101
|
Kubo Y, Kusagawa Y, Tachikawa M, Akanuma SI, Hosoya KI. Involvement of a Novel Organic Cation Transporter in Verapamil Transport Across the Inner Blood-Retinal Barrier. Pharm Res 2012. [DOI: 10.1007/s11095-012-0926-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
102
|
Harper JN, Wright SH. Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am J Physiol Renal Physiol 2012; 304:F56-67. [PMID: 23034939 DOI: 10.1152/ajprenal.00486.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OCT2 is the entry step for organic cation (OC) secretion by renal proximal tubules. Although many drugs inhibit OCT2 activity, neither the mechanistic basis of their inhibition nor their transport status is generally known. Using representatives of several structural classes of OCT2-inhibitory ligands described recently (Kido Y, Matsson P, Giacomini KM. J Med Chem 54: 4548-4558, 2011), we determined the kinetic basis of their inhibition of 1-methyl-4-phenylpyridinium (MPP) transport into Chinese hamster ovary cells that stably expressed hOCT2. The "cluster II" inhibitors (which contain known OCT2 substrates) metformin and cimetidine interacted competitively with MPP. However, other cluster II compounds, including tetraethylammonium (TEA), diphenidol and phenyltoloxamine, were mixed-type inhibitors of MPP transport (i.e., decreasing J(max) and increasing K(t)). A cluster III (neutral steroid) representative, adrenosterone, and a cluster I (large, flexible cation) representative, carvedilol, displayed noncompetitive inhibitory profiles. Competitive counterflow (CCF) was used to determine whether the inhibitory ligands served as substrates of hOCT2. Carvedilol (cluster I) and adrenosterone (cluster III) did not support CCF, consistent with the prediction that members of these structural classes are likely to be nontransported inhibitors of OCT2. The cluster II representatives MPP, metformin, cimetidine, and TEA all supported CCF, consistent with independent assessments of their OCT2-mediated transport. However, the other cluster II representatives, diphenidol and phenyltoloxamine, failed to support CCF, suggesting that neither compound is transported by OCT2. An independent assessment of diphenidol transport (using liquid chromatography with tandem mass spectroscopy) confirmed this observation. The results underscore the caution required for development of predictive models of ligand interaction with multidrug transporters.
Collapse
Affiliation(s)
- Jaclyn N Harper
- Univ. of Arizona College of Medicine, Dept. of Physiology, Tucson, AZ 85724, USA
| | | |
Collapse
|
103
|
Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 2012; 20:736-63. [PMID: 22994411 DOI: 10.3109/1061186x.2012.716847] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
104
|
New mechanistic explanation for the localization of ulcers in the rat duodenum: Role of iron and selective uptake of cysteamine. Arch Biochem Biophys 2012; 525:60-70. [DOI: 10.1016/j.abb.2012.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
|
105
|
Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol 2012; 26:407-21. [PMID: 22933250 DOI: 10.1002/jbt.21435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/22/2012] [Accepted: 07/21/2012] [Indexed: 12/15/2022]
Abstract
Renal xenobiotic transporters are important determinants of urinary secretion and reabsorption of chemicals. In addition to glomerular filtration, these processes are key to the overall renal clearance of a diverse array of drugs and toxins. Alterations in kidney transporter levels and function can influence the efficacy and toxicity of chemicals. Studies in experimental animals have revealed distinct patterns of renal transporter expression in response to sex hormones, pregnancy, and growth hormone. Likewise, a number of disease states including diabetes, obesity, and cholestasis alter the expression of kidney transporters. The goal of this review is to provide an overview of the major xenobiotic transporters expressed in the kidneys and an understanding of metabolic conditions and hormonal factors that regulate their expression and function.
Collapse
Affiliation(s)
- Lindsay L Yacovino
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
106
|
Organic cation transporters in the blood-air barrier: expression and implications for pulmonary drug delivery. Ther Deliv 2012; 3:735-47. [PMID: 22838069 DOI: 10.4155/tde.12.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies concerning the impact that hepatic, renal and intestinal transporters have on drug disposition have been frequently reported in the literature. Surprisingly, however, little is known regarding the distribution and function of drug-transporter proteins of the lung epithelium. Many drugs (delivered to the lung) have a net positive charge and, thus, are potential substrates of organic cation transporters; currently marketed compounds (e.g., bronchodilators), as well as novel drug candidates in development, are such substrates. It is the aim of this review to summarize the current state of organic cation-transporter expression analysis in the lung and in in vitro models of bronchial and alveolar barriers. Moreover, activity of selected transporters in lung epithelium in situ and in vitro will be highlighted, and their potential role in pulmonary drug disposition will be addressed. One example included here is the transporter-dependent absorption of beta2-agonists in respiratory epithelial cells.
Collapse
|
107
|
Minematsu T, Sonoda T, Hashimoto T, Iwai M, Oppeneer T, Felder L, Shirai N, Miyashita A, Usui T. Pharmacokinetics, distribution and excretion of YM155 monobromide, a novel small-molecule survivin suppressant, in male and pregnant or lactating female rats. Biopharm Drug Dispos 2012; 33:160-9. [PMID: 22374735 DOI: 10.1002/bdd.1781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
YM155 monobromide is a novel small-molecule survivin suppressant. The pharmacokinetics, distribution and excretion of YM155/[14C]YM155 were investigated using males and pregnant or lactating female rats after a single intravenous bolus administration. For the 0.1, 0.3 and 1 mg/kg YM155 doses given to male rats, increases in area under the plasma concentration-time curves were approximately proportional to the increase in the dose level. After administering [14C]YM155, radioactivity concentrations in the kidney and liver were highest among the tissues in both male and pregnant rats: e.g. 14.8- and 5.24-fold, respectively, and higher than in plasma at 0.1 h after dosing to male rats. The YM155 concentrations in the brain were lowest: 25-fold lower than in plasma. The transfer of radioactivity into fetuses was low (about 2-fold lower than in plasma). In lactating rats, the radioactivity was transferred into milk at a level 8- to 21-fold higher than for plasma. Radioactivity was primarily excreted in feces (64.0%) and urine (35.2%). The fecal excretion was considered to have occurred mainly by biliary excretion and partly by secretion across the gastrointestinal membrane from the blood to the lumen.
