female mice. In Rhesus macaques, minimal to moderate infiltration of mononuclear cells was found in some organs including the gastrointestinal tract, heart, and kidney. No differences attributed to EPHARNA were observed. These results demonstrate that EPHARNA is well tolerated at all doses tested. These data, combined with previously published in vivo validation studies, have led to an ongoing first-in-human phase I clinical trial (NCT01591356). Mol Cancer Ther; 16(6); 1114-23. ©2017 AACR.
Collapse
Affiliation(s)
- Michael J Wagner
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Rahul Mitra
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Mark J McArthur
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Wallace Baze
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Kirstin Barnhart
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | | | - Xinna Zhang
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas.
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
105
|
Delivery of cationic quantum dots using fusogenic liposomes in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:43-49. [DOI: 10.1016/j.jphotobiol.2017.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/17/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022]
|
106
|
Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115:46-56. [PMID: 28433739 DOI: 10.1016/j.addr.2017.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.
Collapse
|
107
|
Singh A, Trivedi P, Jain NK. Advances in siRNA delivery in cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:274-283. [PMID: 28423924 DOI: 10.1080/21691401.2017.1307210] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA interference (RNAi)-based therapeutic approaches are under vibrant scrutinisation to seek cancer cure. siRNA suppress expression of the carcinogenic genes by targeting the mRNA expression. However, in vivo systemic siRNA therapy is hampered by the barriers such as poor cellular uptake, instability under physiological conditions, off-target effects and possible immunogenicity. To overcome these challenges, systemic siRNA therapy warrants the development of clinically suitable, safe, and effective drug delivery systems. Herein, we review the barriers, potential siRNA drug delivery systems, and application of siRNA in clinical trials for cancer therapy. Further research is required to harness the full potential of siRNA as a cancer therapeutic.
Collapse
Affiliation(s)
- Aishwarya Singh
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| | - Piyush Trivedi
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| | - Narendra Kumar Jain
- a School of Pharmaceutical Sciences, Rajiv Gandhi Technical University , Bhopal , Madhya Pradesh , India
| |
Collapse
|
108
|
A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 hours. Sci Rep 2017; 7:793. [PMID: 28400564 PMCID: PMC5429792 DOI: 10.1038/s41598-017-00912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
Measuring at ~30 nm, a fully customizable holliday junction DNA nanoconstruct, was designed to simultaneously carry three unmodified SiRNA strands for apoptosis gene knockout in cancer cells without any assistance from commercial transfection kits. In brief, a holliday junction structure was intelligently designed to present one arm with a cell targeting aptamer (AS1411) while the remaining three arms to carry different SiRNA strands by means of DNA/RNA duplex for inducing apoptosis in cancer cells. By carrying the three SiRNA strands (AKT, MDM2 and Survivin) into triple negative breast MDA-MB-231 cancer cells, cell number had reduced by up to ~82% within 24 hours solely from one single administration of 32 picomoles. In the immunoblotting studies, up-elevation of phosphorylated p53 was observed for more than 8 hours while the three genes of interest were suppressed by nearly half by the 4-hour mark upon administration. Furthermore, we were able to demonstrate high cell selectivity of the nanoconstruct and did not exhibit usual morphological stress induced from liposomal-based transfection agents. To the best of the authors' knowledge, this system represents the first of its kind in current literature utilizing a short and highly customizable holliday DNA junction to carry SiRNA for apoptosis studies.
Collapse
|
109
|
Emeto TI, Alele FO, Smith AM, Smith FM, Dougan T, Golledge J. Use of Nanoparticles As Contrast Agents for the Functional and Molecular Imaging of Abdominal Aortic Aneurysm. Front Cardiovasc Med 2017; 4:16. [PMID: 28386544 PMCID: PMC5362602 DOI: 10.3389/fcvm.2017.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta common in adults older than 65 years of age. AAA is usually imaged using ultrasound or computed tomography. Molecular imaging technologies employing nanoparticles (NPs) have been proposed as novel ways to quantify pathological processes, such as inflammation, within AAAs as a means to identify the risk of rapid progression or rupture. This article reviews the current evidence supporting the role of NP-based imaging in the management of AAA. Currently, ultrasmall superparamagnetic NPs enhanced magnetic resonance imaging appears to hold the greatest potential for imaging macrophage-mediated inflammation in human AAA.
