101
|
Alford S, Schwartz E, Viana di Prisco G. The Pharmacology of Vertebrate Spinal Central Pattern Generators. Neuroscientist 2016; 9:217-28. [PMID: 15065817 DOI: 10.1177/1073858403009003014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central pattern generators are networks of neurons capable of generating an output pattern of spike activity in a relatively stereotyped, rhythmic pattern that has been found to underlie vital functions like respiration and locomotion. The central pattern generator for locomotion in vertebrates seems to share some basic building blocks. Activation and excitation of activity is driven by descending, sensory, and intraspinal glutamatergic neurons. NMDA receptor activation may also lead to the activation of oscillatory properties in individual neurons that depend on an array of ion channels situated in those neurons. Coordination across joints or the midline of the animal is driven primarily by glycinergic inhibition. In addition to these processes, numerous modulatory mechanisms alter the function of the central pattern generator. These include metabotropic amino acid receptors activated by rhythmic release of glutamate and GABA as well as monoamines, ACh, and peptides. Function and stability of the central pattern generator is also critically dependent on the array of ion channels found in neurons that compose these oscillators, including Ca2+and voltage-gated K+channels and Ca2+channels.
Collapse
Affiliation(s)
- Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA.
| | | | | |
Collapse
|
102
|
Frye RE, Casanova MF, Fatemi SH, Folsom TD, Reutiman TJ, Brown GL, Edelson SM, Slattery JC, Adams JB. Neuropathological Mechanisms of Seizures in Autism Spectrum Disorder. Front Neurosci 2016; 10:192. [PMID: 27242398 PMCID: PMC4861974 DOI: 10.3389/fnins.2016.00192] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
This manuscript reviews biological abnormalities shared by autism spectrum disorder (ASD) and epilepsy. Two neuropathological findings are shared by ASD and epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA) neurotransmission. The peripheral neuropil, which is the region that contains the inhibition circuits of the minicolumns, has been found to be decreased in the post-mortem ASD brain. ASD and epilepsy are associated with inhibitory GABA neurotransmission abnormalities including reduced GABAA and GABAB subunit expression. These abnormalities can elevate the excitation-to-inhibition balance, resulting in hyperexcitablity of the cortex and, in turn, increase the risk of seizures. Medical abnormalities associated with both epilepsy and ASD are discussed. These include specific genetic syndromes, specific metabolic disorders including disorders of energy metabolism and GABA and glutamate neurotransmission, mineral and vitamin deficiencies, heavy metal exposures and immune dysfunction. Many of these medical abnormalities can result in an elevation of the excitatory-to-inhibitory balance. Fragile X is linked to dysfunction of the mGluR5 receptor and Fragile X, Angelman and Rett syndromes are linked to a reduction in GABAA receptor expression. Defects in energy metabolism can reduce GABA interneuron function. Both pyridoxine dependent seizures and succinic semialdehyde dehydrogenase deficiency cause GABA deficiencies while urea cycle defects and phenylketonuria cause abnormalities in glutamate neurotransmission. Mineral deficiencies can cause glutamate and GABA neurotransmission abnormalities and heavy metals can cause mitochondrial dysfunction which disrupts GABA metabolism. Thus, both ASD and epilepsy are associated with similar abnormalities that may alter the excitatory-to-inhibitory balance of the cortex. These parallels may explain the high prevalence of epilepsy in ASD and the elevated prevalence of ASD features in individuals with epilepsy.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Research Program, Arkansas Children's Research InstituteLittle Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville Greenville, SC, USA
| | - S Hossein Fatemi
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | - Timothy D Folsom
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | - Teri J Reutiman
- Department of Psychiatry, University of Minnesota Medical School Minneapolis, MN, USA
| | | | | | - John C Slattery
- Autism Research Program, Arkansas Children's Research InstituteLittle Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - James B Adams
- School for Engineering of Matter, Transport, and Energy, Arizona State University Tempe, AZ, USA
| |
Collapse
|
103
|
Madji Hounoum B, Vourc'h P, Felix R, Corcia P, Patin F, Guéguinou M, Potier-Cartereau M, Vandier C, Raoul C, Andres CR, Mavel S, Blasco H. NSC-34 Motor Neuron-Like Cells Are Unsuitable as Experimental Model for Glutamate-Mediated Excitotoxicity. Front Cell Neurosci 2016; 10:118. [PMID: 27242431 PMCID: PMC4860417 DOI: 10.3389/fncel.2016.00118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Glutamate-induced excitotoxicity is a major contributor to motor neuron degeneration in the pathogenesis of amyotrophic lateral sclerosis (ALS). The spinal cord × Neuroblastoma hybrid cell line (NSC-34) is often used as a bona fide cellular model to investigate the physiopathological mechanisms of ALS. However, the physiological response of NSC-34 to glutamate remains insufficiently described. In this study, we evaluated the relevance of differentiated NSC-34 (NSC-34D) as an in vitro model for glutamate excitotoxicity studies. NSC-34D showed morphological and physiological properties of motor neuron-like cells and expressed glutamate receptor subunits GluA1-4, GluN1 and GluN2A/D. Despite these diverse characteristics, no specific effect of glutamate was observed on cultured NSC-34D survival and morphology, in contrast to what has been described in primary culture of motor neurons (MN). Moreover, a small non sustained increase in the concentration of intracellular calcium was observed in NSC-34D after exposure to glutamate compared to primary MN. Our findings, together with the inability to obtain cultures containing only differentiated cells, suggest that the motor neuron-like NSC-34 cell line is not a suitable in vitro model to study glutamate-induced excitotoxicity. We suggest that the use of primary cultures of MN is more suitable than NSC-34 cell line to explore the pathogenesis of glutamate-mediated excitotoxicity at the cellular level in ALS and other motor neuron diseases.