Collapse
Affiliation(s)
- Tsuyoshi Minematsu
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Haller S, Schuler F, Lazic SE, Bachir-Cherif D, Krämer SD, Parrott NJ, Steiner G, Belli S. Expression Profiles of Metabolic Enzymes and Drug Transporters in the Liver and along the Intestine of Beagle Dogs. Drug Metab Dispos 2012; 40:1603-10. [DOI: 10.1124/dmd.112.045443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
109
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
110
|
Yonezawa A, Inui KI. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol 2012; 164:1817-25. [PMID: 21457222 DOI: 10.1111/j.1476-5381.2011.01394.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The renal organic cation transport system mediates the tubular secretion of cationic compounds including drugs, toxins and endogenous metabolites into urine. It consists of a membrane potential-dependent organic cation transporter at the basolateral membrane and an H(+) /organic cation antiporter at the brush-border membrane. In 2005, human multidrug and toxin extrusion MATE1/SLC47A1 was identified as a mammalian homologue of bacterial NorM. Thereafter, human MATE2-K/SLC47A2 and rodent MATE were found. Functional characterization revealed that MATE1 and MATE2-K were H(+) /organic cation antiporter, mediating the renal tubular secretion of cationic drugs in cooperation with the basolateral organic cation transporter OCT2. Recently, substrate specificity, transcription mechanisms, structure, polymorphisms, in vivo contributions and clinical outcomes on MATE have been investigated intensively. In this review, we summarize recent findings on MATE1/SLC47A1 and MATE2-K/SLC47A2 and discuss the importance of these transporters to the pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics of cationic drugs.
Collapse
Affiliation(s)
- Atsushi Yonezawa
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
111
|
Astorga B, Ekins S, Morales M, Wright SH. Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K. J Pharmacol Exp Ther 2012; 341:743-55. [PMID: 22419765 DOI: 10.1124/jpet.112.191577] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study compared the selectivity of two homologous transport proteins, multidrug and toxin extruders 1 and 2-K (MATE1 and MATE2-K), and developed three-dimensional pharmacophores for inhibitory ligand interaction with human MATE1 (hMATE1). The human orthologs of MATE1 and MATE2-K were stably expressed in Chinese hamster ovary cells, and transport function was determined by measuring uptake of the prototypic organic cation (OC) substrate 1-methyl-4-phenylpyridinium (MPP). Both MATEs had similar apparent affinities for MPP, with K(tapp) values of 4.4 and 3.7 μM for MATE1 and MATE2-K, respectively. Selectivity was assessed for both transporters from IC(50) values for 59 structurally diverse compounds. Whereas the two transporters discriminated markedly between a few of the test compounds, the IC(50) values for MATE1 and MATE2-K were within a factor of 3 for most of them. For hMATE1 there was little or no correlation between IC(50) values and the individual molecular descriptors LogP, total polar surface area, or pK(a). The IC(50) values were used to generate a common-features pharmacophore, quantitative pharmacophores for hMATE1, and a bayesian model suggesting molecular features favoring and not favoring the interaction of ligands with hMATE1. The models identified hydrophobic regions, hydrogen bond donor and hydrogen bond acceptor sites, and an ionizable (cationic) feature as key determinants for ligand binding to MATE1. In summary, using a combined in vitro and computational approach, MATE1 and MATE2-K were found to have markedly overlapping selectivities for a broad range of cationic compounds, including representatives from seven novel drug classes of Food and Drug Administration-approved drugs.
Collapse
Affiliation(s)
- Bethzaida Astorga
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
112
|
Higgins JW, Bedwell DW, Zamek-Gliszczynski MJ. Ablation of Both Organic Cation Transporter (Oct)1 and Oct2 Alters Metformin Pharmacokinetics but Has No Effect on Tissue Drug Exposure and Pharmacodynamics. Drug Metab Dispos 2012; 40:1170-7. [DOI: 10.1124/dmd.112.044875] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
113
|
The prototypic pharmacogenetic drug debrisoquine is a substrate of the genetically polymorphic organic cation transporter OCT1. Biochem Pharmacol 2012; 83:1427-34. [PMID: 22342776 DOI: 10.1016/j.bcp.2012.01.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Debrisoquine is a probe drug for in vivo phenotyping of human CYP2D6 metabolic activity. However, debrisoquine is positively charged under physiological conditions and it is unclear how it enters the hepatocytes to undergo CYP2D6 metabolism. We analysed whether debrisoquine is a substrate of the hepatic organic cation transporter OCT1 and whether drug-drug interactions at OCT1, or polymorphisms in OCT1 gene, affect debrisoquine uptake. Debrisoquine showed low carrier-independent membrane permeability (P(e) of 0.01×10⁻⁶ cm/s in artificial PAMPA membranes) and strongly inhibited the uptake of the model OCT1 substrate MPP+ (IC₅₀ of 6.2 ± 0.8 μM). Debrisoquine uptake was significantly increased in HEK293 cells overexpressing OCT1 compared to control cells. The OCT1-mediated uptake of debrisoquine followed Michaelis-Menten kinetics (K(M) of 5.9 ± 1.5 μM and V(max) of 41.9 ± 4.5pmol/min/mg protein) and was inhibited by known OCT1 inhibitors and by commonly used drugs. OCT1-mediated debrisoquine uptake was reduced or missing in cells expressing loss-of-function OCT1 isoforms. Deletion of Met420 or substitution of Arg61Cys or Gly401Ser reduced V(max) by 48, 63 and 91%, respectively, but did not affect the K(M). The OCT1 isoforms carrying Cys88Arg or Gly465Arg substitutions completely lacked OCT1-mediated debrisoquine uptake. In conclusion, debrisoquine is a substrate of OCT1 and has the potential to be used as a phenotyping marker for OCT1 activity. Moreover, variations in debrisoquine metabolic phenotypes and their associations with diseases may be due not only to genetic variations CYP2D6, but also in OCT1.