Collapse
Affiliation(s)
- Theophilus I Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia; Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Faith O Alele
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University , Townsville, QLD , Australia
| | - Amy M Smith
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University , Townsville, QLD , Australia
| | - Felicity M Smith
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University , Townsville, QLD , Australia
| | - Tammy Dougan
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Addenbrookes Hospital , Cambridge , UK
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| |
Collapse
|
110
|
Li H, Chen Y, Deng Y, Wang Y, Ke X, Ci T. Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity. Drug Dev Ind Pharm 2017; 43:1163-1172. [DOI: 10.1080/03639045.2017.1301948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haohuan Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yi Chen
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yueyang Deng
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yue Wang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
111
|
Lewicki S, Leśniak M, Machaj EK, Antos-Bielska M, Trafny EA, Kocik J, Pojda Z. Physical properties and biological interactions of liposomes developed as a drug carrier in the field of regenerative medicine. J Liposome Res 2017; 27:90-98. [PMID: 28067107 DOI: 10.3109/08982104.2016.1166510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liposomes are used for encapsulation of the active compounds in different therapies, with the increasing frequency. The important areas of clinical applications of liposomes are cancer targeted treatment, antibiotic delivery or regenerative medicine. The liposomes can transfer both hydrophilic and hydrophobic compounds and have the lipid bilayer which imitates the cell membrane. Liposomes additionally may extend half-live period of drugs and protect them against the elimination in different ways, such as phagocytosis, enzymatic cleavage or exclusion by detoxification. The size and charge of liposomes play an important role in drug distribution and absorption into the cell. Limited data is available on the effects of liposomes on stem cells and progenitor cells. In this article, we examined the effect of charged conventional liposomes on growth of mesenchymal and blood stem cells isolated from umbilical cord. The data suggest a likelihood, that positively charged liposomes could impair stem cell growth and metabolism. Different methodological approaches allowed for the selection of negatively charged liposomes for further experiments, as the only type of liposomes which has the lowest cytotoxicity and does not affect hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Sławomir Lewicki
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Monika Leśniak
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Eugeniusz Krzysztof Machaj
- b Department of Cellular Engineering , The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland
| | - Małgorzata Antos-Bielska
- c Department of Microbiology , Military Institute of Hygiene and Epidemiology , Warsaw , Poland , and
| | - Elżbieta Anna Trafny
- d Military Institute of Technology, Biomedical Engineering Center, Institute of Optoelectronics , Warsaw , Poland
| | - Janusz Kocik
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Zygmunt Pojda
- b Department of Cellular Engineering , The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland
| |
Collapse
|
112
|
Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 2017; 35:431-434. [PMID: 28191903 PMCID: PMC6649674 DOI: 10.1038/nbt.3806] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/31/2017] [Indexed: 01/01/2023]
Abstract
We demonstrate editing of post-mitotic neurons in the adult mouse brain following injection of Cas9 ribonucleoprotein (RNP) complexes in the hippocampus, striatum and cortex. Engineered variants of Cas9 with multiple SV40 nuclear localization sequences enabled a tenfold increase in the efficiency of neuronal editing in vivo. These advances indicate the potential of genome editing in the brain to correct or inactivate the underlying genetic causes of neurological diseases.
Collapse
|
113
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
114
|
Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm 2016; 43:177-189. [PMID: 27998192 DOI: 10.1080/03639045.2016.1269122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.
Collapse
Affiliation(s)
- Vivek S Dave
- a Wegmans School of Pharmacy , St. John Fisher College , Rochester , NY , USA
| | - Deepak Gupta
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Monica Yu
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Phuong Nguyen
- b Lake Eerie College of Osteopathic Medicine , School of Pharmacy, Pharmaceutical Sciences , Bradenton , FL , USA
| | - Sheeba Varghese Gupta
- c Department of Pharmaceutical Sciences , USF College of Pharmacy , Tampa , FL , USA
| |
Collapse
|
115
|
Parumasivam T, Ashhurst AS, Nagalingam G, Britton WJ, Chan HK. Inhalation of Respirable Crystalline Rifapentine Particles Induces Pulmonary Inflammation. Mol Pharm 2016; 14:328-335. [PMID: 27977216 DOI: 10.1021/acs.molpharmaceut.6b00905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation. This in vivo study characterizes the inflammatory response caused by pulmonary deposition of the rifapentine particles. The rifapentine powder was delivered to BALB/c mice by intratracheal insufflation at a dose of 20 mg/kg. The inflammatory response in the lungs and bronchoalveolar lavage (BAL) was examined at 12 h, 24 h, and 7 days post-treatment by flow cytometry and histopathology. At 12 and 24 h post-treatment, there was a significant influx of neutrophils into the lungs, and this returned to normal by day 7. A significant recruitment of macrophages occurred in the BAL at 24 h. Consistent with these findings, histopathological analysis demonstrated pulmonary vascular congestion and significant macrophage recruitment at 12 and 24 h post-treatment. In conclusion, the pulmonary delivery of crystalline rifapentine caused a transient neutrophil-associated inflammatory response in the lungs that resolved over 7 days. This observation may limit pulmonary delivery of rifapentine to once a week at a dose of 20 mg/kg or less. The effectiveness of weekly dosing with inhalable rifapentine will be assessed in murine Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales 2006, Australia.,School of Pharmaceutical Sciences, Universiti Sains Malaysia , Pulau Pinang 11800, Malaysia
| | - Anneliese S Ashhurst
- Tuberculosis Research Program, Centenary Institute , Sydney, New South Wales 2042, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Gayathri Nagalingam
- Tuberculosis Research Program, Centenary Institute , Sydney, New South Wales 2042, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute , Sydney, New South Wales 2042, Australia.,Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
116
|
Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F, Zadeh ME, Naraki M, Faizi M. Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity. J Thromb Thrombolysis 2016; 43:184-193. [DOI: 10.1007/s11239-016-1440-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
117
|
Au M, Emeto TI, Power J, Vangaveti VN, Lai HC. Emerging Therapeutic Potential of Nanoparticles in Pancreatic Cancer: A Systematic Review of Clinical Trials. Biomedicines 2016; 4:E20. [PMID: 28536387 PMCID: PMC5344258 DOI: 10.3390/biomedicines4030020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is an aggressive disease with a five year survival rate of less than 5%, which is associated with late presentation. In recent years, research into nanomedicine and the use of nanoparticles as therapeutic agents for cancers has increased. This article describes the latest developments in the use of nanoparticles, and evaluates the risks and benefits of nanoparticles as an emerging therapy for pancreatic cancer. The Preferred Reporting Items of Systematic Reviews and Meta-Analyses checklist was used. Studies were extracted by searching the Embase, MEDLINE, SCOPUS, Web of Science, and Cochrane Library databases from inception to 18 March 2016 with no language restrictions. Clinical trials involving the use of nanoparticles as a therapeutic or prognostic option in patients with pancreatic cancer were considered. Selected studies were evaluated using the Jadad score for randomised control trials and the Therapy CA Worksheet for intervention studies. Of the 210 articles found, 10 clinical trials including one randomised control trial and nine phase I/II clinical trials met the inclusion criteria and were analysed. These studies demonstrated that nanoparticles can be used in conjunction with chemotherapeutic agents increasing their efficacy whilst reducing their toxicity. Increased efficacy of treatment with nanoparticles may improve the clinical outcomes and quality of life in patients with pancreatic cancer, although the long-term side effects are yet to be defined. The study registration number is CRD42015020009.