Collapse
Affiliation(s)
- Blandine Madji Hounoum
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais Tours, France
| | - Patrick Vourc'h
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-RabelaisTours, France; Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de ToursTours, France
| | - Romain Felix
- Institut National de la Santé et de la Recherche Médicale (INSERM U1069) "Nutrition, Growth and Cancer", Université François-Rabelais de Tours Tours, France
| | - Philippe Corcia
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-RabelaisTours, France; Centre SLA, Service de Neurologie, CHRU de ToursTours, France
| | - Franck Patin
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-RabelaisTours, France; Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de ToursTours, France
| | - Maxime Guéguinou
- Institut National de la Santé et de la Recherche Médicale (INSERM U1069) "Nutrition, Growth and Cancer", Université François-Rabelais de Tours Tours, France
| | - Marie Potier-Cartereau
- Institut National de la Santé et de la Recherche Médicale (INSERM U1069) "Nutrition, Growth and Cancer", Université François-Rabelais de Tours Tours, France
| | - Christophe Vandier
- Institut National de la Santé et de la Recherche Médicale (INSERM U1069) "Nutrition, Growth and Cancer", Université François-Rabelais de Tours Tours, France
| | - Cédric Raoul
- The Neuroscience Institute Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM UMR1051), Saint Eloi Hospital Montpellier, France
| | - Christian R Andres
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-RabelaisTours, France; Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de ToursTours, France
| | - Sylvie Mavel
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-Rabelais Tours, France
| | - Hélène Blasco
- Institut National de la Santé et de la Recherche Médicale (INSERM U930) "Imagerie et Cerveau", CHRU de Tours, Université François-RabelaisTours, France; Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Bretonneau, CHRU de ToursTours, France
| |
Collapse
|
104
|
The structure and function of glutamate receptors: Mg 2+ block to X-ray diffraction. Neuropharmacology 2016; 112:4-10. [PMID: 27131921 DOI: 10.1016/j.neuropharm.2016.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
Abstract
Experiments on the action of glutamate on mammalian and amphibian nervous systems started back in the 1950s but decades passed before it became widely accepted that glutamate was the major excitatory neurotransmitter in the CNS. The pace of research greatly accelerated in the 1980s when selective ligands that identified glutamate receptor subtypes became widely available, and voltage clamp techniques, coupled with rapid perfusion, began to resolve the unique functional properties of what cloning subsequently revealed to be a large family of receptors with numerous subtypes. More recently the power of X-ray crystallography and cryo-EM has been applied to the study of glutamate receptors, revealing their atomic structures, and the conformational changes that underlie their gating. In this review I summarize the history of this field, viewed through the lens of a career in which I spent 3 decades working on the structure and function of glutamate receptor ion channels. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
|
105
|
Abstract
There are many causes of residual pain after total knee arthroplasty (TKA). Evaluation and management begins with a comprehensive history and physical examination, followed by radiographic evaluation of the replaced and adjacent joints, as well as previous films of the replaced joint. Further workup includes laboratory analysis, along with a synovial fluid aspirate to evaluate the white blood cell count with differential as well as culture. Advanced imaging modalities may be beneficial when the diagnosis remains unclear. Revision surgery is not advisable without a clear diagnosis, as it may be associated with poor results.
Collapse
Affiliation(s)
- Mitchell McDowell
- Department of Orthopaedic Surgery, Kaiser Permanente Riverside Medical Center, 10800 Magnolia Avenue, Riverside, CA, USA
| | - Andrew Park
- Department of Orthopaedic Surgery, Midwest Orthopedics at Rush, 1611 West Harrison Street Suite 300, Chicago, IL, USA
| | - Tad L Gerlinger
- Department of Orthopaedic Surgery, Midwest Orthopedics at Rush, 1611 West Harrison Street Suite 300, Chicago, IL, USA; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
106
|
Cooper DR, Dolino DM, Jaurich H, Shuang B, Ramaswamy S, Nurik CE, Chen J, Jayaraman V, Landes CF. Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys J 2016; 109:66-75. [PMID: 26153703 PMCID: PMC4572502 DOI: 10.1016/j.bpj.2015.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the glutamate receptor family of proteins and is responsible for excitatory transmission. Activation of the receptor is thought to be controlled by conformational changes in the ligand binding domain (LBD); however, glutamate receptor LBDs can occupy multiple conformations even in the activated form. This work probes equilibrium transitions among NMDAR LBD conformations by monitoring the distance across the glycine-bound LBD cleft using single-molecule Förster resonance energy transfer (smFRET). Recent improvements in photoprotection solutions allowed us to monitor transitions among the multiple conformations. Also, we applied a recently developed model-free algorithm called "step transition and state identification" to identify the number of states, their smFRET efficiencies, and their interstate kinetics. Reversible interstate conversions, corresponding to transitions among a wide range of cleft widths, were identified in the glycine-bound LBD, on much longer timescales compared to channel opening. These transitions were confirmed to be equilibrium in nature by shifting the distribution reversibly via denaturant. We found that the NMDAR LBD proceeds primarily from one adjacent smFRET state to the next under equilibrium conditions, consistent with a cleft-opening/closing mechanism. Overall, by analyzing the state-to-state transition dynamics and distributions, we achieve insight into specifics of long-lived LBD equilibrium structural dynamics, as well as obtain a more general description of equilibrium folding/unfolding in a conformationally dynamic protein. The relationship between such long-lived LBD dynamics and channel function in the full receptor remains an open and interesting question.
Collapse
Affiliation(s)
- David R Cooper
- Department of Chemistry, Rice University, Houston, Texas
| | - Drew M Dolino
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas
| | | | - Bo Shuang
- Department of Chemistry, Rice University, Houston, Texas
| | - Swarna Ramaswamy
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas
| | - Caitlin E Nurik
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas
| | - Jixin Chen
- Department of Chemistry, Rice University, Houston, Texas
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas.
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas; Department of Electrical and Computer Engineering, Rice University, Houston, Texas.
| |
Collapse
|
107
|
Zhang-Hooks Y, Agarwal A, Mishina M, Bergles DE. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea. Neuron 2016; 89:337-50. [PMID: 26774161 PMCID: PMC4724245 DOI: 10.1016/j.neuron.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections, and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca(2+) spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca(2+) influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs.
Collapse
Affiliation(s)
- YingXin Zhang-Hooks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Masayoshi Mishina
- Brain Science Laboratory, the Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
108
|
Réus GZ, Abelaira HM, Tuon T, Titus SE, Ignácio ZM, Rodrigues ALS, Quevedo J. Glutamatergic NMDA Receptor as Therapeutic Target for Depression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 103:169-202. [DOI: 10.1016/bs.apcsb.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
109
|
Calvo-Rodríguez M, Villalobos C, Nuñez L. Fluorescence and Bioluminescence Imaging of Subcellular Ca2+ in Aged Hippocampal Neurons. J Vis Exp 2015. [PMID: 26650893 DOI: 10.3791/53330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Susceptibility to neuron cell death associated to neurodegeneration and ischemia are exceedingly increased in the aged brain but mechanisms responsible are badly known. Excitotoxicity, a process believed to contribute to neuron damage induced by both insults, is mediated by activation of glutamate receptors that promotes Ca2+ influx and mitochondrial Ca2+ overload. A substantial change in intracellular Ca2+ homeostasis or remodeling of intracellular Ca2+ homeostasis may favor neuron damage in old neurons. For investigating Ca2+ remodeling in aging we have used live cell imaging in long-term cultures of rat hippocampal neurons that resemble in some aspects aged neurons in vivo. For this end, hippocampal cells are, in first place, freshly dispersed from new born rat hippocampi and plated on poli-D-lysine coated, glass coverslips. Then cultures are kept in controlled media for several days or several weeks for investigating young and old neurons, respectively. Second, cultured neurons are loaded with fura2 and subjected to measurements of cytosolic Ca2+ concentration using digital fluorescence ratio imaging. Third, cultured neurons are transfected with plasmids expressing a tandem of low-affinity aequorin and GFP targeted to mitochondria. After 24 hr, aequorin inside cells is reconstituted with coelenterazine and neurons are subjected to bioluminescence imaging for monitoring of mitochondrial Ca2+ concentration. This three-step procedure allows the monitoring of cytosolic and mitochondrial Ca2+ responses to relevant stimuli as for example the glutamate receptor agonist NMDA and compare whether these and other responses are influenced by aging. This procedure may yield new insights as to how aging influence cytosolic and mitochondrial Ca2+ responses to selected stimuli as well as the testing of selected drugs aimed at preventing neuron cell death in age-related diseases.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biologìa y Genética Molecular, Consejo Superior de Investigaciones Cientìficas
| | - Carlos Villalobos
- Instituto de Biologìa y Genética Molecular, Consejo Superior de Investigaciones Cientìficas;
| | - Lucía Nuñez
- Departamento de Bioquìmica y Biologìa Molecular y Fisiologìa, Universidad de Valladolid
| |
Collapse
|
110
|
Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS One 2015; 10:e0139750. [PMID: 26431040 PMCID: PMC4592069 DOI: 10.1371/journal.pone.0139750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
We have recently demonstrated that in resting conditions calpain 1, but not calpain 2, is specifically associated to the N-Methyl-D-Aspartate receptor (NMDAR) multiprotein complex. We are here reporting that in SKNBE neuroblastoma cells or in freshly isolated nerve terminals from adult rat hippocampus, the proteolytic activity of calpain 1 resident at the NMDAR is very low under basal conditions and greatly increases following NMDAR stimulation. Since the protease resides at the NMDAR in saturating amounts, variations in Ca2+ influx promote an increase in calpain 1 activity without affecting the amount of the protease originally associated to NMDAR. In all the conditions examined, resident calpain 1 specifically cleaves NR2B at the C-terminal region, leading to its internalization together with NR1 subunit. While in basal conditions intracellular membranes include small amounts of NMDAR containing the calpain-digested NR2B, upon NMDAR stimulation nearly all the receptor molecules are internalized. We here propose that resident calpain 1 is involved in NMDAR turnover, and following an increase in Ca2+ influx, the activated protease, by promoting the removal of NMDAR from the plasma membranes, can decrease Ca2+ entrance through this channel. Due to the absence of calpastatin in such cluster, the activity of resident calpain 1 may be under the control of HSP90, whose levels are directly related to the activation of this protease. Observations of different HSP90/calpain 1 ratios in different ultrasynaptic compartments support this conclusion.