Collapse
|
114
|
Abstract
The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Germany.
| | | |
Collapse
|
115
|
Time-course activities of Oct1, Mrp3, and cytochrome P450s in cultures of cryopreserved rat hepatocytes. Eur J Pharm Sci 2011; 44:427-36. [DOI: 10.1016/j.ejps.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/13/2011] [Accepted: 09/05/2011] [Indexed: 11/23/2022]
|
116
|
Iversen L. The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol 2011. [DOI: 10.1111/j.1476-5381.1997.tb06806.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
117
|
Keller T, Egenberger B, Gorboulev V, Bernhard F, Uzelac Z, Gorbunov D, Wirth C, Koppatz S, Dötsch V, Hunte C, Sitte HH, Koepsell H. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J Biol Chem 2011; 286:37874-86. [PMID: 21896487 DOI: 10.1074/jbc.m111.289330] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyspecific organic anion transporters (OATs) and organic cation transporters (OCTs) of the SLC22 transporter family play a pivotal role in absorption, distribution, and excretion of drugs. Polymorphisms in these transporters influence therapeutic effects. On the basis of functional characterizations, homology modeling, and mutagenesis, hypotheses for how OCTs bind and translocate structurally different cations were raised, assuming functionally competent monomers. However, homo-oligomerization has been described for OATs and OCTs. In the present study, evidence is provided that the large extracellular loops (EL) of rat Oct1 (rOct1) and rat Oat1 (rOat1) mediate homo- but not hetero-oligomerization. Replacement of the cysteine residues in the EL of rOct1 by serine residues (rOct1(6ΔC-l)) or breaking disulfide bonds with dithiothreitol prevented oligomerization. rOct1 chimera containing the EL of rOat1 (rOct1(rOat1-l)) showed oligomerization but reduced transporter amount in the plasma membrane. For rOct1(6ΔC-l) and rOct1(rOat1-l), similar K(m) values for 1-methyl-4-phenylpyridinium(+) (MPP(+)) and tetraethylammonium(+) (TEA(+)) were obtained that were higher compared with rOct1 wild type. The increased K(m) of rOct1(rOat1-l) indicates an allosteric effect of EL on the cation binding region. The similar substrate affinity of the oligomerizing and non-oligomerizing loop mutants suggests that oligomerization does not influence transport function. Independent transport function of rOct1 monomers was also demonstrated by showing that K(m) values for MPP(+) and TEA(+) were not changed after treatment with dithiothreitol and that a tandem protein with two rOct1 monomers showed about 50% activity with unchanged K(m) values for MPP(+) and TEA(+) when one monomer was blocked. The data help to understand how OCTs work and how mutations in patients may affect their functions.
Collapse
Affiliation(s)
- Thorsten Keller
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning? Crit Care Med 2011; 39:803-11. [PMID: 21242797 DOI: 10.1097/ccm.0b013e318206d52f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Pralidoxime is an organic cation used as an antidote in addition to atropine to treat organophosphate poisoning. Pralidoxime is rapidly eliminated by the renal route and thus has limited action. The objectives of this work were as follows. 1) Study the role of organic cation transporters in the renal secretion of pralidoxime using organic cation transporter substrates (tetraethylammonium) and knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻). 2) Assess whether sustained high plasma concentrations increase pralidoxime antidotal activity toward paraoxon-induced respiratory toxicity. SETTING INSERM U705, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France. SUBJECTS Rodents: Knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻) and Sprague-Dawley rats. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS In rats, the renal clearance of pralidoxime was 3.6-fold higher than the creatinine clearance. Pretreatment with tetraethylammonium (75 mg/kg) in rats or deficiencies in organic cation transporters 1 and 2 in mice (Oct1/2⁻/⁻) resulted in a significant increase in plasma pralidoxime concentrations. Lack of Oct3 did not alter plasma pralidoxime concentrations. The antidotal activity of pralidoxime (50 mg/kg intramuscularly) was longer and with greater effect, resulting in a return to normal values when administered to rats pretreated with tetraethylammonium. CONCLUSIONS Pralidoxime is secreted in rats and mice by renal Oct1 and/or Oct2 but not by Oct3. Modulation of organic cation transporter activity increased the plasma pralidoxime concentrations and the antidotal effect of pralidoxime with sustained return within the normal range of respiratory variables in paraoxon-poisoned rats. These results suggest a promising approach in an animal model toward the increase in efficiency of pralidoxime. However, further studies are needed before these results are extended to human poisoning.
Collapse
|
119
|
Koepsell H. Substrate recognition and translocation by polyspecific organic cation transporters. Biol Chem 2011; 392:95-101. [PMID: 21194363 DOI: 10.1515/bc.2011.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic cation transporters (OCTs) of the SLC22 family play a pivotal role in distribution and excretion of cationic drugs. They mediate electrogenic translocation of cations in both directions. OCTs are polyspecific transporters. During substrate translocation they perform a series of conformational changes involving an outward-facing conformation, an occluded state and an inward-facing conformation. Mutagenesis of OCT1 in combination with homology modeling showed that identical amino acids form the innermost parts of the outward-open and inward-open binding clefts. In addition to low affinity substrate binding sites, OCT1 contains high affinity substrate binding sites that can mediate inhibition via non-transported compounds.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, Würzburg, Germany
| |
Collapse
|
120
|
Gupta S, Burckhardt G, Hagos Y. SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells. Biol Chem 2011; 392:117-24. [PMID: 21194368 DOI: 10.1515/bc.2011.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The response to chemotherapy by tumor cells depends on the concentration of cytostatics accumulated inside the cells. The accumulation of anticancer drugs in tumor cells is mainly dependent on functional expression of efflux and influx transporters and to a minor extent on passive diffusion through the membrane. Efflux transporters of the ABC family are partially responsible for the chemoresistance of cancer cells by secreting these cytostatics. Over the past decades, the role of ABC transporters in the chemoresistance of various malignant tumors has been very well documented. By contrast, very little is known about the impact on tumor therapy of influx transporters belonging to the solute carrier transporters (SLC family). In this review, we focus on the interaction of SLC22 transporters with cytostatics, the expression of these transporters in tumor cells as well as their impact on the chemosensitivity of cancer cells.