Collapse
Affiliation(s)
- Minnie Au
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| | - Theophilus I Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
| | - Jacinta Power
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| | - Venkat N Vangaveti
- College of Medicine and Dentistry, James Cook University, James Cook Drive, Douglas, Townsville QLD 4811, Australia.
| | - Hock C Lai
- Townsville Cancer Centre, The Townsville Hospital, Townsville QLD 4814, Australia.
| |
Collapse
|
118
|
Huang YC, Vieira A, Yeh MK, Chiang CH. Pulmonary Anti-inflammatory Effects of Chitosan Microparticles Containing Betamethasone. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506073639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitosan microparticles (CMs) are of potential interest for controlled delivery of therapeutic agents to cells and tissues, especially to mucosal-epithelial surfaces in the body. CM incorporation efficiency and release kinetics for betamethasone (B), an epimeric synthetic glucocorticoid, were investigated. Evidence for mild but significant inflammatory reactions in rat lung exposed to high CM concentrations was observed. Inflammation in the rat lung was significantly decreased by inhalation of B-loaded CMs (BCMs). Decreases in bronchoalveolar lavage fluid protein, content of polymorphonuclear neutrophils, lactate dehydrogenase (LDH) activity, lung tissue myeloperoxidase (MPO) activity, and leukocyte infiltration were observed. For all biochemical parameters tested, CMs loaded with 1.0-1.2mg/kg B decrease the inflammation by 1.63±0.14 fold, to near air-inhalation control levels. Thus, the drug was efficiently delivered and active in the pulmonary tissues by this technique.
Collapse
Affiliation(s)
- Y. C. Huang
- Graduate Institute of Life Science, National Defense Medical Center, University of National Defense, Taipei, Taiwan,
| | - A. Vieira
- Endocrine and Metabolic Research Laboratory, Faculty of Applied Sciences, Simon Fraser University, Burnaby, B.C., Canada
| | - M. K. Yeh
- Department of Pharmacy, Tri-service General Hospital, National Defense Medical Center, University of National Defense, Taipei, Taiwan
| | - C. H. Chiang
- School of Pharmacy, National Defense Medical Center, University of National Defense, Taipei, Taiwan
| |
Collapse
|
119
|
Kim JS, Kang SJ, Jeong HY, Kim MW, Park SI, Lee YK, Kim HS, Kim KS, Park YS. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy. Int J Oncol 2016; 49:1130-8. [DOI: 10.3892/ijo.2016.3619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
|
120
|
Galvão AM, Galvão JS, Pereira MA, Cadena PG, Magalhães NSS, Fink JB, de Andrade AD, Castro CMMBD, de Sousa Maia MB. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage. Respir Physiol Neurobiol 2016; 231:55-62. [PMID: 27267466 DOI: 10.1016/j.resp.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage.
Collapse
Affiliation(s)
- Andre Martins Galvão
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil.
| | - Júlia Siqueira Galvão
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Marcela Araújo Pereira
- Graduate Program in Biology Apllied to Health Sciences, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Pabyton Gonçalves Cadena
- Department of Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Av. Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil
| | - Nereide Stella Santos Magalhães
- Department of Nanobiotechnology, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - James B Fink
- Division of Respiratory Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Armele Dornelas de Andrade
- Department of Physiotherapy, Federal University of Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Celia Maria Machado Barbosa de Castro
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Maria Bernadete de Sousa Maia
- Department of Pharmacology and Physiology, Federal University of Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| |
Collapse
|
121
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 34:44-69. [PMID: 28392618 PMCID: PMC5381822 DOI: 10.14356/kona.2017005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system can be used to overcome the barriers of pulmonary delivery, such as anatomical barriers, mucociliary clearance, cough clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems include those of lipidic, polymeric, peptide, or inorganic origin. These delivery systems can achieve pulmonary delivery through the generation of an aerosol via an inhaler or nebulizer. The preparation methodologies for these siRNA nanocarrier systems will be discussed herein. The use of inhalable nanocarrier siRNA delivery systems have barriers to their effective delivery, but overcoming these constraints while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Translational Drug Delivery Research (TransDDR) Laboratory, Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, The Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
122
|
McBride JW, Massey AS, McCaffrey J, McCrudden CM, Coulter JA, Dunne NJ, Robson T, McCarthy HO. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer. Int J Pharm 2016; 500:144-53. [DOI: 10.1016/j.ijpharm.2016.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 02/03/2023]
|
123
|
Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym 2016; 138:114-22. [DOI: 10.1016/j.carbpol.2015.11.072] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/08/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022]
|
124
|
Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 2016; 113:2868-73. [PMID: 26929348 DOI: 10.1073/pnas.1520244113] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
Collapse
|
125
|
López-Dávila V, Magdeldin T, Welch H, Dwek MV, Uchegbu I, Loizidou M. Efficacy of DOPE/DC-cholesterol liposomes and GCPQ micelles as AZD6244 nanocarriers in a 3D colorectal cancer in vitro model. Nanomedicine (Lond) 2016; 11:331-44. [PMID: 26786002 DOI: 10.2217/nnm.15.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM In this work, we use cationic organic nanocarriers as chemotherapy delivery platforms and test them in a colorectal cancer 3D in vitro model. MATERIALS & METHODS We used 3beta-(N-[N',N'-dimethylaminoethane]carbamoyl])cholesterol (DC-chol) and dioleoylphosphatidylethanolamine (DOPE) liposomes and N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ) micelles, to deliver AZD6244, a MEK inhibitor, to HCT116 cells cultured as monolayers and in 3D in vitro cancer models (tumoroids). RESULTS Nanoparticle-mediated drug delivery was superior to the free drug in monolayer experiments and despite their therapeutic effect being hindered by poor diffusion through the cancer mass, GCPQ micelles were also superior in tumoroids. CONCLUSION These results support the role of nanoparticles in improving drug delivery and highlight the need to include 3D cancer models in early phases of drug development.
