101
|
Bhattacharya K, Maiti S, Zahoran S, Weidenauer L, Hany D, Wider D, Bernasconi L, Quadroni M, Collart M, Picard D. Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life. Nat Commun 2022; 13:6271. [PMID: 36270993 PMCID: PMC9587034 DOI: 10.1038/s41467-022-33916-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
The cytosolic molecular chaperone Hsp90 is essential for eukaryotic life. Although reduced Hsp90 levels correlate with aging, it was unknown whether eukaryotic cells and organisms can tune the basal Hsp90 levels to alleviate physiologically accumulated stress. We have investigated whether and how mice adapt to the deletion of three out of four alleles of the two genes encoding cytosolic Hsp90, with one Hsp90β allele being the only remaining one. While the vast majority of such mouse embryos die during gestation, survivors apparently manage to increase their Hsp90β protein to at least wild-type levels. Our studies reveal an internal ribosome entry site in the 5' untranslated region of the Hsp90β mRNA allowing translational reprogramming to compensate for the genetic loss of Hsp90 alleles and in response to stress. We find that the minimum amount of total Hsp90 required to support viability of mammalian cells and organisms is 50-70% of what is normally there. Those that fail to maintain a threshold level are subject to accelerated senescence, proteostatic collapse, and ultimately death. Therefore, considering that Hsp90 levels can be reduced ≥100-fold in the unicellular budding yeast, critical threshold levels of Hsp90 have markedly increased during eukaryotic evolution.
Collapse
Affiliation(s)
- Kaushik Bhattacharya
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Samarpan Maiti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenz Weidenauer
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Dina Hany
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Diana Wider
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lilia Bernasconi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Martine Collart
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Didier Picard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
102
|
Mother–Fetus Immune Cross-Talk Coordinates “Extrinsic”/“Intrinsic” Embryo Gene Expression Noise and Growth Stability. Int J Mol Sci 2022; 23:ijms232012467. [PMID: 36293324 PMCID: PMC9604428 DOI: 10.3390/ijms232012467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Developmental instability (DI) is thought to be inversely related to a capacity of an organism to buffer its development against random genetic and environmental perturbations. DI is represented by a trait’s inter- and intra-individual variabilities. The inter-individual variability (inversely referred to as canalization) indicates the capability of organisms to reproduce a trait from individual to individual. The intra-individual variability reflects an organism’s capability to stabilize a trait internally under the same conditions, and, for symmetric traits, it is expressed as fluctuating asymmetry (FA). When representing a trait as a random variable conditioned on environmental fluctuations, it is clear that, in statistical terms, the DI partitions into “extrinsic” (canalization) and “intrinsic” (FA) components of a trait’s variance/noise. We established a simple statistical framework to dissect both parts of a symmetric trait variance/noise using a PCA (principal component analysis) projection of the left/right measurements on eigenvectors followed by GAMLSS (generalized additive models for location scale and shape) modeling of eigenvalues. The first eigenvalue represents “extrinsic” and the second—“intrinsic” DI components. We applied this framework to investigate the impact of mother–fetus major histocompatibility complex (MHC)-mediated immune cross-talk on gene expression noise and developmental stability. We showed that “intrinsic” gene noise for the entire transcriptional landscape could be estimated from a small subset of randomly selected genes. Using a diagnostic set of genes, we found that allogeneic MHC combinations tended to decrease “extrinsic” and “intrinsic” gene noise in C57BL/6J embryos developing in the surrogate NOD-SCID and BALB/c mothers. The “intrinsic” gene noise was negatively correlated with growth (embryonic mass) and the levels of placental growth factor (PLGF), but not vascular endothelial growth factor (VEGF). However, it was positively associated with phenotypic growth instability and noise in PLGF. In mammals, the mother–fetus MHC interaction plays a significant role in development, contributing to the fitness of the offspring. Our results demonstrate that a positive impact of distant MHC combinations on embryonic growth could be mediated by the reduction of “intrinsic” gene noise followed by the developmental stabilization of growth.
Collapse
|
103
|
Blanco-Obregon D, El Marzkioui K, Brutscher F, Kapoor V, Valzania L, Andersen DS, Colombani J, Narasimha S, McCusker D, Léopold P, Boulan L. A Dilp8-dependent time window ensures tissue size adjustment in Drosophila. Nat Commun 2022; 13:5629. [PMID: 36163439 PMCID: PMC9512784 DOI: 10.1038/s41467-022-33387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The control of organ size mainly relies on precise autonomous growth programs. However, organ development is subject to random variations, called developmental noise, best revealed by the fluctuating asymmetry observed between bilateral organs. The developmental mechanisms ensuring bilateral symmetry in organ size are mostly unknown. In Drosophila, null mutations for the relaxin-like hormone Dilp8 increase wing fluctuating asymmetry, suggesting that Dilp8 plays a role in buffering developmental noise. Here we show that size adjustment of the wing primordia involves a peak of dilp8 expression that takes place sharply at the end of juvenile growth. Wing size adjustment relies on a cross-organ communication involving the epidermis as the source of Dilp8. We identify ecdysone signaling as both the trigger for epidermal dilp8 expression and its downstream target in the wing primordia, thereby establishing reciprocal hormonal feedback as a systemic mechanism, which controls organ size and bilateral symmetry in a narrow developmental time window. Mechanisms ensuring developmental precision are poorly understood. Here Blanco-Obregon et al. report reciprocal feedback between Dilp8 and Ecdysone, two hormones required during a precise time window of Drosophila development for organ size adjustment.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - K El Marzkioui
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - F Brutscher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - V Kapoor
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Valzania
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D S Andersen
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - J Colombani
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - S Narasimha
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D McCusker
- University of Michigan, Ann Arbor, MI, USA
| | - P Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Boulan
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
104
|
Quan Y, Wang Z, Wei H, He K. Transcription dynamics of heat shock proteins in response to thermal acclimation in Ostrinia furnacalis. Front Physiol 2022; 13:992293. [PMID: 36225308 PMCID: PMC9548879 DOI: 10.3389/fphys.2022.992293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
Acclimation to abiotic stress plays a critical role in insect adaption and evolution, particularly during extreme climate events. Heat shock proteins (HSPs) are evolutionarily conserved molecular chaperones caused by abiotic and biotic stressors. Understanding the relationship between thermal acclimation and the expression of specific HSPs is essential for addressing the functions of HSP families. This study investigated this issue using the Asian corn borer Ostrinia furnacalis, one of the most important corn pests in China. The transcription of HSP genes was induced in larvae exposed to 33°C. Thereafter, the larvae were exposed to 43°C, for 2 h, and then allowed to recover at 27 C for 0, 0.5, 1, 2, 4, 6, and 8 h. At the recovery times 0.5–4 h, most population tolerates less around 1–3 h than without recovery (at 0 h) suffering continuous heat stress (43 C). There is no difference in the heat tolerance at 6 h recovery, with similar transcriptional levels of HSPs as the control. However, a significant thermal tolerance was observed after 8 h of the recovery time, with a higher level of HSP70. In addition, the transcription of HSP60 and HSC70 (heat shock cognate protein 70) genes did not show a significant effect. HSP70 or HSP90 significantly upregulated within 1–2 h sustained heat stress (43 C) but declined at 6 h. Our findings revealed extreme thermal stress induced quick onset of HSP70 or HSP90 transcription. It could be interpreted as an adaptation to the drastic and rapid temperature variation. The thermal tolerance of larvae is significantly enhanced after 6 h of recovery and possibly regulated by HSP70.