Collapse
|
111
|
Lodge D, Mercier MS. Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol 2015; 172:4254-76. [PMID: 26075331 DOI: 10.1111/bph.13222] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
The history of ketamine and phencyclidine from their development as potential clinical anaesthetics through drugs of abuse and animal models of schizophrenia to potential rapidly acting antidepressants is reviewed. The discovery in 1983 of the NMDA receptor antagonist property of ketamine and phencyclidine was a key step to understanding their pharmacology, including their psychotomimetic effects in man. This review describes the historical context and the course of that discovery and its expansion into other hallucinatory drugs. The relevance of these findings to modern hypotheses of schizophrenia and the implications for drug discovery are reviewed. The findings of the rapidly acting antidepressant effects of ketamine in man are discussed in relation to other glutamatergic mechanisms.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - M S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
112
|
Ma SH, Zhuang QX, Shen WX, Peng YP, Qiu YH. Interleukin-6 reduces NMDAR-mediated cytosolic Ca²⁺ overload and neuronal death via JAK/CaN signaling. Cell Calcium 2015; 58:286-95. [PMID: 26104917 DOI: 10.1016/j.ceca.2015.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
Cytosolic Ca(2+) overload induced by N-methyl-D-aspartate (NMDA) is one of the major causes for neuronal cell death during cerebral ischemic insult and neurodegenerative disorders. Previously, we have reported that the cytokine interleukin-6 (IL-6) reduces NMDA-induced cytosolic Ca(2+) overload by inhibiting both L-type voltage-gated calcium channel (L-VGCC) activity and intracellular Ca(2+) store release in cultured cerebellar granule neurons (CGNs). Here we aimed to show that NMDA-gated receptor channels (i.e., NMDA receptors, NMDARs) are an inhibitory target of IL-6 via a mediation of calcineurin (CaN) signaling. As expected, IL-6 decreased NMDAR-mediated cytosolic Ca(2+) overload and inward current in cultured CGNs. The NMDAR subunits, NR1, NR2A, NR2B and NR2C, were expressed in CGNs. Blocking either of NR2A, NR2B and NR2C with respective antagonist reduced NMDA-induced extracellular Ca(2+) influx and neuronal death. Importantly, the reduced percentages in extracellular Ca(2+) influx and neuronal death by either NR2B or NR2C antagonist were weaker in the presence of IL-6 than in the absence of IL-6, while the reduced percentage by NR2A antagonist was not significantly different between the presence and the absence of IL-6. AG490, an inhibitor of Janus kinase (JAK), abolished IL-6 protection against extracellular Ca(2+) influx, mitochondrial membrane depolarization, neuronal death, and CaN activity impairment induced by NMDA. The CaN inhibitor FK506 reduced these IL-6 neuroprotective properties. Collectively, these results suggest that IL-6 exerts neuroprotection by inhibiting activities of the NMDAR subunits NR2B and NR2C (but not NR2A) via the intermediation of JAK/CaN signaling.
Collapse
Affiliation(s)
- Song-Hua Ma
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qian-Xing Zhuang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing 210093, China
| | - Wei-Xing Shen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
113
|
Fujikawa K, Fukumori R, Nakamura S, Kutsukake T, Takarada T, Yoneda Y. Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells. PLoS One 2015; 10:e0127421. [PMID: 26010609 PMCID: PMC4444355 DOI: 10.1371/journal.pone.0127421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Background Several chemicals have been widely used to evaluate the involvement of free Ca2+ in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca2+-sensitive reagents in diverse cultured cells. Methodology/Principal Findings In rat astrocytic C6 glioma cells loaded with the fluorescent Ca2+ dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca2+ chelator EGTA irrespective of added CaCl2. The addition of the Ca2+ ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn2+ ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Conclusions/Significance Taken together, comprehensive analysis is absolutely required for the demonstration of a variety of physiological and pathological responses mediated by Ca2+ in diverse cells enriched of Zn2+.