Collapse
Affiliation(s)
- Víctor López-Dávila
- Cancer Nanotechnology Group, University College London, Division of Surgery & Interventional Science, Royal Free Campus, London, NW3 2PF, UK
| | - Tarig Magdeldin
- Cancer Nanotechnology Group, University College London, Division of Surgery & Interventional Science, Royal Free Campus, London, NW3 2PF, UK.,Institute of Orthopaedics & Musculoskeletal Sciences, University College London, Division of Surgery & Interventional Science, Stanmore Campus, HA7 4LP, UK
| | - Hazel Welch
- Cancer Nanotechnology Group, University College London, Division of Surgery & Interventional Science, Royal Free Campus, London, NW3 2PF, UK
| | - Miriam Victoria Dwek
- Department of Biomedical Sciences, Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Ijeoma Uchegbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Marilena Loizidou
- Cancer Nanotechnology Group, University College London, Division of Surgery & Interventional Science, Royal Free Campus, London, NW3 2PF, UK
| |
Collapse
|
126
|
Liu Y, Wang J. Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:429-58. [PMID: 27376745 DOI: 10.1007/978-981-10-1498-7_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge of multiple actions of short noncoding RNAs (ncRNAs) has truly allowed for viewing DNA, RNA, and protein in novel ways. The ncRNAs are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of ncRNAs in cancer therapy, many challenges remain, including rapid degradation and clearance, poor cellular uptake, off-target effects, and immunogenicity. Rational design, chemical modifications, and delivery carriers offer significant opportunities to overcome these challenges. In this chapter, the development of ncRNAs as cancer therapeutics from early stages to clinical trials and strategies for ncRNA-targeted delivery to cancer cells will be introduced.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China.
| |
Collapse
|
127
|
Yun CH, Bae CS, Ahn T. Cargo-Free Nanoparticles Containing Cationic Lipids Induce Reactive Oxygen Species and Cell Death in HepG2 Cells. Biol Pharm Bull 2016; 39:1338-46. [DOI: 10.1248/bpb.b16-00264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University
| |
Collapse
|
128
|
Montis C, Gerelli Y, Fragneto G, Nylander T, Baglioni P, Berti D. Nucleolipid bilayers: A quartz crystal microbalance and neutron reflectometry study. Colloids Surf B Biointerfaces 2016; 137:203-13. [DOI: 10.1016/j.colsurfb.2015.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
129
|
Lee J, Saw PE, Gujrati V, Lee Y, Kim H, Kang S, Choi M, Kim JI, Jon S. Mono-arginine Cholesterol-based Small Lipid Nanoparticles as a Systemic siRNA Delivery Platform for Effective Cancer Therapy. Theranostics 2016; 6:192-203. [PMID: 26877778 PMCID: PMC4729768 DOI: 10.7150/thno.13657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023] Open
Abstract
Although efforts have been made to develop a platform carrier for the delivery of RNAi therapeutics, systemic delivery of siRNA has shown only limited success in cancer therapy. Cationic lipid-based nanoparticles have been widely used for this purpose, but their toxicity and undesired liver uptake after systemic injection owing to their cationic surfaces have hampered further clinical translation. This study describes the development of neutral, small lipid nanoparticles (SLNPs) made of a nontoxic cationic cholesterol derivative, as a suitable carrier of systemic siRNA to treat cancers. The cationic cholesterol derivative, mono arginine-cholesterol (MA-Chol), was synthesized by directly attaching an arginine moiety to cholesterol via a cleavable ester bond. siRNA-loaded SLNPs (siRNA@SLNPs) were prepared using MA-Chol and a neutral helper lipid, dioleoyl phosphatidylethanolamine (DOPE), as major components and a small amount of PEGylated phospholipid mixed with siRNA. The resulting nanoparticles were less than ~50 nm in diameter with neutral zeta potential and much lower toxicity than typical cationic cholesterol (DC-Chol)-based lipid nanoparticles. SLNPs loaded with siRNA against kinesin spindle protein (siKSP@SLNPs) exhibited a high level of target gene knockdown in various cancer cell lines, as shown by measurement of KSP mRNA and cell death assays. Furthermore, systemic injection of siKSP@SLNPs into prostate tumor-bearing mice resulted in preferential accumulation of the delivered siRNA at the tumor site and significant inhibition of tumor growth, with little apparent toxicity, as shown by body weight measurements. These results suggest that these SLNPs may provide a systemic delivery platform for RNAi-based cancer therapy.