Collapse
Affiliation(s)
- Shivangi Gupta
- Abteilung Vegetative Physiologie und Pathophysiologie, Georg-August-Universität, Humboldallee 23, Göttingen, Germany
| | | | | |
Collapse
|
121
|
Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch 2011; 462:359-69. [PMID: 21523352 DOI: 10.1007/s00424-011-0969-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/08/2023]
Abstract
The main elimination site of organic cations (OCs) is the renal proximal tubule (PT). OC transporters (OCT) accept endogenous and exogenous substances and xenobiotics. As transgenic mouse models are increasingly used in translational medicine, functional properties with special focus on regulation of OCT of isolated mouse PTs were studied with a new fluorescence reader-based method, which allows studying larger numbers of tubules per kidney. OC transport across the basolateral membrane of PTs from male mice was measured as initial uptake of the fluorescent dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP). A microtiter plate fluorescence reader was used to semi-automatically analyze OC transport in freshly isolated tubules. Relative mRNA expression of OCT1/OCT2/OCT3 in PTs was 1/0.3/0.01 and did not vary from S1 to S3 segments. ASP was transported by PTs with a K (m) of 6 μM. It was inhibited by TEA, TPA, or cimetidine (IC(50)=5, 19, or 53 μM, respectively). Angiotensin II stimulated ASP uptake (+63%), while stimulation of PKC reduced (-37%) OC transport. Inhibition of p56(lck) tyrosine kinase (-60%), of PI3K (-36%), of Ca(2+)/calmodulin (-25%), or of PKA (-33%) reduced OC transport. In PTs from OCT1/2(-/-) mice ASP uptake was reduced to ~20%. Using this fluorescence reader-based method, we report substrate specificities and a complex pattern of acute regulation of OC transport in isolated mouse PTs. Compared to isolated human PTs or rat and human OCT isoforms expressed in HEK293-cells, OC transport across the basolateral membrane of freshly isolated mouse PTs shows similarities but also specific differences.
Collapse
|
122
|
Yasujima T, Ohta K, Inoue K, Yuasa H. Characterization of human OCT1-mediated transport of DAPI as a fluorescent probe substrate. J Pharm Sci 2011; 100:4006-12. [PMID: 21437911 DOI: 10.1002/jps.22548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/26/2011] [Accepted: 03/02/2011] [Indexed: 12/16/2022]
Abstract
The present study was conducted to assess the functional characteristics of human organic cation transporter 1 (hOCT1) for the transport of 4',6-diamidino-2-phenylindol (DAPI), a fluorescent compound that may be used as a probe substrate for rapid assays of its functionality. The specific uptake of DAPI by hOCT1 heterologously introduced into Madin-Darby canine kidney II cells by stable transfection was found to be, when assessed by DAPI-derived fluorescence intensity, rapid and saturable with a Michaelis constant of 8.94 µM, indicating that DAPI is a good substrate of hOCT1. The specific uptake of DAPI was insensitive to the membrane potential and extracellular pH, indicating a mode of operation different from that for typical cationic substrates such as tetraethylammonium (TEA), for which hOCT1 has been suggested to be driven by an inside-negative membrane potential and favor higher pH for optimal operation. However, many organic cations were found to inhibit the specific DAPI uptake with extents well correlated with those of inhibition of the specific uptake of [(14) C]TEA, indicating comparable performances of both substrates as probes in identifying inhibitors. Thus, DAPI can be an alternative probe substrate that enables fluorometric rapid assays of the functionality of hOCT1.
Collapse
Affiliation(s)
- Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | |
Collapse
|
123
|
Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 2011; 24:857-74. [PMID: 21424617 DOI: 10.1007/s10534-011-9440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
Cadmium (Cd) is a toxic metal with an extremely long half-life in humans. The intestinal absorption of Cd has been extensively studied but the role the intestinal epithelium may play in metal excretion has never been considered. The basolateral (BL)-to-apical (AP) transepithelial transport of Cd was characterized in TC7 human intestinal cells. Both AP and BL uptakes varied with days in culture, and BL uptake was twofold higher compared to AP in differentiated cultures. A 50% increase in the BL uptake of 0.5 μM (109)Cd was observed at pH 8.5 in a chloride but not nitrate medium, suggesting the involvement of a pH-sensitive mechanism of transport for chloro-complexes. Fe and Zn inhibited the BL uptake of Cd whereas complexation by albumin had no effect, but the stimulatory effect of pH 8.5 was lost in the presence of albumin. The BL uptake of [(3)H]-MPP(+) and (109)Cd were both inhibited by decynium22 without reciprocal inhibition. MRP2 and MDR1 mRNA levels increased as a function of days in culture. A 25 and 20% decrease in the cellular AP efflux of Cd was observed in the presence of verapamil and probenecid, respectively. In cells treated with BSO, which lowered by 26% the total cellular thiol content, the inhibitory effect of verapamil increased, whereas that of probenecid decreased. These results reveal the existence of a decynium22-sensitive mechanism of transport for Cd at the BL membrane, and suggest the involvement of MDR1 and MRP2 in cellular Cd efflux at the AP membrane. It is conceivable that the intestinal epithelium may contribute to Cd blood excretion.