Collapse
Affiliation(s)
- Yudong Quan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kanglai He,
| |
Collapse
|
105
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
106
|
Zhan M, Wen L, Zhu M, Gong J, Xi C, Wen H, Xu G, Shen H. Integrative Analysis of Transcriptome and Metabolome Reveals Molecular Responses in Eriocheir sinensis with Hepatopancreatic Necrosis Disease. BIOLOGY 2022; 11:1267. [PMID: 36138745 PMCID: PMC9495758 DOI: 10.3390/biology11091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Hepatopancreatic necrosis disease (HPND) is a highly lethal disease that first emerged in 2015 in Jiangsu Province, China. So far, most researchers believe that this disease is caused by abiotic factors. However, its true pathogenic mechanism remains unknown. In this study, the effects of HPND on the metabolism and other biological indicators of the Chinese mitten crab (Eriocheir sinensis) were evaluated by integrating transcriptomics and metabolomics. Our findings demonstrate that the innate immunity, antioxidant activity, detoxification ability, and nervous system of the diseased crabs were affected. Additionally, metabolic pathways such as lipid metabolism, nucleotide metabolism, and protein metabolism were dysregulated, and energy production was slightly increased. Moreover, the IL-17 signaling pathway was activated and high levels of autophagy and apoptosis occurred in diseased crabs, which may be related to hepatopancreas damage. The abnormal mitochondrial function and possible anaerobic metabolism observed in our study suggested that functional hypoxia may be involved in HPND progression. Furthermore, the activities of carboxylesterase and acetylcholinesterase were significantly inhibited, indicating that the diseased crabs were likely stressed by pesticides such as pyrethroids. Collectively, our findings provide new insights into the molecular mechanisms altered in diseased crabs, as well as the etiology and pathogenic mechanisms of HPND.
Collapse
Affiliation(s)
- Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lujie Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
107
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
108
|
Li Z, Seehawer M, Polyak K. Untangling the web of intratumour heterogeneity. Nat Cell Biol 2022; 24:1192-1201. [PMID: 35941364 DOI: 10.1038/s41556-022-00969-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Intratumour heterogeneity (ITH) is a hallmark of cancer that drives tumour evolution and disease progression. Technological and computational advances have enabled us to assess ITH at unprecedented depths, yet this accumulating knowledge has not had a substantial clinical impact. This is in part due to a limited understanding of the functional relevance of ITH and the inadequacy of preclinical experimental models to reproduce it. Here, we discuss progress made in these areas and illuminate future directions.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
109
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
110
|
Shimajiri T, Otaki JM. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly Papilio polytes: Color Pattern Modifications and Their Implications in Mimicry Evolution. INSECTS 2022; 13:insects13070649. [PMID: 35886825 PMCID: PMC9322193 DOI: 10.3390/insects13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diverse butterfly wing color patterns are evolutionary products in response to environmental changes in the past. Environmental stress, such as temperature shock, is known to induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern modifications that were partly similar to those of the mimetic form, and nonmimetic females were more sensitive than males and mimetic females. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution. Abstract Butterfly wing color patterns are sensitive to environmental stress, such as temperature shock, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly reduced in size by heat shock. These temperature-shock-induced color pattern modifications were partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another inducer discovered recently, induced unique modifications. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution.
Collapse
|
111
|
Toy JA, Kroeker KJ, Logan CA, Takeshita Y, Longo GC, Bernardi G. Upwelling-level acidification and pH/pCO 2 variability moderate effects of ocean acidification on brain gene expression in the temperate surfperch, Embiotoca jacksoni. Mol Ecol 2022; 31:4707-4725. [PMID: 35821657 PMCID: PMC9545418 DOI: 10.1111/mec.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
Acidification-induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2 . In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2 variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish, Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight-day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2 variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that inter-individual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification.
Collapse
Affiliation(s)
- Jason A Toy
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Cheryl A Logan
- Division of Science and Environmental Policy, California State University Monterey Bay, Seaside, CA, United States
| | - Yuichiro Takeshita
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States
| | - Gary C Longo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States.,NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
112
|
Gene expression and functional analysis of Aha1a and Aha1b in stress response in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110777. [PMID: 35830921 DOI: 10.1016/j.cbpb.2022.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions. The roles of Aha1 in vertebrates are poorly understood. Here, we characterized the expression and function of Aha1 in zebrafish. We showed that zebrafish genome contains two aha1 genes, aha1a and aha1b, that show distinct patterns of expression during development. Under the normal physiological conditions, aha1a is primarily expressed in skeletal muscle cells of zebrafish embryos, while aha1b is strongly expressed in the head region. aha1a and aha1b expression increased dramatically in response to heat shock induced stress. In addition, Aha1a-GFP fusion protein exhibited a dynamic translocation in muscle cells in response to heat shock. Moreover, upregulation of aha1 expression was also observed in hsp90a1 knockdown embryos that showed a muscle defect. Genetic studies demonstrated that knockout of aha1a, aha1b or both had no detectable effect on embryonic development, survival, and growth in zebrafish. The aha1a and aha1b mutant embryos showed normal muscle development and stress response in response to heat shock. Single or double aha1a and aha1b mutants could grow into normal reproductive adults with normal skeletal muscle structure and morphology compared with wild type control. Together, data from these studies indicate that Aha1a and Aha1b are involved in stress response. However, they are dispensable in zebrafish embryonic development, growth, and survival.