Collapse
Affiliation(s)
- Koichi Fujikawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Ryo Fukumori
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Saki Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takaya Kutsukake
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa 920–1192, Japan
- * E-mail:
| |
Collapse
|
114
|
Lin L, Yuan J, Sander B, Golas MM. In Vitro Differentiation of Human Neural Progenitor Cells Into Striatal GABAergic Neurons. Stem Cells Transl Med 2015; 4:775-88. [PMID: 25972145 DOI: 10.5966/sctm.2014-0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 03/05/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : Huntington's disease (HD) results from a CAG repeat expansion in the gene encoding the huntingtin protein. This inherited disorder is characterized by progressive neurodegeneration. In particular, HD progression involves the loss of striatal projection neurons. The limited availability of reliable sources of human striatal projection neurons currently hampers our understanding of HD mechanisms and hinders the development of novel HD treatments. In this paper, we described two- and three-step methods for differentiating human neural progenitor cells toward striatal projection neurons. In the two-step differentiation protocol, 90%, 54%, and 6% of MAP2-positive cells were immunopositive for GABA, calbindin (CALB1), and DARPP-32/PPP1R1B, respectively. In the three-step differentiation protocol, 96%, 84%, and 21% of MAP2-positive cells were immunopositive for GABA, calbindin, and DARPP-32/PPP1R1B, respectively. In line with a striatal projection neuron phenotype, cells differentiated with our protocols displayed significantly increased expression of MAP2, CALB1, DARPP-32/PPP1R1B, ARPP21, and CTIP2. Application of glutamate receptor agonists induced calcium influx; accordingly, the cells also expressed various ionotropic glutamate receptor subunits. Differentiated cells also released GABA on stimulation. We suggest that our three-step differentiation protocol presents a reliable and simplified method for the generation of striatal projection neurons, yielding a critical resource for neuronal physiology and neurodegenerative disorder studies. SIGNIFICANCE The earliest changes in the neurodegenerative disorder Huntington's disease affect a specific type of brain neurons, the so-called medium spiny neurons of the striatum. In this study, two protocols were developed for the differentiation of neural progenitor cells into striatal medium spiny neurons, and the differentiated neurons were extensively characterized. The data indicate that the three-step differentiation protocol presents a reliable and simplified method for the generation of striatal medium spiny neurons. The generated striatal medium spiny neurons could represent a critical resource for the study of neurodegenerative disorders, a model system for drug discovery, and a step toward cell-based regeneration therapies.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Juan Yuan
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Bjoern Sander
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, and Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
115
|
Gao S, Yu Y, Ma ZY, Sun H, Zhang YL, Wang XT, Wang C, Fan WM, Zheng QY, Ma CL. NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a. Neurotox Res 2015; 28:122-37. [PMID: 25947342 DOI: 10.1007/s12640-015-9530-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 12/15/2022]
Abstract
NMDARs and ASIC1a both exist in central synapses and mediate important physiological and pathological conditions, but the functional relationship between them is unclear. Here we report several novel findings that may shed light on the functional relationship between these two ion channels in the excitatory postsynaptic membrane of mouse hippocampus. Firstly, NMDAR activation induced by either NMDA or OGD led to increased [Ca(2+)](i)and greater apoptotic and necrotic cell deaths in cultured hippocampal neurons; these cell deaths were prevented by application of NMDAR antagonists. Secondly, ASIC1a activation induced by pH 6.0 extracellular solution (ECS) showed similar increases in apoptotic and necrotic cell deaths; these cell deaths were prevented by ASIC1a antagonists, and also by NMDAR antagonists. Since increased [Ca(2+)](i)leads to increased cell deaths and since NMDAR exhibits much greater calcium permeability than ASIC1a, these data suggest that ASIC1a-induced neuronal death is mediated through activation of NMDARs. Thirdly, treatment of hippocampal cultures with both NMDA and acidic ECS induced greater degrees of cell deaths than either NMDA or acidic ECS treatment alone. These results suggest that ASIC1a activation up-regulates NMDAR function. Additional data supporting the functional relationship between ASIC1a and NMDAR are found in our electrophysiology experiments in hippocampal slices, where stimulation of ASIC1a induced a marked increase in NMDAR EPSC amplitude, and inhibition of ASIC1a resulted in a decrease in NMDAR EPSC amplitude. In summary, we present evidence that ASIC1a activity facilitates NMDAR function and exacerbates NMDAR-mediated neuronal death in pathological conditions. These findings are invaluable to the search for novel therapeutic targets in the treatment of brain ischemia.
Collapse
Affiliation(s)
- Su Gao
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, 264003, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Fujikawa DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J 2015; 13:212-21. [PMID: 25893083 PMCID: PMC4398818 DOI: 10.1016/j.csbj.2015.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity involves the excessive release of glutamate from presynaptic nerve terminals and from reversal of astrocytic glutamate uptake, when there is excessive neuronal depolarization. N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptor, are activated in postsynaptic neurons, opening their receptor-operated cation channels to allow Ca2 + influx. The Ca2 + influx activates two enzymes, calpain I and neuronal nitric oxide synthase (nNOS). Calpain I activation produces mitochondrial release of cytochrome c (cyt c), truncated apoptosis-inducing factor (tAIF) and endonuclease G (endoG), the lysosomal release of cathepsins B and D and DNase II, and inactivation of the plasma membrane Na+–Ca2 + exchanger, which add to the buildup of intracellular Ca2 +. tAIF is involved in large-scale DNA cleavage and cyt c may be involved in chromatin condensation; endoG produces internucleosomal DNA cleavage. The nuclear actions of the other proteins have not been determined. nNOS forms nitric oxide (NO), which reacts with superoxide (O2−) to form peroxynitrite (ONOO−). These free radicals damage cellular membranes, intracellular proteins and DNA. DNA damage activates poly(ADP-ribose) polymerase-1 (PARP-1), which produces poly(ADP-ribose) (PAR) polymers that exit nuclei and translocate to mitochondrial membranes, also releasing AIF. Poly(ADP-ribose) glycohydrolase hydrolyzes PAR polymers into ADP-ribose molecules, which translocate to plasma membranes, activating melastatin-like transient receptor potential 2 (TRPM-2) channels, which open, allowing Ca2 + influx into neurons. NADPH oxidase (NOX1) transfers electrons across cellular membranes, producing O2−. The result of these processes is neuronal necrosis, which is a programmed cell death that is the basis of all acute neuronal injury in the adult brain.
Collapse
|
117
|
Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis 2015; 6:131-48. [PMID: 25821641 PMCID: PMC4365957 DOI: 10.14336/ad.2014.0423] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.
Collapse
Affiliation(s)
- Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel S. Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
- Center for Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
118
|
Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res 2015; 1621:5-16. [PMID: 25619552 PMCID: PMC4563944 DOI: 10.1016/j.brainres.2015.01.016] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 10/31/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are known for their role in the induction of long-term potentiation (LTP). Here we start by reviewing the early evidence for their role in LTP at CA1 synapses in the hippocampus. We then discuss more recent evidence that NMDAR dependent synaptic plasticity at these synapses can be separated into mechanistically distinct components. An initial phase of the synaptic potentiation, which is generally termed short-term potentiation (STP), decays in an activity-dependent manner and comprises two components that differ in their kinetics and NMDAR subtype dependence. The faster component involves activation of GluN2A and GluN2B subunits whereas the slower component involves activation of GluN2B and GluN2D subunits. The stable phase of potentiation, commonly referred to as LTP, requires activation of primarily triheteromeric NMDARs containing both GluN2A and GluN2B subunits. In new work, we compare STP with a rebound potentiation (RP) that is induced by NMDA application and conclude that they are different phenomena. We also report that NMDAR dependent long-term depression (NMDAR-LTD) is sensitive to a glycine site NMDAR antagonist. We conclude that NMDARs are not synonymous for either LTP or memory. Whilst important for the induction of LTP at many synapses in the CNS, not all forms of LTP require the activation of NMDARs. Furthermore, NMDARs mediate the induction of other forms of synaptic plasticity and are important for synaptic transmission. It is, therefore, not possible to equate NMDARs with LTP though they are intimately linked. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Arturas Volianskis
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom.
| | - Grace France
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | | | - Zuner A Bortolotto
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - David E Jane
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Graham L Collingridge
- Center for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, United Kingdom.
| |
Collapse
|
119
|
Fassini A, Antero LS, Corrêa FMA, Joca SR, Resstel LBM. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats. J Neurosci Res 2015; 93:830-8. [PMID: 25594849 DOI: 10.1002/jnr.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/06/2022]
Abstract
The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.