Collapse
|
124
|
Li S, Chen Y, Zhang S, More SS, Huang X, Giacomini KM. Role of organic cation transporter 1, OCT1 in the pharmacokinetics and toxicity of cis-diammine(pyridine)chloroplatinum(II) and oxaliplatin in mice. Pharm Res 2011; 28:610-25. [PMID: 21104302 PMCID: PMC3040319 DOI: 10.1007/s11095-010-0312-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/25/2010] [Indexed: 12/18/2022]
Abstract
PURPOSE The goal of this study was to test the hypothesis that by controlling intracellular uptake, organic cation transporter 1, Oct1 is a key determinant of the disposition and toxicity of cis-diammine(pyridine)chloroplatinum(II)(CDPCP) and oxaliplatin. METHODS Pharmacokinetics, tissue accumulation and toxicity of CDPCP and oxaliplatin were compared between Oct1-/- and wild-type mice. RESULTS After intravenous administration, hepatic and intestinal accumulation of CDPCP was 2.7-fold and 3.9-fold greater in Oct1 wild-type mice (p < 0.001). Deletion of Oct1 resulted in a significantly decreased clearance (0.444 ± 0.0391 ml/min*kg versus 0.649 ± 0.0807 ml/min*kg in wild-type mice, p < 0.05) and volume distribution (1.90 ± 0.161 L/kg versus 3.37 ± 0.196 L/kg in wild-type mice, p < 0.001). Moreover, Oct1 deletion resulted in more severe off-target toxicities in CDPCP-treated mice. Histologic examination of the liver and measurements of liver function indicated that the level of hepatic toxicity was mild and reversible, but was more apparent in the wild-type mice. In contrast, the effect of Oct1 on the pharmacokinetics and toxicity of oxaliplatin in the mice was minimal. CONCLUSIONS Our study suggests that Oct1 plays an important role in the pharmacokinetics, tissue distribution and toxicity of CDPCP, but not oxaliplatin.
Collapse
Affiliation(s)
- Shuanglian Li
- Department of Bioengineering and Therapeutic Sciences, University of California, 1550 4th Street, San Francisco, California 94158 USA
| | - Ying Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, 1550 4th Street, San Francisco, California 94158 USA
| | - Shuzhong Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, 1550 4th Street, San Francisco, California 94158 USA
| | - Swati S. More
- Department of Bioengineering and Therapeutic Sciences, University of California, 1550 4th Street, San Francisco, California 94158 USA
| | - Xiaozhu Huang
- Lung Biology Center, University of California, San Francisco, California 94143 USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, 1550 4th Street, San Francisco, California 94158 USA
| |
Collapse
|
125
|
Development and validation of a highly sensitive LC–MS/MS method for organic cation transporter (OCT) substrate tetraethylammonium (TEA) in rabbits. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:585-90. [DOI: 10.1016/j.jchromb.2011.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/16/2011] [Accepted: 01/18/2011] [Indexed: 01/10/2023]
|
126
|
Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23. Mol Cell Biochem 2011; 352:143-54. [PMID: 21359964 DOI: 10.1007/s11010-011-0748-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 02/17/2011] [Indexed: 01/11/2023]
Abstract
The organic cation transporter (OCT, SLC22) family is a family of polyspecific transmembrane proteins that are responsible for the uptake or excretion of many cationic drugs, toxins, and endogenous metabolites in a variety of tissues. Many of the OCTs have been previously characterized, but there are a number of orphan genes whose functions remain unknown. In this study, two novel rat SLC22 genes, SLC22A17 (BOCT1) and SLC22A23 (BOCT2), were cloned and characterized. Northern blot analysis showed that BOCT1 and BOCT2 mRNA was expressed in a wide variety of tissues. BOCT1 was strongly expressed in brain, primary neurons and brain endothelial cells, with highest expression in choroid plexus. BOCT2 was also abundantly expressed in brain, as well as in liver. To characterize the products of these genes, BOCT1 cDNA was isolated from a rat blood-brain barrier cDNA library, and BOCT2 cDNA was isolated from rat brain capillary and from cultured neurons using PCR techniques. Plasmids expressing BOCT1 and BOCT2 were transfected into HEK-293 cells, as were control cDNAs for OCT1 and OCTN2. Recombinant cell surface protein was verified by western blot and fluorescence microscopy. Transport activity of BOCT1 and BOCT2 was evaluated using radioisotope uptake assays. The OCT1- and OCTN2-expressing cells transported the canonical substrates, 1-methyl-4-phenyl-pyridinium (MPP(+)) and carnitine, respectively. However, BOCT1 and BOCT2-expressing cells did not show transport activity for these substrates or a number of other SLC22 substrates. These novel family members have a nonconserved amino terminus, relative to other OCTs, that may preclude typical SLC22 transport function.
Collapse
|
127
|
Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 2011:105-67. [PMID: 21103969 DOI: 10.1007/978-3-642-14541-4_3] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 and multidrug and toxin extrusion (MATE) transporters of the SLC47 family have been identified as uptake and efflux transporters, respectively, for xenobiotics including several clinically used drugs such as the antidiabetic agent metformin, the antiviral agent lamivudine, and the anticancer drug oxaliplatin. Expression of human OCT1 (SLC22A1) and OCT2 (SLC22A2) is highly restricted to the liver and kidney, respectively. By contrast, OCT3 (SLC22A3) is more widely distributed. MATEs (SLC47A1, SLC47A2) are predominantly expressed in human kidney. Data on in vitro studies reporting a large number of substrates and inhibitors of OCTs and MATEs are systematically summarized. Several genetic variants of human OCTs and in part of MATE1 have been reported, and some of them result in reduced in vitro transport activity corroborating data from studies with knockout mice. A comprehensive overview is given on currently known genotype-phenotype correlations for variants in OCTs and MATE1 related to protein expression, pharmacokinetics/-dynamics of transporter substrates, treatment outcome, and disease susceptibility.