Collapse
|
113
|
Christensen S, Rämisch S, André I. DnaK response to expression of protein mutants is dependent on translation rate and stability. Commun Biol 2022; 5:597. [PMID: 35710941 PMCID: PMC9203555 DOI: 10.1038/s42003-022-03542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chaperones play a central part in the quality control system in cells by clearing misfolded and aggregated proteins. The chaperone DnaK acts as a sensor for molecular stress by recognising short hydrophobic stretches of misfolded proteins. As the level of unfolded protein is a function of protein stability, we hypothesised that the level of DnaK response upon overexpression of recombinant proteins would be correlated to stability. Using a set of mutants of the λ-repressor with varying thermal stabilities and a fluorescent reporter system, the effect of stability on DnaK response and protein abundance was investigated. Our results demonstrate that the initial DnaK response is largely dependent on protein synthesis rate but as the recombinantly expressed protein accumulates and homeostasis is approached the response correlates strongly with stability. Furthermore, we observe a large degree of cell-cell variation in protein abundance and DnaK response in more stable proteins.
Collapse
Affiliation(s)
- Signe Christensen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| | | | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
114
|
Bastola P, Leiserowitz GS, Chien J. Multiple Components of Protein Homeostasis Pathway Can Be Targeted to Produce Drug Synergies with VCP Inhibitors in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14122949. [PMID: 35740614 PMCID: PMC9220887 DOI: 10.3390/cancers14122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Protein quality control mechanisms play an important role in cancer progression by providing adaptive responses and morphologic stability against genome-wide copy number alterations, aneuploidy, and conformation-altering somatic mutations. This dependency on protein quality control mechanisms creates a vulnerability that may be exploited for therapeutic benefits by targeting components of the protein quality control mechanism. Recently, valosin-containing protein (VCP), also known at p97 AAA-ATPase, has emerged as a druggable target in cancer cells to affect their dependency on protein quality control. Here, we show that VCP inhibitors induce cytotoxicity in several ovarian cancer cell lines and these compounds act synergistically with mifepristone, a drug previously shown to induce an atypical unfolded protein response. Although mifepristone at a clinically achievable dose induces a weak unfolded protein response, it enhances the cytotoxic effects of VCP inhibitor CB-5083. Mechanistically, mifepristone blocks the cytoprotective effect of ATF6 in response to endoplasmic reticulum (ER) stress while activating the cytotoxic effects of ATF4 and CHOP through the HRI (EIF2AK1)-mediated signal transduction pathway. In contrast, CB-5083 activates ATF4 and CHOP through the PERK (EIF2AK3)-mediated signaling pathway. This combination activates ATF4 and CHOP while blocking the adaptive response provided by ATF6, resulting in increased cytotoxic effects and synergistic drug interaction.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Gary S. Leiserowitz
- Department of Obstetrics and Gynecology, University of California, Davis, CA 95817, USA;
| | - Jeremy Chien
- Department of Obstetrics and Gynecology, University of California, Davis, CA 95817, USA;
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95817, USA
- Correspondence: ; Tel.: +1-916-734-4766
| |
Collapse
|
115
|
Reduced physiological plasticity in a fish adapted to stable temperatures. Proc Natl Acad Sci U S A 2022; 119:e2201919119. [PMID: 35617428 DOI: 10.1073/pnas.2201919119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Significance Plastic individuals can buffer environmental changes, maintaining a stable performance across gradients. Plasticity is therefore thought to be particularly beneficial for the survival of wild populations that experience large environmental fluctuations, such as diel and seasonal temperature changes. Maintaining plasticity is widely assumed to be costly; however, empirical evidence demonstrating this cost is scarce. Here, we predict that if plasticity is costly, it would be readily lost in a stable environment, such as a laboratory. To test this, we measured a diverse range of phenotypic traits, spanning gene expression, physiology, and behavior, in wild and laboratory zebrafish acclimated to 15 temperatures. We show that laboratory fish have lost plasticity in many traits, demonstrating that maintaining plasticity carries a cost.
Collapse
|
116
|
Melanker O, Goloubinoff P, Schreiber G. In vitro evolution of uracil glycosylase towards DnaKJ and GroEL binding evolves different misfolded states. J Mol Biol 2022; 434:167627. [PMID: 35597550 DOI: 10.1016/j.jmb.2022.167627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+DnaJ+ATP (DnaKJ) or E.coli cell extract (CE), using binding to the eUNG inhibitor Ugi as probe for native fold. The CE selected population was further divided to Ugi binders (+U) or non-binders (-U). The aim here was to evaluate the sequence space and physical state of the evolved protein binding the different baits. We found that GroEL, DnaKJ and CE-U select and enrich for mutations causing eUNG to misfold, with the three being enriched in mutations in buried and conserved positions, with a tendency to increase positive charge. Still, each selection had its own trajectory, with GroEL and CE-U selecting mutants highly sensitive to protease cleavage while DnaKJ selected partially structured misfolded species with a tendency to refold, making them less sensitive to proteases. More general, our results show that GroEL has a higher tendency to purge promiscuous misfolded protein mutants from the system, while DnaKJ binds misfolding-prone mutant species that are, upon chaperone release, more likely to natively refold. CE-U shares some of the properties of GroEL- and DnaKJ-selected populations, while harboring also unique properties that can be explained by the presence of additional chaperones in CE, such as Trigger factor, HtpG and ClpB.
Collapse
Affiliation(s)
- Oran Melanker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015 Lausanne, Switzerland
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
117
|
Koganezawa Y, Umetani M, Sato M, Wakamoto Y. History-dependent physiological adaptation to lethal genetic modification under antibiotic exposure. eLife 2022; 11:e74486. [PMID: 35535492 PMCID: PMC9090333 DOI: 10.7554/elife.74486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Genetic modifications, such as gene deletion and mutations, could lead to significant changes in physiological states or even cell death. Bacterial cells can adapt to diverse external stresses, such as antibiotic exposure, but can they also adapt to detrimental genetic modification? To address this issue, we visualized the response of individual Escherichia coli cells to deletion of the antibiotic resistance gene under chloramphenicol (Cp) exposure, combining the light-inducible genetic recombination and microfluidic long-term single-cell tracking. We found that a significant fraction (∼40%) of resistance-gene-deleted cells demonstrated a gradual restoration of growth and stably proliferated under continuous Cp exposure without the resistance gene. Such physiological adaptation to genetic modification was not observed when the deletion was introduced in 10 hr or more advance before Cp exposure. Resistance gene deletion under Cp exposure disrupted the stoichiometric balance of ribosomal large and small subunit proteins (RplS and RpsB). However, the balance was gradually recovered in the cell lineages with restored growth. These results demonstrate that bacterial cells can adapt even to lethal genetic modifications by plastically gaining physiological resistance. However, the access to the resistance states is limited by the environmental histories and the timings of genetic modification.