Collapse
Affiliation(s)
- Jinju Lee
- 1. † School of Life Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Phei Er Saw
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Vipul Gujrati
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Yonghyun Lee
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Hyungjun Kim
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Sukmo Kang
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Minsuk Choi
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Jae-Il Kim
- 1. † School of Life Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Sangyong Jon
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| |
Collapse
|
130
|
Wardwell PR, Forstner MB, Bader RA. Investigation of the cytokine response to NF-κB decoy oligonucleotide coated polysaccharide based nanoparticles in rheumatoid arthritis in vitro models. Arthritis Res Ther 2015; 17:310. [PMID: 26531309 PMCID: PMC4632484 DOI: 10.1186/s13075-015-0824-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction The transcription factor nuclear factor-kappa B (NF-κB) is highly involved in regulation of a number of cellular processes, including production of inflammatory mediators. Thus, this transcription factor plays a role in pathology of many diseases, including rheumatoid arthritis, an autoimmune disease hallmarked by an imbalance of pro and anti-inflammatory cytokines. Small nucleic acids with sequences that mimic the native binding site of NF-κB have been proposed as treatment options for RA; however due to low cellular penetration and a high degree of instability, clinical applications of these therapeutics have been limited. Methods Here, we describe the use of N-trimethyl chitosan-polysialic acid (PSA-TMC) nanoparticles coated with decoy oligodeoxynucleotides (ODNs) specific to transcription factor NF-κB (PSA-TMC-ODN) as a method to enhance the stability of the nucleic acids and facilitate increased cellular penetration. In addition to decoy ODN, PSA-TMC nanoparticles were loaded with RA therapeutic methotrexate (MTX), to assess the anti-inflammatory efficacy of a combination therapy approach. Two different in vitro models, a cell line based model as well as a primary RA cell model were used to investigate anti-inflammatory activity. One way ANOVA followed by Holm-Sidak stepdown comparisons was used to determine statistical significance. Results In general, free ODN did not significantly affect secretion of pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-8, (IL-8) while free MTX had variable efficacy. However, PSA-TMC-ODN and PSA-TMC-ODN-MTX resulted in significant decreases in the inflammatory mediators IL-6 and IL-8 in both cell models. In addition, PSA-TMC exhibited sufficient cellular uptake, as observed through fluorescence microscopy. Conclusions These results support our previous findings that PSA-TMC nanoparticles are an effective delivery vehicle for small nucleic acids, and effectively alter the pro-inflammatory state characteristic of RA.
Collapse
Affiliation(s)
- Patricia R Wardwell
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY, 13244, USA. .,Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, Syracuse, NY, 13244, USA.
| | - Martin B Forstner
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY, 13244, USA.,Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Rebecca A Bader
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY, 13244, USA. .,Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, Syracuse, NY, 13244, USA.
| |
Collapse
|
131
|
Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:223-34. [PMID: 26390832 DOI: 10.1016/j.nano.2015.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 01/18/2023]
Abstract
A lack of intracellular delivery systems has limited the use of biologics such as monoclonal antibodies (mAb) that abrogate molecular signaling pathways activated to promote escape from cancer treatment. We hypothesized that intracellular co-delivery of the photocytotoxic chromophore benzoporphyrin derivative monoacid A (BPD) and the anti-VEGF mAb bevacizumab in a nanophotoactivatable liposome (nanoPAL) might enhance the efficacy of photodynamic therapy (PDT) combined with suppression of VEGF-mediated signaling pathways. As a proof-of-concept we found that nanoPAL-PDT induced enhanced extra- and intracellular bevacizumab delivery and enhanced acute cytotoxicity in vitro. In an in vivo subcutaneous mouse model of pancreatic ductal adenocarcinoma, nanoPAL-PDT achieved significantly enhanced tumor reduction. We attribute this to the optimal incorporation of insoluble BPD into the lipid bilayer, enhancing photocytotoxicity, and the simultaneous spatiotemporal delivery of bevacizumab, ensuring efficient neutralization of the rapid but transient burst of VEGF following PDT. From the Clinical Editor: Most patients with pancreatic ductal adenocarcinoma (PDAC) by the time present the disease it is very advanced, which unavoidably translates to poor survival. For these patients, use of traditional chemotherapy often becomes ineffective due to tumor resistance to drugs. Photodynamic therapy (PDT) can be an effective modality against chemo-resistant cancers. In this article, the authors investigated the co-delivery of a photocytotoxic agent and anti-VEGF mAb using liposomes. This combination was shown to results in enhanced tumor killing. This method should be applicable to other combination of treatments.
Collapse
|
132
|
Zeng H, Johnson ME, Oldenhuis N, Tiambeng TN, Guan Z. Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery. ACS CENTRAL SCIENCE 2015; 1:303-312. [PMID: 26436138 PMCID: PMC4582325 DOI: 10.1021/acscentsci.5b00233] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 05/21/2023]
Abstract
Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of novel dendritic peptide bolaamphiphile vectors that demonstrate high efficiency for the delivery of small interfering RNA (siRNA) while exhibiting low cytotoxicity and hemolytic activity. Systematic investigation into structure-property relationships revealed an important correlation between molecular design, self-assembled nanostructure, and biological activity. The unique bolaamphiphile architecture proved a key factor for improved complex stability and transfection efficiency. The optimal vector contains a fluorocarbon core and exhibited enhanced delivery efficiency to a variety of cell lines and improved serum resistance when compared to hydrocarbon analogues and lipofectamine RNAiMAX. In addition to introducing a promising new vector system for siRNA delivery, the structure-property relationships and "fluorocarbon effect" revealed herein offer critical insight for further development of novel materials for nucleic acid delivery and other biomaterial applications.
Collapse
|
133
|
Shrivats AR, Mishina Y, Averick S, Matyjaszewski K, Hollinger JO. In Vivo GFP Knockdown by Cationic Nanogel-siRNA Polyplexes. Bioengineering (Basel) 2015; 2:160-175. [PMID: 27280121 PMCID: PMC4894740 DOI: 10.3390/bioengineering2030160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is a powerful tool to treat diseases and elucidate target gene function. Prior to clinical implementation, however, challenges including the safe, efficient and targeted delivery of siRNA must be addressed. Here, we report cationic nanogel nanostructured polymers (NSPs) prepared by atom transfer radical polymerization (ATRP) for in vitro and in vivo siRNA delivery in mammalian models. Outcomes from siRNA protection studies suggested that nanogel NSPs reduce enzymatic degradation of siRNA within polyplexes. Further, the methylation of siRNA may enhance nuclease resistance without compromising gene knockdown potency. NSP-mediated RNAi treatments against Gapdh significantly reduced GAPDH enzyme activity in mammalian cell culture models supplemented with 10% serum. Moreover, nanogel NSP-mediated siRNA delivery significantly inhibited in vivo GFP expression in a mouse model. GFP knockdown was siRNA sequence-dependent and facilitated by nanogel NSP carriers. Continued testing of NSP/siRNA compositions in disease models may produce important new therapeutic options for patient care.