Collapse
Affiliation(s)
- Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
120
|
Lazar-Molnar E, Tebo AE. Autoimmune NMDA receptor encephalitis. Clin Chim Acta 2015; 438:90-7. [DOI: 10.1016/j.cca.2014.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 12/15/2022]
|
121
|
Srejovic I, Jakovljevic V, Zivkovic V, Barudzic N, Radovanovic A, Stanojlovic O, Djuric DM. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem 2014; 401:97-105. [PMID: 25467376 DOI: 10.1007/s11010-014-2296-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Abstract
In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|
122
|
Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus. J Neurosci 2014; 34:13018-32. [PMID: 25253849 DOI: 10.1523/jneurosci.1407-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cajal-Retzius cells orchestrate the development of cortical circuits by secreting the glycoprotein reelin. However, their computational functions are still unknown. In fact, the nature of their postsynaptic targets, major neurotransmitter released, as well as the class of postsynaptic receptors activated by their firing remain unclear. Here, we have addressed these questions by activating Cajal-Retzius cells optogenetically in mouse hippocampal slices. Light delivered to stratum lacunosum-moleculare triggered EPSCs both on local interneurons and on pyramidal cells. Responses recorded under voltage-clamp conditions had identical short latencies and similar amplitudes, but were kinetically different (i.e., faster in interneurons vs pyramidal cells). In both cases, responses were blocked by TTX, indicating that they were generated by action potential-dependent release. Responses in interneurons were rescued by the addition of 4-AP to TTX, and decreased when presynaptic firing in Cajal-Retzius cells was reduced by the chemokine CXCL12, indicating the existence of a direct Cajal-Retzius cell-interneuron monosynaptic connection. Although the combined application of 4-AP and TTX did not rescue responses in pyramidal cells, neither were they affected by the GABAA receptor blocker gabazine, which would be expected if they were polysynaptic. Both connections showed physiological and pharmacological properties indicating the involvement of AMPA- and NMDA-type glutamate receptors. The connectivity from presynaptic Cajal-Retzius cells to interneurons was strong enough to generate long-latency feedforward GABAergic input onto pyramidal cells. We propose that this newly defined Cajal-Retzius cell-dependent microcircuit may regulate synaptic plasticity and dendritic development in stratum lacunosum-moleculare, thus impacting the integrative properties of the developing hippocampus.
Collapse
|
123
|
Fang Y, Iu CYY, Lui CNP, Zou Y, Fung CKM, Li HW, Xi N, Yung KKL, Lai KWC. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci Rep 2014; 4:7074. [PMID: 25399549 PMCID: PMC4233341 DOI: 10.1038/srep07074] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022] Open
Abstract
Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuqiang Fang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Cathy N. P. Lui
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yukai Zou
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Hung Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Xi
- Michigan State University, East Lansing, USA
| | - Ken K. L. Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - King W. C. Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
124
|
Strong KL, Jing Y, Prosser AR, Traynelis SF, Liotta DC. NMDA receptor modulators: an updated patent review (2013-2014). Expert Opin Ther Pat 2014; 24:1349-66. [PMID: 25351527 DOI: 10.1517/13543776.2014.972938] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are capable of regulating the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA intersubunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. AREAS COVERED This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. EXPERT OPINION The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics.
Collapse
Affiliation(s)
- Katie L Strong
- Emory University, Department of Chemistry , 1521 Dickey Drive, Atlanta, GA 30322 , USA
| | | | | | | | | |
Collapse
|
125
|
Zhang Q, Shao Y, Zhao C, Cai J, Sun S. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection. Exp Ther Med 2014; 8:1731-1736. [PMID: 25371724 PMCID: PMC4218703 DOI: 10.3892/etm.2014.2029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/02/2014] [Indexed: 01/29/2023] Open
Abstract
Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yang Shao
- Department of Neurology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Changsong Zhao
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Juan Cai
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Sheng Sun
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
126
|
Alford ST, Alpert MH. A synaptic mechanism for network synchrony. Front Cell Neurosci 2014; 8:290. [PMID: 25278839 PMCID: PMC4166887 DOI: 10.3389/fncel.2014.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/31/2014] [Indexed: 01/06/2023] Open
Abstract
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
Collapse
Affiliation(s)
- Simon T Alford
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
127
|
Sasmal D, Lu HP. Single-molecule patch-clamp FRET microscopy studies of NMDA receptor ion channel dynamics in living cells: revealing the multiple conformational states associated with a channel at its electrical off state. J Am Chem Soc 2014; 136:12998-3005. [PMID: 25148304 PMCID: PMC4183623 DOI: 10.1021/ja506231j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 01/10/2023]
Abstract
Conformational dynamics plays a critical role in the activation, deactivation, and open-close activities of ion channels in living cells. Such conformational dynamics is often inhomogeneous and extremely difficult to be directly characterized by ensemble-averaged spectroscopic imaging or only by single channel patch-clamp electric recording methods. We have developed a new and combined technical approach, single-molecule patch-clamp FRET microscopy, to probe ion channel conformational dynamics in living cell by simultaneous and correlated measurements of real-time single-molecule FRET spectroscopic imaging with single-channel electric current recording. Our approach is particularly capable of resolving ion channel conformational change rate process when the channel is at its electrically off states and before the ion channel is activated, the so-called "silent time" when the electric current signals are at zero or background. We have probed NMDA (N-methyl-D-aspartate) receptor ion channel in live HEK-293 cell, especially, the single ion channel open-close activity and its associated protein conformational changes simultaneously. Furthermore, we have revealed that the seemingly identical electrically off states are associated with multiple conformational states. On the basis of our experimental results, we have proposed a multistate clamshell model to interpret the NMDA receptor open-close dynamics.
Collapse
Affiliation(s)
- Dibyendu
Kumar Sasmal
- Department
of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Department
of Chemistry and
Center for Photochemical Sciences, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
128
|
Glasgow NG, Siegler Retchless B, Johnson JW. Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 2014; 593:83-95. [PMID: 25556790 DOI: 10.1113/jphysiol.2014.273763] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023] Open
Abstract
NMDA receptors (NMDARs) are a class of ionotropic glutamate receptors (iGluRs) that are essential for neuronal development, synaptic plasticity, learning and cell survival. Several features distinguish NMDARs from other iGluRs and underlie the crucial roles NMDARs play in nervous system physiology. NMDARs display slow deactivation kinetics, are highly Ca(2+) permeable, and require depolarization to relieve channel block by external Mg(2+) ions, thereby making them effective coincidence detectors. These properties and others differ among NMDAR subtypes, which are defined by the subunits that compose the receptor. NMDARs, which are heterotetrameric, commonly are composed of two GluN1 subunits and two GluN2 subunits, of which there are four types, GluN2A-D. 'Diheteromeric' NMDARs contain two identical GluN2 subunits. Gating and ligand-binding properties (e.g. deactivation kinetics) and channel properties (e.g. channel block by Mg(2+)) depend strongly on the GluN2 subunit contained in diheteromeric NMDARs. Recent work shows that two distinct regions of GluN2 subunits control most diheteromeric NMDAR subtype-dependent properties: the N-terminal domain is responsible for most subtype dependence of gating and ligand-binding properties; a single residue difference between GluN2 subunits at a site termed the GluN2 S/L site is responsible for most subtype dependence of channel properties. Thus, two structurally and functionally distinct regions underlie the majority of subtype dependence of NMDAR properties. This topical review highlights recent studies of recombinant diheteromeric NMDARs that uncovered the involvement of the N-terminal domain and of the GluN2 S/L site in the subtype dependence of NMDAR properties.