Collapse
Affiliation(s)
- Yuta Koganezawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
| | - Miki Umetani
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
| | - Moritoshi Sato
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
| |
Collapse
|
118
|
Isaacson JR, Berg MD, Charles B, Jagiello J, Villén J, Brandl CJ, Moehring AJ. A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects. G3 GENES|GENOMES|GENETICS 2022; 12:6526391. [PMID: 35143655 PMCID: PMC9073681 DOI: 10.1093/g3journal/jkac035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan Charles
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jessica Jagiello
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
119
|
Perrier A, Sánchez‐Castro D, Willi Y. Environment dependence of the expression of mutational load and species' range limits. J Evol Biol 2022; 35:731-741. [PMID: 35290676 PMCID: PMC9314787 DOI: 10.1111/jeb.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022]
Abstract
Theoretical and empirical research on the causes of species' range limits suggest the contribution of several intrinsic and extrinsic factors, with potentially complex interactions among them. An intrinsic factor proposed by recent theory is mutational load increasing towards range edges because of genetic drift. Furthermore, environmental quality may decline towards range edges and enhance the expression of load. Here, we tested whether the expression of mutational load associated with range limits in the North American plant Arabidopsis lyrata was enhanced under stressful environmental conditions by comparing the performance of within- versus between-population crosses at common garden sites across the species' distribution and beyond. Heterosis, reflecting the expression of load, increased with heightened estimates of genomic load and with environmental stress caused by warming, but the interaction was not significant. We conclude that range-edge populations suffer from a twofold genetic Allee effect caused by increased mutational load and stress-dependent load linked to general heterozygote deficiency, but there is no synergistic effect between them.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | | | - Yvonne Willi
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
120
|
Sato A, Oba GM, Aubert-Kato N, Yura K, Bishop J. Co-expression network analysis of environmental canalization in the ascidian Ciona. BMC Ecol Evol 2022; 22:53. [PMID: 35484499 PMCID: PMC9052645 DOI: 10.1186/s12862-022-02006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canalization, or buffering, is defined as developmental stability in the face of genetic and/or environmental perturbations. Understanding how canalization works is important in predicting how species survive environmental change, as well as deciphering how development can be altered in the evolutionary process. However, how developmental gene expression is linked to buffering remains unclear. We addressed this by co-expression network analysis, comparing gene expression changes caused by heat stress during development at a whole-embryonic scale in reciprocal hybrid crosses of sibling species of the ascidian Ciona that are adapted to different thermal environments. RESULTS Since our previous work showed that developmental buffering in this group is maternally inherited, we first identified maternal developmental buffering genes (MDBGs) in which the expression level in embryos is both correlated to the level of environmental canalization and also differentially expressed depending on the species' gender roles in hybrid crosses. We found only 15 MDBGs, all of which showed high correlation coefficient values for expression with a large number of other genes, and 14 of these belonged to a single co-expression module. We then calculated correlation coefficients of expression between MDBGs and transcription factors in the central nervous system (CNS) developmental gene network that had previously been identified experimentally. We found that, compared to the correlation coefficients between MDBGs, which had an average of 0.96, the MDBGs are loosely linked to the CNS developmental genes (average correlation coefficient 0.45). Further, we investigated the correlation of each developmental to MDBGs, showing that only four out of 62 CNS developmental genes showed correlation coefficient > 0.9, comparable to the values between MDBGs, and three of these four genes were signaling molecules: BMP2/4, Wnt7, and Delta-like. CONCLUSIONS We show that the developmental pathway is not centrally located within the buffering network. We found that out of 62 genes in the developmental gene network, only four genes showed correlation coefficients as high as between MDBGs. We propose that loose links to MDBGs stabilize spatiotemporally dynamic development.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Tokyo, Japan.
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK.
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Gina M Oba
- Department of Biology, Ochanomizu University, Tokyo, Japan
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| | - Nathanael Aubert-Kato
- Department of Information Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Yura
- Department of Biology, Ochanomizu University, Tokyo, Japan
- Department of Life Science & Medical Bioscience, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- Human Life Innovation Center, Ochanomizu University, Tokyo, Japan
| | - John Bishop
- The Laboratory, Marine Biological Association of the UK, Plymouth, UK
| |
Collapse
|
121
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
122
|
Stanley TR, Guisbert KSK, Perez SM, Oneka M, Kernin I, Higgins NR, Lobo A, Subasi MM, Carroll DJ, Turingan RG, Guisbert E. Stress response gene family expansions correlate with invasive potential in teleost fish. J Exp Biol 2022; 225:274389. [PMID: 35258619 PMCID: PMC8987736 DOI: 10.1242/jeb.243263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
The bluegill sunfish Lepomis macrochirus and the closely related redear sunfish Lepomis microlophus have important ecological and recreational value and are widely used for research and aquaculture. While both species have been introduced outside of their native ranges, only the bluegill is considered invasive. Here, we report de novo transcriptome assemblies for these fish as a resource for sunfish biology. Comparative analyses of the transcriptomes revealed an unexpected, bluegill-specific expansion in the HSP70 and HSP90 molecular chaperone gene families. These expansions were not unique to the bluegill as expansions in HSP70s and HSP90s were identified in the genomes of other teleost fish using the NCBI RefSeq database. To determine whether gene family expansions are specific for thermal stress responses, GST and SOD gene families that are associated with oxidative stress responses were also analyzed. Species-specific expansions were also observed for these gene families in distinct fish species. Validating our approach, previously described expansions in the MHC gene family were also identified. Intriguingly, the number of HSP70 paralogs was positively correlated with thermotolerance range for each species, suggesting that these expansions can impact organismal physiology. Furthermore, fish that are considered invasive contained a higher average number of HSP70 paralogs than non-invasive fish. Invasive fish also had higher average numbers of HSP90, MHC and GST paralogs, but not SOD paralogs. Taken together, we propose that expansions in key cellular stress response gene families represent novel genetic signatures that correlate with invasive potential.
Collapse
Affiliation(s)
- Taylor R Stanley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Sabrina M Perez
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Morgan Oneka
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Isabela Kernin
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Nicole R Higgins
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Alexandra Lobo
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Munevver M Subasi
- Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - David J Carroll
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Ralph G Turingan
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32937, USA
| |
Collapse
|
123
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
124
|
Iyengar BR, Wagner A. GroEL/S overexpression helps to purge deleterious mutations and reduce genetic diversity during adaptive protein evolution. Mol Biol Evol 2022; 39:6540901. [PMID: 35234895 PMCID: PMC9188349 DOI: 10.1093/molbev/msac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL + GroES) affects the evolution of green fluorescent protein (GFP). To this end we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate E. coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
Collapse
|
125
|
McKenna KZ, Gawne R, Nijhout HF. The genetic control paradigm in biology: What we say, and what we are entitled to mean. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:89-93. [PMID: 35218858 DOI: 10.1016/j.pbiomolbio.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 12/25/2022]
Abstract
We comment on the article by Keith Baverstock (2021) and provide critiques of the concepts of genetic control, genetic blueprint and genetic program.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Department of Biology, University of California, San Diego, United States
| | - Richard Gawne
- Allen Discovery Center at Tufts University, United States
| | | |
Collapse
|
126
|
The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biol 2022; 20:e3001569. [PMID: 35180219 PMCID: PMC8906867 DOI: 10.1371/journal.pbio.3001569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/09/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation. The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.