Collapse
Affiliation(s)
- Arun R. Shrivats
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219, USA; E-Mail:
| | - Yuji Mishina
- School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109, USA; E-Mail:
| | - Saadyah Averick
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA; E-Mails: (S.A.); (K.M.)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA; E-Mails: (S.A.); (K.M.)
| | - Jeffrey O. Hollinger
- Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Dr., Pittsburgh, PA 15219, USA; E-Mail:
| |
Collapse
|
134
|
Müller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015; 468:411-8. [PMID: 26315266 DOI: 10.1016/j.bbrc.2015.08.088] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
In the last decades, the development and design of drug delivery systems have attracted great attention. Especially siRNA carriers have been of special interest since discovered as suitable tool for gene silencing. Self-assembled structures consisting of amphiphilic molecules are the most investigated carriers with regards to siRNA delivery. Liposomes as drug vehicles already found their way into clinical use, as they are highly biocompatible and their colloidal stability and circulation time in blood can be significantly enhanced by PEGylation. Fully synthetic polymersomes inspired by these natural structures provide enhanced stability and offer a wide range of modification-possibilities. Therefore, their design as carrier vehicles has become of great interest. This mini-review highlights the possibilities of using polymeric vesicles for potential drug delivery and gives a brief overview of their potential regarding fine-tuning towards targeted delivery or triggered drug release.
Collapse
Affiliation(s)
- Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
135
|
Cui ZK, Fan J, Kim S, Bezouglaia O, Fartash A, Wu BM, Aghaloo T, Lee M. Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. J Control Release 2015; 217:42-52. [PMID: 26302903 DOI: 10.1016/j.jconrel.2015.08.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/15/2015] [Indexed: 01/09/2023]
Abstract
Noggin is a specific antagonist of bone morphogenetic proteins (BMPs) that can prevent the interaction of BMPs with their receptors. RNA interfering molecules have been used to downregulate noggin expression and thereby stimulate BMP signaling and osteogenesis. Cationic liposomes are considered one of the most efficient non-viral systems for gene delivery. In the past decade, non-phospholipid liposomes (Sterosomes) formulated with single-chain amphiphiles and high content of sterols have been developed. In particular, Sterosomes composed of stearylamine (SA) and cholesterol (Chol) display distinct properties compared with traditional phospholipid liposomes, including increased positive surface charges and enhanced particle stability. Herein, we report SA/Chol Sterosome and small interfering RNA (siRNA) complexes that significantly enhanced cellular uptake and gene knockdown efficiencies in adipose derived mesenchymal stem cells with minimal cytotoxicity compared with commercially available lipofectamine 2000. Furthermore, we confirmed osteogenic efficacy of these Sterosomes loaded with noggin siRNA in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. The delivery of siRNA via novel SA/Chol Sterosomes presents a powerful method for efficient gene knockdown. These distinct nanoparticles may present a promising alternative approach for gene delivery.
Collapse
Affiliation(s)
- Zhong-Kai Cui
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Soyon Kim
- Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Armita Fartash
- Division of Diagnostic and Surgical Sciences, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States; Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States; Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
136
|
Lopes I, C. N. Oliveira A, P. Sárria M, P. Neves Silva J, Gonçalves O, Gomes AC, Real Oliveira MECD. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J Liposome Res 2015; 26:199-210. [DOI: 10.3109/08982104.2015.1076463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivo Lopes
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | - Ana C. N. Oliveira
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | - João P. Neves Silva
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
| | - Odete Gonçalves
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
137
|
Small Wonders-The Use of Nanoparticles for Delivering Antigen. Vaccines (Basel) 2015; 3:638-61. [PMID: 26350599 PMCID: PMC4586471 DOI: 10.3390/vaccines3030638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required for prevention against some pathogenic infections. Nanoparticles have been utilised in nanomedicine and are promising candidates for vaccine or drug delivery. Nanoparticle vehicles have been demonstrated to be efficiently taken up by dendritic cells and induce humoral and cellular responses. This review provides an overview of nanoparticle vaccine development; in particular, the preparation of nanoparticles using a templating technique is highlighted, which would alleviate some of the disadvantages of existing nanoparticles. We will also explore the cellular fate of nanoparticle vaccines. Nanoparticle-based antigen delivery systems have the potential to develop new generation vaccines against currently unpreventable infectious diseases.
Collapse
|
138
|
Ihara D, Hattori N, Horimasu Y, Masuda T, Nakashima T, Senoo T, Iwamoto H, Fujitaka K, Okamoto H, Kohno N. Histological Quantification of Gene Silencing by Intratracheal Administration of Dry Powdered Small-Interfering RNA/Chitosan Complexes in the Murine Lung. Pharm Res 2015; 32:3877-85. [DOI: 10.1007/s11095-015-1747-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
139
|
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87:108-19. [PMID: 25666164 DOI: 10.1016/j.addr.2015.01.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
The discovery of RNA interference, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. Knowledge of the multiple actions of non-coding RNAs has truly allowed viewing DNA, RNA and proteins in novel ways. Small interfering RNAs (siRNAs) can be used as tools to study single gene function both in vitro and in vivo and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. Despite the potential of siRNAs in cancer therapy, many challenges remain, including rapid degradation, poor cellular uptake and off-target effects. Rational design strategies, selection algorithms, chemical modifications and nanocarriers offer significant opportunities to overcome these challenges. Here, we review the development of siRNAs as therapeutic agents from early design to clinical trial, with special emphasis on the development of EphA2-targeting siRNAs for ovarian cancer treatment.