Collapse
Affiliation(s)
- Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
129
|
Stifanese R, Averna M, De Tullio R, Pedrazzi M, Milanese M, Bonifacino T, Bonanno G, Salamino F, Pontremoli S, Melloni E. Role of calpain-1 in the early phase of experimental ALS. Arch Biochem Biophys 2014; 562:1-8. [PMID: 25151305 DOI: 10.1016/j.abb.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Elevation in [Ca(2+)]i and activation of calpain-1 occur in central nervous system of SOD1(G93A) transgenic mice model of amyotrophic lateral sclerosis (ALS), but few data are available about the early stage of ALS. We here investigated the level of activation of the Ca(2+)-dependent protease calpain-1 in spinal cord of SOD1(G93A) mice to ascertain a possible role of the protease in the aetiology of ALS. Comparing the events occurring in the 120 day old mice, we found that [Ca(2+)]i and activation of calpain-1 were also increased in the spinal cord of 30 day old mice, as indicated by the digestion of some substrates of the protease such as nNOS, αII-spectrin, and the NR2B subunit of NMDA-R. However, the digestion pattern of these proteins suggests that calpain-1 may play different roles depending on the phase of ALS. In fact, in spinal cord of 30 day old mice, activation of calpain-1 produces high amounts of nNOS active species, while in 120 day old mice enhanced-prolonged activation of calpain-1 inactivates nNOS and down-regulates NR2B. Our data reveal a critical role of calpain-1 in the early phase and during progression of ALS, suggesting new therapeutic approaches to counteract its onset and fatal course.
Collapse
Affiliation(s)
- R Stifanese
- National Research Council (C.N.R.), Institute of Marine Sciences (I.S.MAR.), U.O.S. of Genoa, Via De Marini, 6, 16149 Genoa, Italy; University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy.
| | - M Averna
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - R De Tullio
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - M Pedrazzi
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - M Milanese
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - T Bonifacino
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - G Bonanno
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - F Salamino
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - S Pontremoli
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - E Melloni
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| |
Collapse
|
130
|
Su CK, Hsia SC, Sun YC. Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains. Anal Chim Acta 2014; 838:58-63. [PMID: 25064244 DOI: 10.1016/j.aca.2014.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/07/2023]
Abstract
We have developed a simple and low-cost flow injection system coupled to a quadruple ICP-MS for the direct and continuous determination of multi-element in microdialysates. To interface microdialysis sampling to an inductively coupled plasma mass spectrometer (ICP-MS), we employed 3D printing to manufacture an as-designed sample load/inject valve featuring an in-valve sample loop for precise handling of microliter samples with a dissolved solids content of 0.9% NaCl (w/v). To demonstrate the practicality of our developed on-line system, we applied the 3D printed valve equipped a 5-μL sample loop to minimize the occurrence of salt matrix effects and facilitate an online dynamic monitoring of extracellular calcium and zinc ions in living rat brains. Under the practical condition (temporal resolution: 10h(-1)), dynamic profiling of these two metal ions in living rat brain extracellular fluid after probe implantation (the basal values for Ca and Zn were 12.11±0.10mg L(-1) and 1.87±0.05μg L(-1), respectively) and real-time monitoring of the physiological response to excitotoxic stress elicited upon perfusing a solution of 2.5mM N-methyl-d-aspartate were performed.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, 30013 Hsinchu, Taiwan
| | - Sheng-Chieh Hsia
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, 30013 Hsinchu, Taiwan
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, 30013 Hsinchu, Taiwan.
| |
Collapse
|
131
|
Aman TK, Maki BA, Ruffino TJ, Kasperek EM, Popescu GK. Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability. J Biol Chem 2014; 289:18805-17. [PMID: 24847051 DOI: 10.1074/jbc.m113.537282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability.
Collapse
Affiliation(s)
| | - Bruce A Maki
- From the Department of Biochemistry, Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | | | | | - Gabriela K Popescu
- From the Department of Biochemistry, Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| |
Collapse
|
132
|
Affiliation(s)
- Laura K. Wood
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
133
|
Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci 2014; 34:527-38. [PMID: 24403152 DOI: 10.1523/jneurosci.2838-13.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Learned associations between environmental cues and morphine use play an important role in the maintenance and/or relapse of opioid addiction. Although previous studies suggest that context-dependent morphine treatment alters glutamatergic transmission and synaptic plasticity in the hippocampus, their role in morphine conditioned place preference (CPP) and reinstatement remains unknown. We investigated changes in synaptic plasticity and NMDAR expression in the hippocampus after the expression, extinction, and reinstatement of morphine CPP. Here we report that morphine CPP is associated with increased basal synaptic transmission, impaired hippocampal long-term potentiation (LTP), and increased synaptic expression of the NR1 and NR2b NMDAR subunits. Changes in synaptic plasticity, synaptic NR1 and NR2b expression, and morphine CPP were absent when morphine was not paired with a specific context. Furthermore, hippocampal LTP was impaired and synaptic NR2b expression was increased after extinction of morphine CPP, indicating that these alterations in plasticity may be involved in the mechanisms underlying the learning of drug-environment associations. After extinction of morphine CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with LTP that was indistinguishable from saline control groups. In contrast, morphine CPP extinguished mice that received a saline priming dose did not show CPP and had disrupted hippocampal LTP. Finally, we found that reinstatement of morphine CPP was prevented by the selective blockade of the NR2b subunit in the hippocampus. Together, these data suggest that alterations in synaptic plasticity and glutamatergic transmission play an important role in the reinstatement of morphine CPP.
Collapse
|
134
|
Abstract
Learning and memory require the formation of new neural networks in the brain. A key mechanism underlying this process is synaptic plasticity at excitatory synapses, which connect neurons into networks. Excitatory synaptic transmission happens when glutamate, the excitatory neurotransmitter, activates receptors on the postsynaptic neuron. Synaptic plasticity is a higher-level process in which the strength of excitatory synapses is altered in response to the pattern of activity at the synapse. It is initiated in the postsynaptic compartment, where the precise pattern of influx of calcium through activated glutamate receptors leads either to the addition of new receptors and enlargement of the synapse (long-term potentiation) or the removal of receptors and shrinkage of the synapse (long-term depression). Calcium/calmodulin-regulated enzymes and small GTPases collaborate to control this highly tuned mechanism.
Collapse
Affiliation(s)
- Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
135
|
Li S, Nai Q, Lipina TV, Roder JC, Liu F. α7nAchR/NMDAR coupling affects NMDAR function and object recognition. Mol Brain 2013; 6:58. [PMID: 24360204 PMCID: PMC3878138 DOI: 10.1186/1756-6606-6-58] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/12/2013] [Indexed: 02/03/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.