Collapse
|
127
|
Palazzo AF, Kejiou NS. Non-Darwinian Molecular Biology. Front Genet 2022; 13:831068. [PMID: 35251134 PMCID: PMC8888898 DOI: 10.3389/fgene.2022.831068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
With the discovery of the double helical structure of DNA, a shift occurred in how biologists investigated questions surrounding cellular processes, such as protein synthesis. Instead of viewing biological activity through the lens of chemical reactions, this new field used biological information to gain a new profound view of how biological systems work. Molecular biologists asked new types of questions that would have been inconceivable to the older generation of researchers, such as how cellular machineries convert inherited biological information into functional molecules like proteins. This new focus on biological information also gave molecular biologists a way to link their findings to concepts developed by genetics and the modern synthesis. However, by the late 1960s this all changed. Elevated rates of mutation, unsustainable genetic loads, and high levels of variation in populations, challenged Darwinian evolution, a central tenant of the modern synthesis, where adaptation was the main driver of evolutionary change. Building on these findings, Motoo Kimura advanced the neutral theory of molecular evolution, which advocates that selection in multicellular eukaryotes is weak and that most genomic changes are neutral and due to random drift. This was further elaborated by Jack King and Thomas Jukes, in their paper “Non-Darwinian Evolution”, where they pointed out that the observed changes seen in proteins and the types of polymorphisms observed in populations only become understandable when we take into account biochemistry and Kimura’s new theory. Fifty years later, most molecular biologists remain unaware of these fundamental advances. Their adaptionist viewpoint fails to explain data collected from new powerful technologies which can detect exceedingly rare biochemical events. For example, high throughput sequencing routinely detects RNA transcripts being produced from almost the entire genome yet are present less than one copy per thousand cells and appear to lack any function. Molecular biologists must now reincorporate ideas from classical biochemistry and absorb modern concepts from molecular evolution, to craft a new lens through which they can evaluate the functionality of transcriptional units, and make sense of our messy, intricate, and complicated genome.
Collapse
|
128
|
Riederer JM, Tiso S, van Eldijk TJ, Weissing FJ. Capturing the facets of evolvability in a mechanistic framework. Trends Ecol Evol 2022; 37:430-439. [DOI: 10.1016/j.tree.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
129
|
Schell R, Hale JJ, Mullis MN, Matsui T, Foree R, Ehrenreich IM. Genetic basis of a spontaneous mutation’s expressivity. Genetics 2022; 220:6515283. [PMID: 35078232 PMCID: PMC8893249 DOI: 10.1093/genetics/iyac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Genetic background often influences the phenotypic consequences of mutations, resulting in variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the mutation’s expressivity, with one allele causing inviability in mutants. However, further experiments revealed this simplicity was an illusion. In fact, many additional loci shape the mutation’s expressivity, collectively leading to a wide spectrum of mutational responses. These results exemplify how complex combinations of alleles can produce a diversity of qualitative and quantitative responses to the same mutation.
Collapse
Affiliation(s)
- Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph J Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Foree
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
130
|
Zhang M, Cui J, Shen F, Ye L, Cheng C, Li Y, Zhang Q, Niu L, Hou Y, Bai G. A novel mode of action for COX‐2 inhibition: Targeting ATPase domain of HSP90 induces ubiquitin degradation of new client protein COX‐2. Clin Transl Med 2022; 12:e705. [PMID: 35075789 PMCID: PMC8787097 DOI: 10.1002/ctm2.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Jing Cui
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Lili Ye
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Qiuyang Zhang
- Thompson Rivers University Manna British Columbia Canada
| | - Lin Niu
- Tianjin University of Traditional Chinese Medicine Tianjin People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| |
Collapse
|
131
|
Peri G, Gibard C, Shults NH, Crossin K, Hayden EJ. Dynamic RNA fitness landscapes of a group I ribozyme during changes to the experimental environment. Mol Biol Evol 2022; 39:6502289. [PMID: 35020916 PMCID: PMC8890501 DOI: 10.1093/molbev/msab373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fitness landscapes of protein and RNA molecules can be studied experimentally using high-throughput techniques to measure the functional effects of numerous combinations of mutations. The rugged topography of these molecular fitness landscapes is important for understanding and predicting natural and experimental evolution. Mutational effects are also dependent upon environmental conditions, but the effects of environmental changes on fitness landscapes remains poorly understood. Here, we investigate the changes to the fitness landscape of a catalytic RNA molecule while changing a single environmental variable that is critical for RNA structure and function. Using high-throughput sequencing of in vitro selections, we mapped a fitness landscape of the Azoarcus group I ribozyme under eight different concentrations of magnesium ions (1–48 mM MgCl2). The data revealed the magnesium dependence of 16,384 mutational neighbors, and from this, we investigated the magnesium induced changes to the topography of the fitness landscape. The results showed that increasing magnesium concentration improved the relative fitness of sequences at higher mutational distances while also reducing the ruggedness of the mutational trajectories on the landscape. As a result, as magnesium concentration was increased, simulated populations evolved toward higher fitness faster. Curve-fitting of the magnesium dependence of individual ribozymes demonstrated that deep sequencing of in vitro reactions can be used to evaluate the structural stability of thousands of sequences in parallel. Overall, the results highlight how environmental changes that stabilize structures can also alter the ruggedness of fitness landscapes and alter evolutionary processes.