Collapse
|
140
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
141
|
Møller P, Lykkesfeldt J. Positive charge, negative effect: the impact of cationic nanoparticles in the brain. Nanomedicine (Lond) 2015; 9:1441-3. [PMID: 25253492 DOI: 10.2217/nnm.14.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | | |
Collapse
|
142
|
Shrivats AR, Hsu E, Averick S, Klimak M, Watt ACS, DeMaio M, Matyjaszewski K, Hollinger JO. Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells. Clin Orthop Relat Res 2015; 473:2139-49. [PMID: 25448327 PMCID: PMC4418993 DOI: 10.1007/s11999-014-4073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) may occur after musculoskeletal trauma, traumatic brain injury, and total joint arthroplasty. As such, HO is a compelling clinical concern in both military and civilian medicine. A possible etiology of HO involves dysregulated signals in the bone morphogenetic protein osteogenic cascade. Contemporary treatment options for HO (ie, nonsteroidal antiinflammatory drugs and radiation therapy) have adverse effects associated with their use and are not biologically engineered to abrogate the molecular mechanisms that govern osteogenic differentiation. QUESTIONS/PURPOSES We hypothesized that (1) nanogel-mediated short interfering RNA (siRNA) delivery against Runt-related transcription factor 2 (Runx2) and osterix (Osx) genes will decrease messenger RNA expression; (2) inhibit activity of the osteogenic marker alkaline phosphatase (ALP); and (3) inhibit hydroxyapatite (HA) deposition in osteoblast cell cultures. METHODS Nanogel nanostructured polymers delivered siRNA in 48-hour treatment cycles against master osteogenic regulators, Runx2 and Osx, in murine calvarial preosteoblasts (MC3T3-E1.4) stimulated for osteogenic differentiation by recombinant human bone morphogenetic protein (rhBMP-2). The efficacy of RNA interference (RNAi) therapeutics was determined by quantitation of messenger RNA knockdown (by quantitative reverse transcription-polymerase chain reaction), downstream protein knockdown (determined ALP enzymatic activity assay), and HA deposition (determined by OsteoImage™ assay). RESULTS Gene expression assays demonstrated that nanogel-based RNAi treatments at 1:1 and 5:1 nanogel:short interfering RNA weight ratios reduced Runx2 expression by 48.59% ± 19.53% (p < 0.001) and 43.22% ± 18.01% (both p < 0.001). The same 1:1 and 5:1 treatments against both Runx2 and Osx reduced expression of Osx by 51.65% ± 10.85% and 47.65% ± 9.80% (both p < 0.001). Moreover, repeated 48-hour RNAi treatment cycles against Runx2 and Osx rhBMP-2 administration reduced ALP activity after 4 and 7 days. ALP reductions after 4 days in culture by nanogel 5:1 and 10:1 RNAi treatments were 32.4% ± 12.0% and 33.6% ± 13.8% (both p < 0.001). After 7 days in culture, nanogel 1:1 and 5:1 RNAi treatments produced 35.9% ± 14.0% and 47.7% ± 3.2% reductions in ALP activity. Osteoblast mineralization data after 21 days suggested that nanogel 1:1, 5:1, and 10:1 RNAi treatments decreased mineralization (ie, HA deposition) from cultures treated only with rhBMP-2 (p < 0.001). However, despite RNAi attack on Runx2 and Osx, HA deposition levels remained greater than non-rhBMP-2-treated cell cultures. CONCLUSIONS Although mRNA and protein knockdown were confirmed as a result of RNAi treatments against Runx2 and Osx, complete elimination of mineralization processes was not achieved. RNAi targeting mid- and late-stage osteoblast differentiation markers such as ALP, osteocalcin, osteopontin, and bone sialoprotein) may produce the desired RNAi-nanogel nanostructured polymer HO prophylaxis. CLINICAL RELEVANCE Successful HO prophylaxis should target and silence osteogenic markers critical for heterotopic bone formation processes. The identification of such markers, beyond RUNX2 and OSX, may enhance the effectiveness of RNAi prophylaxes for HO.
Collapse
Affiliation(s)
- Arun R. Shrivats
- />Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA
| | - Eric Hsu
- />Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA
| | - Saadyah Averick
- />Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA
| | - Molly Klimak
- />Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA
| | - April C. S. Watt
- />Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA
| | - Marlene DeMaio
- />Department of Orthopaedic Surgery, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708 USA
| | - Krzysztof Matyjaszewski
- />Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213 USA
| | - Jeffrey O. Hollinger
- />Department of Biomedical Engineering, Carnegie Mellon University, 700 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
143
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
144
|
Leder A, Raschzok N, Schmidt C, Arabacioglu D, Butter A, Kolano S, de Sousa Lisboa LS, Werner W, Polenz D, Reutzel-Selke A, Pratschke J, Sauer IM. Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Biomaterials 2015. [PMID: 25771004 DOI: 10.1016/j.biomaterials.2015.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Particle-based delivery systems for therapeutic manipulation and tracking of transplanted cells by magnetic resonance imaging (MRI) are commonly based on nanometer-sized superparamagnetic iron oxide particles (SPIOs). Here, we present a proof of concept for multifunctional, silica based micron-sized iron oxide-containing particles (sMPIO) that combine fluorescence imaging, MRI tracking, and on-the-spot targeting of specific microRNAs on a particle surface for therapeutic manipulation by RNA interference. Antisense locked nucleic acids (α-LNA) were covalently bound to the surface of silica-based, DAPI-integrated, micron-sized iron oxide particles (sMPIO-α-LNA). In vitro studies using primary human hepatocytes showed rapid particle uptake (4 h) that was accompanied by significant depletion of the targeted microRNA Let7g (80%), up-regulation of the target proteins Cyclin D1 and c-Myc, and specific proteome changes. sMPIO-α-LNA-labeled cells were successfully detected by fluorescence imaging and could be visualized by MRI after intrasplenic transplantation in rats. This new theranostic particle provides a promising tool for cell transplantation where cellular imaging and microRNA-based manipulation is needed. [165].