Collapse
Affiliation(s)
| | | | | | | | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
136
|
Chen X, Li S, He L, Wang X, Liang P, Chen W, Bian M, Ren M, Lin J, Liang C, Xu J, Wu Z, Li X, Huang Y, Yu X. Molecular characterization of severin from Clonorchis sinensis excretory/secretory products and its potential anti-apoptotic role in hepatocarcinoma PLC cells. PLoS Negl Trop Dis 2013; 7:e2606. [PMID: 24367717 PMCID: PMC3868641 DOI: 10.1371/journal.pntd.0002606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clonorchiasis, caused by the infection of Clonorchis sinensis (C. sinensis), is a kind of neglected tropical disease, but it is highly related to cholangiocarcinoma and hepatocellular carcinoma (HCC). It has been well known that the excretory/secretory products of C. sinensis (CsESPs) play key roles in clonorchiasis associated carcinoma. From genome and transcriptome of C. sinensis, we identified one component of CsESPs, severin (Csseverin), which had three putative gelsolin domains. Its homologues are supposed to play a vital role in apoptosis resistance of tumour cell. METHODOLOGY/PRINCIPAL FINDINGS There was significant similarity in tertiary structures between human gelsolin and Csseverin by bioinformatics analysis. We identified that Csseverin expressed at life stage of adult worm, metacercaria and egg by the method of quantitative real-time PCR and western blotting. Csseverin distributed in vitellarium and intrauterine eggs of adult worm and tegument of metacercaria by immunofluorence assay. We obtained recombinant Csseverin (rCsseverin) and confirmed that rCsseverin could bind with calciumion in circular dichroism spectrum analysis. It was demonstrated that rCsseverin was of the capability of actin binding by gel overlay assay and immunocytochemistry. Both Annexin V/PI assay and mitochondrial membrane potential assay of human hepatocarcinoma cell line PLC showed apoptosis resistance after incubation with different concentrations of rCsseverin. Morphological analysis, apoptosis-associated changes of mitochondrial membrane potential and Annexin V/PI apoptosis assay showed that co-incubation of PLC cells with rCsseverin in vitro led to an inhibition of apoptosis induced by serum-starved for 24 h. CONCLUSIONS/SIGNIFICANCE Collectively, the molecular properties of Csseverin, a molecule of CsESPs, were characterized in our study. rCsseverin could cause obvious apoptotic inhibition in human HCC cell line. Csseverin might exacerbate the process of HCC patients combined with C. sinensis infection.
Collapse
Affiliation(s)
- Xueqing Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Shan Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Meng Bian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Mengyu Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Jinsi Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People′s Republic of China
- Key Laboratory of Tropical Diseases Control at Sun Yat-sen University, Ministry of Education, Guangzhou, People′s Republic of China
| |
Collapse
|
137
|
Bliss T. The NMDA receptor 30 years on. Neuropharmacology 2013; 74:2-3. [DOI: 10.1016/j.neuropharm.2013.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
138
|
Ionotropic glutamate receptors and voltage-gated Ca²⁺ channels in long-term potentiation of spinal dorsal horn synapses and pain hypersensitivity. Neural Plast 2013; 2013:654257. [PMID: 24224102 PMCID: PMC3808892 DOI: 10.1155/2013/654257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022] Open
Abstract
Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses.
Collapse
|
139
|
Scianni M, Antonilli L, Chece G, Cristalli G, Di Castro MA, Limatola C, Maggi L. Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. J Neuroinflammation 2013; 10:108. [PMID: 23981568 PMCID: PMC3765929 DOI: 10.1186/1742-2094-10-108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND N-Methyl-D-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. METHODS We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated D-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. RESULTS We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist D-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and D-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of D-serine by D-amino acid oxidase (DAAO) and the saturation of the coagonist site by D-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases D-serine release in the extracellular medium. CONCLUSIONS CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of D-serine.
Collapse
Affiliation(s)
- Maria Scianni
- Institute Pasteur-Cenci Bolognetti Foundation, Department of Physiology and Pharmacology, University Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
140
|
Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors. Neuropharmacology 2013; 76 Pt A:16-26. [PMID: 23973316 DOI: 10.1016/j.neuropharm.2013.08.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/03/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Sandra I Mota
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | |
Collapse
|
141
|
Chung C. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases. Mol Cells 2013; 36:99-104. [PMID: 23740429 PMCID: PMC3887951 DOI: 10.1007/s10059-013-0113-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
142
|
Joshi S, Kapur J. N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 2013; 84:1-11. [PMID: 23585058 PMCID: PMC3684822 DOI: 10.1124/mol.112.084715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
Neurosteroids are endogenous allosteric modulators of GABAA receptors (GABARs), and they enhance GABAR-mediated inhibition. However, GABARs expressed on hippocampal dentate granule neurons of epileptic animals are modified such that their neurosteroid sensitivity is reduced and δ subunit expression is diminished. We explored the molecular mechanisms triggering this GABAR plasticity. In the cultured hippocampal neurons, treatment with N-methyl-D-aspartic acid (NMDA) (10 μM) for 48 hours reduced the surface expression of δ and α4 subunits but did not increase the expression of γ2 subunits. The tonic current recorded from neurons in NMDA-treated cultures was reduced, and its neurosteroid modulation was also diminished. In contrast, synaptic inhibition and its modulation by neurosteroids were preserved in these neurons. The time course of NMDA's effects on surface and total δ subunit expression was distinct; shorter (6 hours) treatment decreased surface expression, whereas longer treatment reduced both surface and total expression. Dl-2-amino-5-phosphonopentanoic acid (APV) blocked NMDA's effects on δ subunit expression. Chelation of calcium ions by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) or blockade of extracellular signal-regulated kinase (ERK) 1/2 activation by UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) also prevented the effects of NMDA. Thus, prolonged activation of NMDA receptors in hippocampal neurons reduced GABAR δ subunit expression through Ca(2+) entry and at least in part by ERK1/2 activation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
143
|
The ventral hippocampus NMDA receptor/nitric oxide/guanylate cyclase pathway modulates cardiovascular responses in rats. Auton Neurosci 2013; 177:244-52. [PMID: 23735844 DOI: 10.1016/j.autneu.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
Abstract
The hippocampus is a limbic structure that is involved in the expression of defensive reactions and autonomic changes in rats. The injection of L-glutamate (L-glu) into the ventral hippocampus (VH) decreases blood pressure and heart rate in anesthetized rats. Activation of NMDA receptors in the VH increases the production of nitric oxide (NO), leading to guanylate cyclase activation. The hypothesis of the present study was that a local NMDA receptor-NO-guanylate cyclase interaction mediates the cardiovascular effects of microinjection of L-glu into the VH. Microinjection of increasing doses of L-glu (30, 60 and 200 nmol/200 nL) into the VH of conscious rats caused dose-related pressor and tachycardiac responses. The cardiovascular effects of L-glu were abolished by local pretreatment with: the glutamate receptor antagonist AP-7 (0.4 nmol); the selective neuronal NO synthase (nNOS) inhibitor N(ω)-Propyl-L-arginine (0.04 nmol); the NO scavenger C-PTIO (2 nmol) or the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolol [4,3-a]quinoxalin-1-one (2 nmol). Moreover, these cardiovascular responses were blocked by intravenous pretreatment with: the ganglionic blocker mecamylamine (2mg/Kg); the nonselective β-adrenergic receptor antagonist propranolol (2mg/Kg); the β1-adrenergic receptor selective antagonist atenolol (1mg/kg). However, pretreatment with the selective α1-adrenergic receptor antagonist prazosin (0,5mg/kg) caused only a small reduction in the pressor response, without affecting the L-glu evoked tachycardia. In conclusion, our results suggest that cardiovascular responses caused by L-glu microinjection into the VH are mediated by NMDA glutamate receptors and involve local nNOS and guanylate cyclase activation. Moreover, these cardiovascular responses are mainly mediated by cardiac sympathetic nervous system activation, with a small involvement of the vascular sympathetic nervous system.