Collapse
Affiliation(s)
- Gianluca Peri
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Clémentine Gibard
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Nicholas H Shults
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Kent Crossin
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Eric J Hayden
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA.,Department of Biological Science, Boise State University, Boise, ID, USA
| |
Collapse
|
132
|
Zou X, Schaefke B, Li Y, Jia F, Sun W, Li G, Liang W, Reif T, Heyd F, Gao Q, Tian S, Li Y, Tang Y, Fang L, Hu Y, Chen W. Mammalian splicing divergence is shaped by drift, buffering in trans, and a scaling law. Life Sci Alliance 2022; 5:5/4/e202101333. [PMID: 34969779 PMCID: PMC8739531 DOI: 10.26508/lsa.202101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
This study globally investigates the allelic splicing pattern in multiple tissues of an F1 hybrid mouse and reveals the underlying driving forces shaping such tissue-dependent splicing divergence. Alternative splicing is ubiquitous, but the mechanisms underlying its pattern of evolutionary divergence across mammalian tissues are still underexplored. Here, we investigated the cis-regulatory divergences and their relationship with tissue-dependent trans-regulation in multiple tissues of an F1 hybrid between two mouse species. Large splicing changes between tissues are highly conserved and likely reflect functional tissue-dependent regulation. In particular, micro-exons frequently exhibit this pattern with high inclusion levels in the brain. Cis-divergence of splicing appears to be largely non-adaptive. Although divergence is in general associated with higher densities of sequence variants in regulatory regions, events with high usage of the dominant isoform apparently tolerate more mutations, explaining why their exon sequences are highly conserved but their intronic splicing site flanking regions are not. Moreover, we demonstrate that non-adaptive mutations are often masked in tissues where accurate splicing likely is more important, and experimentally attribute such buffering effect to trans-regulatory splicing efficiency.
Collapse
Affiliation(s)
- Xudong Zou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bernhard Schaefke
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yisheng Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fujian Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guipeng Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Weizheng Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tristan Reif
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Florian Heyd
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Shuye Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yisen Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China .,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
133
|
Dynamics of heat shock proteins and heat shock factor expression during heat stress in daughter workers in pre-heat-treated (rapid heat hardening) Apis mellifera mother queens. J Therm Biol 2022; 104:103194. [DOI: 10.1016/j.jtherbio.2022.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
134
|
Li W, Meng R, Liu Y, Chen S, Jiang J, Wang L, Zhao S, Wang Z, Fang W, Chen F, Guan Z. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. HORTICULTURE RESEARCH 2022; 9:uhac073. [PMID: 35712696 PMCID: PMC9198737 DOI: 10.1093/hr/uhac073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Chrysanthemum, one of the most important commercial ornamental crops, is susceptible to salinity, which limits its cultivation and application in coastal and inland saline areas. Grafting is widely used to improve the salt tolerance of horticultural crops, but the mechanisms of grafted chrysanthemum responses to salt stress remain unclear. In this study, we showed that heterografted chrysanthemums with Artemisia annua as rootstock exhibited increased salt tolerance compared with self-grafted and self-rooted chrysanthemums. Under high salt stress, the roots of heterografted chrysanthemums enrich Na+, resulting in a reduction of Na+ toxicity in the scion, with only a small amount of Na+ being transported to the leaves. On the other hand, the roots of heterografted chrysanthemums alleviated high Na+ stress via enhanced catalase enzyme activity, downregulation of the expression of reactive oxygen species (ROS) accumulation-related genes, massive accumulation of soluble sugars and proline, and upregulation of the expression of heat shock protein-related genes to enhance salt tolerance. In addition, the leaves of heterografted chrysanthemums respond to low Na+ stress by increasing peroxidase enzyme activity and soluble sugar and proline contents, to maintain a healthy state. However, self-grafted and self-rooted plants could not integrate ROS, soluble sugars, and proline in response to salt stress, and thus exhibited a salt-sensitive phenotype. Our research reveals the mechanisms underlying the increased salt tolerance of heterografted chrysanthemums and makes it possible to have large-scale cultivation of chrysanthemums in saline areas.
Collapse
|
135
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
136
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
137
|
Wei J, Ho G, Takamatsu Y, Masliah E, Hashimoto M. Therapeutic Potential of α-Synuclein Evolvability for Autosomal Recessive Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:6318067. [PMID: 34858569 PMCID: PMC8632460 DOI: 10.1155/2021/6318067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The majority of Parkinson's disease (PD) is sporadic in elderly and is characterized by α-synuclein (αS) aggregation and other alterations involving mitochondria, ubiquitin-proteasome, and autophagy. The remaining are familial PD associated with gene mutations of either autosomal dominant or recessive inheritances. However, the former ones are similar to sporadic PD, and the latter ones are accompanied by impaired mitophagy during the reproductive stage. Since no radical therapies are available for PD, the objective of this paper is to discuss a mechanistic role for amyloidogenic evolvability, a putative physiological function of αS, among PD subtypes, and the potential relevance to therapy. Presumably, αS evolvability might benefit familial PD due to autosomal dominant genes and also sporadic PD during reproduction, which may manifest as neurodegenerative diseases through antagonistic pleiotropy mechanism in aging. Indeed, there are some reports describing that αS prevents apoptosis and mitochondrial alteration under the oxidative stress conditions, notwithstanding myriads of papers on the neuropathology of αS. Importantly, β-synuclein (βS), the nonamyloidogenic homologue of αS, might buffer against evolvability of αS protofibrils associated with neurotoxicity. Finally, it is intriguing to predict that increased αS evolvability through suppression of βS expression might protect against autosomal recessive PD. Collectively, further studies are warranted to better understand αS evolvability in PD pathogenesis, leading to rational therapy development.
Collapse
Affiliation(s)
- Jianshe Wei
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway 92064, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
138
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
139
|
Lai WY, Schlötterer C. Evolution of phenotypic variance in response to a novel hot environment. Mol Ecol 2021; 31:934-945. [PMID: 34775658 DOI: 10.1111/mec.16274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Shifts in trait means are widely considered as evidence for adaptive responses, but the impact on phenotypic variance remains largely unexplored. Classic quantitative genetics provides a theoretical framework to predict how selection on phenotypic mean affects the variance. In addition to this indirect effect, it is also possible that the variance of the trait is the direct target of selection, but experimentally characterized cases are rare. Here, we studied gene expression variance of Drosophila simulans males before and after 100 generations of adaptation to a novel hot laboratory environment. In each of the two independently evolved populations, the variance of 125 and 97 genes was significantly reduced. We propose that the drastic loss in environmental complexity from nature to the laboratory may have triggered selection for reduced variance. Our observation that selection could drive changes in the variance of gene expression could have important implications for studies of adaptation processes in natural and experimental populations.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
140
|
Sands B, Yun S, Mendenhall AR. Introns control stochastic allele expression bias. Nat Commun 2021; 12:6527. [PMID: 34764277 PMCID: PMC8585970 DOI: 10.1038/s41467-021-26798-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Monoallelic expression (MAE) or extreme allele bias can account for incomplete penetrance, missing heritability and non-Mendelian diseases. In cancer, MAE is associated with shorter patient survival times and higher tumor grade. Prior studies showed that stochastic MAE is caused by stochastic epigenetic silencing, in a gene and tissue-specific manner. Here, we used C. elegans to study stochastic MAE in vivo. We found allele bias/MAE to be widespread within C. elegans tissues, presenting as a continuum from fully biallelic to MAE. We discovered that the presence of introns within alleles robustly decreases MAE. We determined that introns control MAE at distinct loci, in distinct cell types, with distinct promoters, and within distinct coding sequences, using a 5'-intron position-dependent mechanism. Bioinformatic analysis showed human intronless genes are significantly enriched for MAE. Our experimental evidence demonstrates a role for introns in regulating MAE, possibly explaining why some mutations within introns result in disease.