Collapse
Affiliation(s)
- Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | | | | | | |
Collapse
|
128
|
|
129
|
Abstract
INTRODUCTION Membrane transporters are important determinants of in vivo drug disposition, therapeutic efficacy and adverse drug reactions. Many commonly used drugs are organic cations and substrates of organic cation transporters (OCTs). These transporters have a large binding site containing partially overlapping interaction domains for different substrates and are specifically distributed around the body. Consequently, drug interactions with these transporters can result in specific toxicity. AREAS COVERED This review describes the general properties of OCT and illustrates their importance for the development of important drug toxicities using the examples of metformin and cisplatin. Additionally, this review discusses the role of OCT polymorphisms in the modulation of these toxic effects. EXPERT OPINION Understanding how drugs interact with membrane transporters is pivotally important in explaining the mechanisms of specific toxicities and also in designing new drugs or new therapeutic protective protocols by specific competition at the transporter. Defining the pharmacogenomics of these transporters will be essential to personalized medicine, enabling physicians to choose drugs for patients based on efficacy, availability, cost, safety, tolerability and convenience.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, Domagkstr. 3a, 48149 Münster, Germany.
| |
Collapse
|
130
|
Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:203-8. [PMID: 21212936 DOI: 10.1007/s00210-010-0590-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The muscarinic antagonists oxybutynin and trospium are used as spasmolytic agents for the treatment of overactive urinary bladder disease. Recently, it has been shown that trospium, but not oxybutynin, is a substrate of the multidrug efflux carrier P-glycoprotein, but carrier-mediated drug uptake has not been directly analysed for both drugs. However, trospium has been previously shown to exhibit inhibitory potency for the organic cation transporters (OCTs). The aim of the present study was to examine whether trospium and oxybutynin are substrates, i.e. are transported by the human OCTs (hOCT(1), hOCT(2) and hOCT(3)). Therefore, we measured total and specific (decynium-22-sensitive) uptake, and saturation kinetics of the uptake for [(3)H]oxybutynin and [(3)H]trospium in human embryonic kidney (HEK293) cells transiently transfected with the cDNA of hOCT(1), hOCT(2) or hOCT(3). In addition, we determined IC(50) values for inhibition of hOCT-mediated [(3)H]MPP(+) uptake by unlabelled trospium and oxybutynin. Total uptake of [(3)H]oxybutynin was very high in all transfected HEK293 cells and only a small portion was due to specific, decynium-22-sensitive hOCT-mediated uptake. Oxybutynin inhibited [(3)H]MPP(+) uptake by the three hOCTs with IC(50) values between 20 and 130 μM. Direct determination of transport kinetics was measurable only at hOCT(1) with K (m) of 8 μM and V (max) of 484 pmol/mg protein/min. The rank order of affinity (1/IC(50) or 1/K (m)) of specific oxybutynin uptake was hOCT(1) > hOCT(2) = hOCT(3). The observed high non-specific uptake is obviously a consequence of the high lipophilicity of this uncharged drug. Thus, hOCTs may not play a significant role for the overall pharmacokinetics and tissue distribution of oxybutynin. However, and in contrast to oxybutynin, uptake of [(3)H]trospium, an organic cation, was mainly due to carrier-mediated uptake by the three hOCTs. With IC(50) values of 18, 1.4 and 710 μM (at hOCT(1), hOCT(2) and hOCT(3), respectively) and K (m) values of 17 and 8 μM and about identical V (max) values of about 90 pmol/mg protein/min at hOCT(1) and hOCT(2), respectively; the rank order of affinity (1/IC(50) or 1/K (m)) of specific uptake of trospium was hOCT(2) > hOCT(1) > > hOCT(3). Thus, hOCTs very probably contribute to the active tubular and hepatobiliary secretion of trospium. Furthermore, hOCT(1) and hOCT(3) may be involved in the tissue uptake of this drug in the urinary bladder.
Collapse
Affiliation(s)
- Birger Wenge
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | |
Collapse
|
131
|
Smith DE, Hu Y, Shen H, Nagaraja TN, Fenstermacher JD, Keep RF. Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 2011; 31:250-61. [PMID: 20571525 PMCID: PMC2965812 DOI: 10.1038/jcbfm.2010.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to define the cerebrospinal fluid (CSF) clearance kinetics, choroid plexus uptake, and parenchymal penetration of PEPT2 substrates in different regions of the brain after intracerebroventricular administration. To accomplish these objectives, we performed biodistribution studies using [(14)C]glycylsarcosine (GlySar) and [(3)H]cefadroxil, along with quantitative autoradiography of [(14)C]GlySar, in wild-type and Pept2 null mice. We found that PEPT2 deletion markedly reduced the uptake of GlySar and cefadroxil in choroid plexuses at 60 mins by 94% and 82% (P<0.001), respectively, and lowered their CSF clearances by about fourfold. Autoradiography showed that GlySar concentrations in the lateral, third, and fourth ventricle choroid plexuses were higher in wild-type as compared with Pept2 null mice (P<0.01). Uptake of GlySar by the ependymal-subependymal layer and septal region was higher in wild-type than in null mice, but the half-distance of penetration into parenchyma was significantly less in wild-type mice. The latter is probably because of the clearance of GlySar from interstitial fluid by brain cells expressing PEPT2, which stops further penetration. These studies show that PEPT2 knockout can significantly modify the spatial distribution of GlySar and cefadroxil (and presumably other peptides/mimetics and peptide-like drugs) in brain.
Collapse
Affiliation(s)
- David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-5633, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Gaiko O, Janausch I, Geibel S, Vollert H, Arndt P, Gonski S, Fendler K. Robust Electrophysiological Assays using Solid Supported Membranes: the Organic Cation Transporter OCT2. Aust J Chem 2011. [DOI: 10.1071/ch10322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An electrophysiological assay platform based on solid supported membranes (SSM) for the organic cation transporter (OCT) is presented. Stable Chinese hamster ovary (CHO) cell lines overexpressing the human (hOCT2) and rat transporters (rOCT2) were generated and validated. Membrane preparations from the cell lines were investigated using SSM-based electrophysiology. Baculovirus transfected insect cells (HighFive and Mimic Sf9) were also tested with the same assay but yielded less than optimal results. The assays were validated by the determination of substrate affinities and inhibition by standard inhibitors. The study demonstrates the suitability of the SSM-based electrophysiological OCT assay for rapid and automatic screening of drug candidates.