Collapse
|
144
|
Abushik PA, Sibarov DA, Eaton MJ, Skatchkov SN, Antonov SM. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium 2013; 54:95-104. [PMID: 23721822 DOI: 10.1016/j.ceca.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023]
Abstract
Whereas kainate (KA)-induced neurodegeneration has been intensively investigated, the contribution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in neuronal Ca2+ overload ([Ca2+]i) is still controversial. Using Ca2+ imaging and patch-clamp techniques, we found different types of Ca2+ entry in cultured rat cortical neurons. The presence of Ca2+ in the extracellular solution was required to generate the [Ca2+]i responses to 30 μM N-methyl-d-aspartate (NMDA) or KA. The dynamics of NMDA-induced [Ca2+]i responses were fast, while KA-induced responses developed slower reaching high [Ca2+]i. Ifenprodil, a specific inhibitor of the GluN2B subunit of NMDARs, reduced NMDA-induced [Ca2+]i responses suggesting expression of GluN1/GluN2B receptors. Using IEM-1460, a selective blocker of Ca(2+)-permeable GluA2-subunit lacking AMPARs, we found three neuronal responses to KA: (i) IEM-1460 resistant neurons which are similar to pyramidal neurons expressing Ca(2+)-impermeable GluA2-rich AMPARs; (ii) Neurons exhibiting nearly complete block of both KA-induced currents and [Ca2+]i signals by IEM-1460 may represent interneurons expressing GluA2-lacking AMPARs and (iii) neurons with moderate sensitivity to IEM-1460. Ouabain at 1 nM prevented the neuronal Ca2+ overload induced by KA. The data suggest, that cultured rat cortical neurons maintain functional phenotypes of the adult brain cortex, and demonstrate the key contribution of the Na/K-ATPase in neuroprotection against KA excitotoxicity.
Collapse
Affiliation(s)
- Polina A Abushik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | | | | | | | | |
Collapse
|
145
|
Challenges in the development of glaucoma neuroprotection therapy. Cell Tissue Res 2013; 353:253-60. [DOI: 10.1007/s00441-013-1584-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
146
|
Yang L, Li XB, Yang Q, Zhang K, Zhang N, Guo YY, Feng B, Zhao MG, Wu YM. The neuroprotective effect of praeruptorin C against NMDA-induced apoptosis through down-regulating of GluN2B-containing NMDA receptors. Toxicol In Vitro 2013; 27:908-14. [DOI: 10.1016/j.tiv.2013.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/19/2012] [Accepted: 01/01/2013] [Indexed: 12/24/2022]
|
147
|
Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 2013; 110:4027-32. [PMID: 23431133 DOI: 10.1073/pnas.1219454110] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NMDA receptor (NMDAR) activation controls long-term potentiation (LTP) as well as long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. A long-standing view proposes that a high level of Ca(2+) entry through NMDARs triggers LTP; lower Ca(2+) entry triggers LTD. Here we show that ligand binding to NMDARs is sufficient to induce LTD; neither ion flow through NMDARs nor Ca(2+) rise is required. However, basal levels of Ca(2+) are permissively required. Lowering, but not maintaining, basal Ca(2+) levels with Ca(2+) chelators blocks LTD and drives strong synaptic potentiation, indicating that basal Ca(2+) levels control NMDAR-dependent LTD and basal synaptic transmission. Our findings indicate that metabotropic actions of NMDARs can weaken active synapses without raising postsynaptic calcium, thereby revising and expanding the mechanisms controlling synaptic plasticity.
Collapse
|
148
|
Zhang K, Li YJ, Yang Q, Gerile O, Yang L, Li XB, Guo YY, Zhang N, Feng B, Liu SB, Zhao MG. Neuroprotective effects of oxymatrine against excitotoxicity partially through down-regulation of NR2B-containing NMDA receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:343-350. [PMID: 23219339 DOI: 10.1016/j.phymed.2012.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/27/2012] [Accepted: 10/27/2012] [Indexed: 06/01/2023]
Abstract
Oxymatrine (OMT) is a major bioactive component derived from Sophora flavescens Ait (kushen), which is widely used in Chinese medicine. Recent studies have shown that it has neuroprotective effects; however, its underlying mechanisms remain unclear. We focus on the mechanisms of pharmacologic action in OMT by detecting its pharmacological properties against focal cerebral ischemia in vivo and NMDA-induced neurotoxicity in vitro. OMT prevented cerebral ischemic injury in mice induced via a 2 h middle cerebral artery occlusion and a 24 h reperfusion, in vivo. In vitro cultured neurons challenged with N-methyl-D-aspartate (NMDA, 200 μM) for 30 min showed significant decrease in the viability of neurons; however, OMT was able to protect neurons against induced neurotoxicity via NMDA exposure. Western blot analysis revealed that OMT decreased the expression of Bax and repaired the balance of pro- and anti-apoptotic proteins. Furthermore, OMT significantly reversed the up-regulation of NR2B and inhibited the calcium overload in the cultured neurons after challenging the NMDA. OMT showed partial protection in the cortical neurons via down-regulation of NR2B containing NMDA receptors and up-regulation of Bcl-2 family. Our results provide new insights into the development of natural therapeutic anti-oxidants against ischemia.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Vitreous mediators in retinal hypoxic diseases. Mediators Inflamm 2013; 2013:935301. [PMID: 23365490 PMCID: PMC3556845 DOI: 10.1155/2013/935301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/19/2012] [Accepted: 12/01/2012] [Indexed: 12/31/2022] Open
Abstract
The causes of retinal hypoxia are many and varied. Under hypoxic conditions, a variety of soluble factors are secreted into the vitreous cavity including growth factors, cytokines, and chemokines. Cytokines, which usually serve as signals between neighboring cells, are involved in essentially every important biological process, including cell proliferation, inflammation, immunity, migration, fibrosis, tissue repair, and angiogenesis. Cytokines and chemokines are multifunctional mediators that can direct the recruitment of leukocytes to sites of inflammation, promote the process, enhance immune responses, and promote stem cell survival, development, and homeostasis. The modern particle-based flow cytometric analysis is more direct, stable and sensitive than the colorimetric readout of the conventional ELISA but, similar to ELISA, is influenced by vitreous hemorrhage, disruption of the blood-retina barrier, and high serum levels of a specific protein. Finding patterns in the expression of inflammatory cytokines specific to a particular disease can substantially contribute to the understanding of its basic mechanism and to the development of a targeted therapy.
Collapse
|
150
|
Li YJ, Yang Q, Zhang K, Guo YY, Li XB, Yang L, Zhao MG, Wu YM. Cytisine confers neuronal protection against excitotoxic injury by down-regulating GluN2B-containing NMDA receptors. Neurotoxicology 2013; 34:219-25. [DOI: 10.1016/j.neuro.2012.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/08/2012] [Accepted: 09/18/2012] [Indexed: 11/15/2022]
|