Collapse
Affiliation(s)
- Bryan Sands
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Soo Yun
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| | - Alexander R. Mendenhall
- grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
141
|
Webster SH, Scott MJ. The Aedes aegypti (Diptera: Culicidae) hsp83 Gene Promoter Drives Strong Ubiquitous DsRed and ZsGreen Marker Expression in Transgenic Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2533-2537. [PMID: 34302473 DOI: 10.1093/jme/tjab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
Transgenic strains of the mosquito disease vector Aedes aegypti (L.) are being developed for population suppression or modification. Transgenic mosquitoes are identified using fluorescent protein genes. Here we describe DsRed and ZsGreen marker genes driven by the constitutive Ae. aegypti heat shock protein 83 (hsp83) promoter in transgenic mosquitoes. Transgenic larvae and pupae show strong full body expression of the red and green fluorescent proteins. This greatly assists in screening for transgenic individuals while making new or maintaining already established lines. Transient marker gene expression after embryo microinjection was readily visible in developing larvae allowing the separation of individuals that are more likely to produce transgenic offspring. The strongly expressed marker genes developed in this study should facilitate the detection of transgenic Ae. aegypti larvae or pupae in the field.
Collapse
Affiliation(s)
- Sophia H Webster
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
142
|
Expression Patterns of the Heat Shock Protein 90 (Hsp90) Gene Suggest Its Possible Involvement in Maintaining the Dormancy of Dinoflagellate Resting Cysts. Int J Mol Sci 2021; 22:ijms222011054. [PMID: 34681714 PMCID: PMC8538777 DOI: 10.3390/ijms222011054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone functioning in cellular structural folding and conformational integrity maintenance and thus plays vital roles in a variety of biological processes. However, many aspects of these functions and processes remain to be fully elucidated, particularly for non-model organisms. Dinoflagellates are a group of eukaryotes that are exceedingly important in primary production and are responsible for the most harmful algal blooms (HABs) in aquatic ecosystems. The success of dinoflagellates in dominating the plankton community is undoubtedly pertinent to their remarkable adaptive strategies, characteristic of resting cyst production and broad tolerance to stresses of temperature and others. Therefore, this study was conducted to examine the putative roles of Hsp90 in the acclimation to temperature stress and life stage alterations of dinoflagellates. Firstly, we isolated the full-length cDNA of an Hsp90 gene (StHsp90) via RACE from the cosmopolitan HAB species Scrippsiella trochoidea and tracked its transcriptions in response to varied scenarios via real-time qPCR. The results indicated that StHsp90 displayed significant mRNA augment patterns, escalating during 180-min treatments, when the cells were exposed to elevated and lowered temperatures. Secondly, we observed prominently elevated StHsp90 transcriptions in the cysts that were stored at the cold and dark conditions compared to those in newly formed resting cysts and vegetative cells. Finally, and perhaps most importantly, we identified 29 entries of Hsp90-encoding genes with complete coding regions from a dinoflagellate-specific environmental cDNA library generated from marine sediment assemblages. The observed active transcription of these genes in sediment-buried resting cysts was fully supported by the qPCR results for the cold-stored resting cysts of S. trochoidea. Hsp90s expressions in both laboratory-raised and field-collected cysts collectively highlighted the possible involvement and engagement of Hsp90 chaperones in the resting stage persistence of dinoflagellates.
Collapse
|
143
|
Bailey NW, Desjonquères C, Drago A, Rayner JG, Sturiale SL, Zhang X. A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive. Evol Lett 2021; 5:444-457. [PMID: 34621532 PMCID: PMC8484725 DOI: 10.1002/evl3.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including genetic coupling via physical linkage and pleiotropy, and illustrate the consequences for adaptation rates using numerical simulations. Such genetic covariances may also arise from the social environment, and we suggest the indirect genetic effects that result could further accentuate the process of adaptation. We call the latter mechanism of adaptation social drive, and identify methods to test it. We suggest that genetic coupling of plasticity and adaptations could promote unusually rapid ‘runaway’ evolution of novel adaptations. The resultant dynamics could facilitate evolutionary rescue, adaptive radiations, the origin of novelties, and other commonly studied processes.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Camille Desjonquères
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Department of Biological Sciences University of Wisconsin-Milwaukee Milwaukee Wisconsin 53201
| | - Ana Drago
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Samantha L Sturiale
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Current Address: Department of Biology Georgetown University Washington DC 20057
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| |
Collapse
|
144
|
Plesnar‐Bielak A, Łukasiewicz A. Sexual conflict in a changing environment. Biol Rev Camb Philos Soc 2021; 96:1854-1867. [PMID: 33960630 PMCID: PMC8518779 DOI: 10.1111/brv.12728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Sexual conflict has extremely important consequences for various evolutionary processes including its effect on local adaptation and extinction probability during environmental change. The awareness that the intensity and dynamics of sexual conflict is highly dependent on the ecological setting of a population has grown in recent years, but much work is yet to be done. Here, we review progress in our understanding of the ecology of sexual conflict and how the environmental sensitivity of such conflict feeds back into population adaptivity and demography, which, in turn, determine a population's chances of surviving a sudden environmental change. We link two possible forms of sexual conflict - intralocus and interlocus sexual conflict - in an environmental context and identify major gaps in our knowledge. These include sexual conflict responses to fluctuating and oscillating environmental changes and its influence on the interplay between interlocus and intralocus sexual conflict, among others. We also highlight the need to move our investigations into more natural settings and to investigate sexual conflict dynamics in wild populations.