Collapse
|
133
|
Gunness P, Aleksa K, Koren G. The effect of acyclovir on the tubular secretion of creatinine in vitro. J Transl Med 2010; 8:139. [PMID: 21192814 PMCID: PMC3022579 DOI: 10.1186/1479-5876-8-139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background While generally well tolerated, severe nephrotoxicity has been observed in some children receiving acyclovir. A pronounced elevation in plasma creatinine in the absence of other clinical manifestations of overt nephrotoxicity has been frequently documented. Several drugs have been shown to increase plasma creatinine by inhibiting its renal tubular secretion rather than by decreasing glomerular filtration rate (GFR). Creatinine and acyclovir may be transported by similar tubular transport mechanisms, thus, it is plausible that in some cases, the observed increase in plasma creatinine may be partially due to inhibition of tubular secretion of creatinine, and not solely due to decreased GFR. Our objective was to determine whether acyclovir inhibits the tubular secretion of creatinine. Methods Porcine (LLC-PK1) and human (HK-2) renal proximal tubular cell monolayers cultured on microporous membrane filters were exposed to [2-14C] creatinine (5 μM) in the absence or presence of quinidine (1E+03 μM), cimetidine (1E+03 μM) or acyclovir (22 - 89 μM) in incubation medium. Results Results illustrated that in evident contrast to quinidine, acyclovir did not inhibit creatinine transport in LLC-PK1 and HK-2 cell monolayers. Conclusions The results suggest that acyclovir does not affect the renal tubular handling of creatinine, and hence, the pronounced, transient increase in plasma creatinine is due to decreased GFR, and not to a spurious increase in plasma creatinine.
Collapse
Affiliation(s)
- Patrina Gunness
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
134
|
Yonezawa A, Inui KI. Organic cation transporter OCT/SLC22A and H(+)/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 2010; 81:563-8. [PMID: 21144842 DOI: 10.1016/j.bcp.2010.11.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 12/19/2022]
Abstract
Platinum agents have been widely used in cancer chemotherapy for a long time. Cisplatin, carboplatin, oxaliplatin and nedaplatin have a common chemical structure consisting of platinum, carrier groups and leaving groups, and undergo the similar mechanism of cytotoxicity. However, each agent differs in its efficacy and adverse effects, although the molecular mechanism involved is unclear. Recently, it was reported that organic cation transporter OCT/SLC22A, and multidrug and toxin extrusion MATE/SLC47A play a role in the pharmacokinetics of platinum agents. Only cisplatin induces nephrotoxicity and the toxicity is kidney-specific. Kidney-specific OCT2 mediates the transport of cisplatin and is the determinant of cisplatin-induced nephrotoxicity. In addition, cisplatin and oxaliplatin are substrates for these transporters, but carboplatin and nedaplatin are not. Substrate specificity could regulate the features of platinum agents. In this commentary, we will discuss the characteristics of OCT and MATE, and demonstrate the recent topics about the relationship between the transport of platinum agents by organic cation transporters and their pharmacological characteristics.
Collapse
Affiliation(s)
- Atsushi Yonezawa
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
135
|
Swift B, Yue W, Brouwer KLR. Evaluation of (99m)technetium-mebrofenin and (99m)technetium-sestamibi as specific probes for hepatic transport protein function in rat and human hepatocytes. Pharm Res 2010; 27:1987-98. [PMID: 20652625 DOI: 10.1007/s11095-010-0203-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/21/2010] [Indexed: 01/09/2023]
Abstract
PURPOSE This study characterized 99mTc-Mebrofenin (MEB) and 99mTc-Sestamibi (MIBI) hepatic transport and preferential efflux routes (canalicular vs. basolateral) in rat and human sandwich-cultured hepatocytes (SCH). METHODS 99mTc-MEB and 99mTc-MIBI disposition was determined in suspended hepatocytes and in SCH in the presence and absence of inhibitors and genetic knockdown of breast cancer resistance protein (Bcrp). RESULTS The general organic anion transporting polypeptide (Oatp/OATP) inhibitor rifamycin SV reduced initial 99mTc-MEB uptake in rat and human suspended hepatocytes. Initial 99mTc-MIBI uptake in suspended rat hepatocytes was not Na+-dependent or influenced by inhibitors. Multidrug resistance-associated protein (Mrp2/MRP2) inhibitors decreased 99mTc-MEB canalicular efflux in rat and human SCH. 99mTc-MEB efflux in human SCH was predominantly canalicular (45.8 +/- 8.6%) and approximately 3-fold greater than in rat SCH. 99mTc-MIBI canalicular efflux was similar in human and rat SCH; basolateral efflux was 37% greater in human than rat SCH. 99mTc-MIBI cellular accumulation, biliary excretion index and in vitro biliary clearance in rat SCH were unaffected by Bcrp knockdown. CONCLUSION 99mTc-MEB hepatic uptake is predominantly Oatp-mediated with biliary excretion by Mrp2. 99mTc-MIBI appears to passively diffuse into hepatocytes; biliary excretion is mediated by P-gp. The SCH model is useful to investigate factors that may alter the route and/or extent of hepatic basolateral and canalicular efflux of substrates.
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7569, USA
| | | | | |
Collapse
|
136
|
Shiraya K, Hirata T, Hatano R, Nagamori S, Wiriyasermkul P, Jutabha P, Matsubara M, Muto S, Tanaka H, Asano S, Anzai N, Endou H, Yamada A, Sakurai H, Kanai Y. A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules. J Biol Chem 2010; 285:22141-51. [PMID: 20448048 DOI: 10.1074/jbc.m109.084426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We identified a novel prostaglandin (PG)-specific organic anion transporter (OAT) in the OAT group of the SLC22 family. The transporter designated OAT-PG from mouse kidney exhibited Na(+)-independent and saturable transport of PGE(2) when expressed in a proximal tubule cell line (S(2)). Unusual for OAT members, OAT-PG showed narrow substrate selectivity and high affinity for a specific subset of PGs, including PGE(2), PGF(2alpha), and PGD(2). Similar to PGE(2) receptor and PGT, a structurally distinct PG transporter, OAT-PG requires for its substrates an alpha-carboxyl group, with a double bond between C13 and C14 as well as a (S)-hydroxyl group at C15. Unlike the PGE(2) receptor, however, the hydroxyl group at C11 in a cyclopentane ring is not essential for OAT-PG substrates. Addition of a hydroxyl group at C19 or C20 impairs the interaction with OAT-PG, whereas an ethyl group at C20 enhances the interaction, suggesting the importance of hydrophobicity around the omega-tail tip forming a "hydrophobic core" accompanied by a negative charge, which is essential for substrates of OAT members. OAT-PG-mediated transport is concentrative in nature, although OAT-PG mediates both facilitative and exchange transport. OAT-PG is kidney-specific and localized on the basolateral membrane of proximal tubules where a PG-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase, is expressed. Because of the fact that 15-keto-PGE(2), the metabolite of PGE(2) produced by 15-hydroxyprostaglandin dehydrogenase, is not a substrate of OAT-PG, the transport-metabolism coupling would make unidirectional PGE(2) transport more efficient. By removing extracellular PGE(2), OAT-PG is proposed to be involved in the local PGE(2) clearance and metabolism for the inactivation of PG signals in the kidney cortex.