Collapse
Affiliation(s)
- Annekatrin Leder
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | - Duygu Arabacioglu
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Antje Butter
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Susanne Kolano
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Luisa S de Sousa Lisboa
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Wiebke Werner
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dietrich Polenz
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Anja Reutzel-Selke
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Johann Pratschke
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
145
|
Dar GH, Gopal V, Rao NM. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression. Mol Pharm 2015; 12:610-20. [PMID: 25545110 DOI: 10.1021/mp500677x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid-based nanoparticles are considered as promising candidates for delivering siRNA into the cytoplasm of targeted cells. However, in vivo efficiency of these nanoparticles is critically dependent on formulation strategies of lipid-siRNA complexes. Adsorption of serum proteins to lipid-siRNA complexes and its charge determine siRNA degradation and serum half-life, thus significantly altering the bioavailability of siRNA. To address these challenges, we developed a formulation comprising dihydroxy cationic lipid, N,N-di-n-hexadecyl-N,N-dihydroxyethylammonium chloride (DHDEAC), cholesterol, and varying concentrations of 1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol-2000)] (DSPE-PEG 2000). Using an ethanol dilution method, addition of these lipids to siRNA solution leads to formation of stable and homogeneous population of siRNA-encapsulated vesicles (SEVs). Biodistribution of these SEVs, containing 5 mol % of DSPE-PEG 2000 in xenograft mice, as monitored by live animal imaging and fluorescence microscopy, revealed selective accumulation in the tumor. Remarkably, four intravenous injections of the modified vesicles with equimolar amounts of siRNA targeting ErbB2 and AURKB genes led to significant gene silencing and concomitant tumor suppression in the SK-OV-3 xenograft mouse model. Safety parameters as evaluated by various markers of hepatocellular injury indicated the nontoxic nature of this formulation. These results highlight improved pharmacokinetics and effective in vivo delivery of siRNA by DHDEAC-based vesicles.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500007, Andhra Pradesh, India
| | | | | |
Collapse
|
146
|
Yin F, Zhang B, Zeng S, Lin G, Tian J, Yang C, Wang K, Xu G, Yong KT. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo. J Mater Chem B 2015; 3:6081-6093. [DOI: 10.1039/c5tb00587f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folic acid-conjugated fluorescent silica nanoparticles with biocompatibility and high-selectivity show great potential forin vivotumor imaging.
Collapse
Affiliation(s)
- Feng Yin
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Butian Zhang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- CINTRA CNRS/NTU/THALES
| | - Guimiao Lin
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Jinglin Tian
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Chengbin Yang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kuan Wang
- Nanomedicine Program and Institute of Biological Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Gaixia Xu
- CINTRA CNRS/NTU/THALES
- UMI 3288
- Singapore
- Singapore
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
147
|
Yang X, Iyer AK, Singh A, Milane L, Choy E, Hornicek FJ, Amiji MM, Duan Z. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Pharm Res 2014; 32:2097-109. [PMID: 25515492 DOI: 10.1007/s11095-014-1602-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Approaches for the synthesis of biomaterials to facilitate the delivery of "biologics" is a major area of research in cancer therapy. Here we designed and characterized a hyaluronic acid (HA) based self-assembling nanoparticles that can target CD44 receptors overexpressed on multidrug resistance (MDR) ovarian cancer. The nanoparticle system is composed of HA-poly(ethyleneimine)/HA-poly(ethylene glycol) (HA-PEI/HA-PEG) designed to deliver MDR1 siRNA for the treatment of MDR in an ovarian cancer model. METHODS HA-PEI/HA-PEG nanoparticles were synthesized and characterized, then the cellular uptake and knockdown efficiency of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles was further determined. A human xenograft MDR ovarian cancer model was established to evaluate the effects of the combination of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles and paclitaxel on MDR tumor growth. RESULTS Our results demonstrated that HA-PEI/HA-PEG nanoparticles successfully targeted CD44 and delivered MDR1 siRNA into OVCAR8TR (established paclitaxel resistant) tumors. Additionally, HA-PEI/HA-PEG nanoparticles loaded with MDR1 siRNA efficiently down-regulated the expression of MDR1 and P-glycoprotein (Pgp), inhibited the functional activity of Pgp, and subsequently increased cell sensitivity to paclitaxel. HA-PEI/HA-PEG/MDR1 siRNA nanoparticle therapy followed by paclitaxel treatment inhibited tumor growth in MDR ovarian cancer mouse models. CONCLUSIONS These findings suggest that this CD44 targeted HA-PEI/HA-PEG nanoparticle platform may be a clinicaly relevant gene delivery system for systemic siRNA-based anticancer therapeutics for the treatment of MDR cancers.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Jackson 1115, Boston, Massachusetts, 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
|
149
|
Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep 2014; 4:7085. [PMID: 25403950 PMCID: PMC4235800 DOI: 10.1038/srep07085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/24/2014] [Indexed: 01/13/2023] Open
Abstract
Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.
Collapse
|
150
|
Zhou Y, Zhang C, Liang W. Development of RNAi technology for targeted therapy — A track of siRNA based agents to RNAi therapeutics. J Control Release 2014; 193:270-81. [DOI: 10.1016/j.jconrel.2014.04.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
|