Collapse
Affiliation(s)
- Agata Plesnar‐Bielak
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian Universityul. Gronostajowa 730‐387KrakówPoland
| | - Aleksandra Łukasiewicz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandPO Box 11180101JoensuuFinland
- Evolutionary Biology Group, Faculty of BiologyAdam Mickiewicz Universityul. Uniwersytetu Poznańskiego 661‐614PoznańPoland
| |
Collapse
|
145
|
Özsoy ED, Yılmaz M, Patlar B, Emecen G, Durmaz E, Magwire MM, Zhou S, Huang W, Anholt RRH, Mackay TFC. Epistasis for head morphology in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab285. [PMID: 34568933 PMCID: PMC8473977 DOI: 10.1093/g3journal/jkab285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Epistasis-gene-gene interaction-is common for mutations with large phenotypic effects in humans and model organisms. Epistasis impacts quantitative genetic models of speciation, response to natural and artificial selection, genetic mapping, and personalized medicine. However, the existence and magnitude of epistasis between alleles with small quantitative phenotypic effects are controversial and difficult to assess. Here, we use the Drosophila melanogaster Genetic Reference Panel of sequenced inbred lines to evaluate the magnitude of naturally occurring epistasis modifying the effects of mutations in jing and inv, two transcription factors that have subtle quantitative effects on head morphology as homozygotes. We find significant epistasis for both mutations and performed single marker genome-wide association analyses to map candidate modifier variants and loci affecting head morphology. A subset of these loci was significantly enriched for a known genetic interaction network, and mutations of the candidate epistatic modifier loci also affect head morphology.
Collapse
Affiliation(s)
- Ergi D Özsoy
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Murat Yılmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Bahar Patlar
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Güzin Emecen
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Esra Durmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Michael M Magwire
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Shanshan Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Robert R H Anholt
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
146
|
Noble DWA, Senior AM, Uller T, Schwanz LE. Heightened among-individual variation in life history but not morphology is related to developmental temperature in reptiles. J Evol Biol 2021; 34:1793-1802. [PMID: 34543488 DOI: 10.1111/jeb.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
Increases in phenotypic variation under extreme (e.g. novel or stressful) environmental conditions are emerging as a crucial process through which evolutionary adaptation can occur. Lack of prior stabilizing selection, as well as potential instability of developmental processes in these environments, may lead to a release of phenotypic variation that can have important evolutionary consequences. Although such patterns have been shown in model study organisms, we know little about the generality of trait variance across environments for non-model organisms. Here, we test whether extreme developmental temperatures increase the phenotypic variation across diverse reptile taxa. We find that the among-individual variation in a key life-history trait (post-hatching growth) increases at extreme cold and hot temperatures. However, variations in two measures of hatchling morphology and in hatchling performance were not related to developmental temperature. Although extreme developmental temperatures may increase the variation in growth, our results suggest that plastic responses to stressful incubation conditions do not generally make more extreme phenotypes available to selection. We discuss the reasons for the general lack of increased variability at extreme incubation temperatures and the implications this has for local adaptation in hatchling morphology and physiology.
Collapse
Affiliation(s)
- Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Alistair M Senior
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Skåne, Sweden
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
147
|
D'Aguillo M, Hazelwood C, Quarles B, Donohue K. Genetic Consequences of Biologically Altered Environments. J Hered 2021; 113:26-36. [PMID: 34534330 DOI: 10.1093/jhered/esab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Evolvable traits of organisms can alter the environment those organisms experience. While it is well appreciated that those modified environments can influence natural selection to which organisms are exposed, they can also influence the expression of genetic variances and covariances of traits under selection. When genetic variance and covariance change in response to changes in the evolving, modified environment, rates and outcomes of evolution also change. Here we discuss the basic mechanisms whereby organisms modify their environments, review how those modified environments have been shown to alter genetic variance and covariance, and discuss potential evolutionary consequences of such dynamics. With these dynamics, responses to selection can be more rapid and sustained, leading to more extreme phenotypes, or they can be slower and truncated, leading to more conserved phenotypes. Patterns of correlated selection can also change, leading to greater or less evolutionary independence of traits, or even causing convergence or divergence of traits, even when selection on them is consistent across environments. Developing evolutionary models that incorporate changes in genetic variances and covariances when environments themselves evolve requires developing methods to predict how genetic parameters respond to environments-frequently multifactorial environments. It also requires a population-level analysis of how traits of collections of individuals modify environments for themselves and/or others in a population, possibly in spatially explicit ways. Despite the challenges of elucidating the mechanisms and nuances of these processes, even qualitative predictions of how environment-modifying traits alter evolutionary potential are likely to improve projections of evolutionary outcomes.
Collapse
Affiliation(s)
- Michelle D'Aguillo
- Department of Biology, Duke University, Durham, NC, USA.,Department of Biological Sciences, Wesleyan University, Middletown, CT, USA
| | - Caleb Hazelwood
- Department of Biology, Duke University, Durham, NC, USA.,Department of Philosophy, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
148
|
Mukaigasa K, Sakuma C, Yaginuma H. The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Dev Growth Differ 2021; 63:372-391. [PMID: 34473348 PMCID: PMC9293469 DOI: 10.1111/dgd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Chie Sakuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
149
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
150
|
Mo N, Zhang X, Shi W, Yu G, Chen X, Yang JR. Bidirectional Genetic Control of Phenotypic Heterogeneity and Its Implication for Cancer Drug Resistance. Mol Biol Evol 2021; 38:1874-1887. [PMID: 33355660 PMCID: PMC8097262 DOI: 10.1093/molbev/msaa332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Negative genetic regulators of phenotypic heterogeneity, or phenotypic capacitors/stabilizers, elevate population average fitness by limiting deviation from the optimal phenotype and increase the efficacy of natural selection by enhancing the phenotypic differences among genotypes. Stabilizers can presumably be switched off to release phenotypic heterogeneity in the face of extreme or fluctuating environments to ensure population survival. This task could, however, also be achieved by positive genetic regulators of phenotypic heterogeneity, or "phenotypic diversifiers," as shown by recently reported evidence that a bacterial divisome factor enhances antibiotic resistance. We hypothesized that such active creation of phenotypic heterogeneity by diversifiers, which is functionally independent of stabilizers, is more common than previously recognized. Using morphological phenotypic data from 4,718 single-gene knockout strains of Saccharomyces cerevisiae, we systematically identified 324 stabilizers and 160 diversifiers and constructed a bipartite network between these genes and the morphological traits they control. Further analyses showed that, compared with stabilizers, diversifiers tended to be weaker and more promiscuous (regulating more traits) regulators targeting traits unrelated to fitness. Moreover, there is a general division of labor between stabilizers and diversifiers. Finally, by incorporating NCI-60 human cancer cell line anticancer drug screening data, we found that human one-to-one orthologs of yeast diversifiers/stabilizers likely regulate the anticancer drug resistance of human cancer cell lines, suggesting that these orthologs are potential targets for auxiliary treatments. Our study therefore highlights stabilizers and diversifiers as the genetic regulators for the bidirectional control of phenotypic heterogeneity as well as their distinct evolutionary roles and functional independence.
Collapse
Affiliation(s)
- Ning Mo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Shi
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gongwang Yu
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Corresponding authors: E-mails: ;
| | - Jian-Rong Yang
- Department of Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding authors: E-mails: ;
| |
Collapse
|