Collapse
Affiliation(s)
- Katsuko Shiraya
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
138
|
Gerlyand AM, Sitar DS. Protein kinase inhibition differentially regulates organic cation transport. Can J Physiol Pharmacol 2010; 87:821-30. [PMID: 20052008 DOI: 10.1139/y09-072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies showed that amantadine transport increased while tetraethylammonium (TEA) transport decreased in kidney tissue from diabetic rats. Changes in transport activity were reversed by exogenous insulin. We hypothesized that this difference in transport regulation is due to differential regulation of different transport systems. Native human embryonic kidney cortex cells (HEK293 cell line) and rat organic cation transporter (rOCT)-transfected cells were used to test the hypothesis. In support of differential regulation, short-term glucose starvation stimulated amantadine transport and inhibited TEA transport, but the effect was bicarbonate-modulated only for amantadine. cAMP analogues inhibited TEA transport while stimulating amantadine transport. This effect was additive to the effect of insulin, and the presence of bicarbonate affected the extent of the change. Our findings indicated that regulation of rOCT 1 and 2 was mediated by transmembrane adenylyl cyclase, and regulation of amantadine transport was mediated by soluble adenylyl cyclase, suggesting that intracellular microdomains of cAMP may be important in determining overall cellular transport for organic cations. Soluble adenylyl cyclase activity is known to be modulated by bicarbonate and lactate. These observations support our hypothesis and reconcile our previous studies demonstrating increased transport affinity for amantadine in the presence of bicarbonate and decreased transport affinity in the presence of lactate.
Collapse
Affiliation(s)
- Alexander M Gerlyand
- Department of Pharmacology and Therapeutics, University of Manitoba, A220-753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| | | |
Collapse
|
139
|
Hong Y, Ramzan I, McLachlan AJ. Disposition of amphotericin B in the isolated perfused rat liver. J Pharm Pharmacol 2010; 56:35-41. [PMID: 14979999 DOI: 10.1211/0022357022502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The hepatic disposition and biliary excretion of amphotericin B were investigated in the isolated perfused rat liver (IPRL). Bolus dose of 50 μg, 99 μg and 198 μg amphotericin B in lipoprotein-free perfusate and 198 μg amphotericin B in perfusate with 1 μM high-density lipoprotein (HDL) or 1 μM low-density lipoprotein (LDL) were examined in the IPRL. Amphotericin B concentration in perfusate was measured using a validated HPLC assay. Amphotericin B was eliminated from the perfusate in a biexponential manner. The hepatic clearance (CLH) increased in proportion to the dose administered (0.27±0.05 mL min−1 at low dose, 0.54±0.23 mL min−1 at medium dose and 1.06±0.24 mL min−1 at high dose), indicating non-linear hepatic disposition of amphotericin B. The hepatic extraction ratio of amphotericin B was very low (0.066±0.015). Tissue-to-perfusion partition coefficient, calculated at 120 min, increased 1.5 fold from 9.8±1.7 at low dose to 15.9±6.4 at high dose, suggesting the significant uptake and extensive retention of amphotericin B in the liver. Biliary excretion made only minor contribution to amphotericin B elimination in the IPRL, representing around 1–3% of the dose administered. No metabolites were detected in perfusate, bile and liver samples. The hepatic disposition of amphotericin B was not affected by the presence of HDL and LDL in the perfusate. In conclusion, the hepatic disposition of amphotericin B demonstrates restrictive elimination and is concentration-dependent, consistent with carrier-mediated uptake, and lipoproteins do not influence amphotericin B hepatobiliary disposition.
Collapse
Affiliation(s)
- Ying Hong
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
140
|
Sogame Y, Kitamura A, Yabuki M, Komuro S. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Biopharm Drug Dispos 2010; 30:476-84. [PMID: 19768675 DOI: 10.1002/bdd.684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metformin, a biguanide that has been used to treat type 2 diabetes mellitus, is reportedly transported into human hepatocytes by human organic cation transporter 1 (hOCT1). The objective of this study was to investigate differences in the hepatic uptake of metformin and phenformin, a biguanide derivative similar to metformin. Special focus was on the role of active transport into cells. Experiments were therefore performed using human cryopreserved hepatocytes and hOCT1 expressing oocytes. Both biguanides proved to be good substrates for hOCT1. However, phenformin exhibited a much higher affinity and transport activity, with a marked difference in uptake kinetics compared with metformin. Both biguanides were transported actively by hOCT1, with the active transport components much greater than passive transport components in both cases, suggesting that functional changes in hOCT1 might affect the transport of both compounds to the same degree. This study for the first time produced detailed comparative findings for uptake profiles of metformin and phenformin in human hepatocytes and hOCT1 expressing oocytes. It is considered that hOCT1 may not be the only key factor that determines the frequency of metformin and phenformin toxicity, considering the major contribution of this transporter to the total hepatic uptake and comparable width of their therapeutic concentrations.
Collapse
Affiliation(s)
- Yoshihisa Sogame
- Pharmacokinetics Research Laboratories, Dainippon Sumitomo Pharma Co. Ltd, 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-0022, Japan.
| | | | | | | |
Collapse
|
141
|
Franke RM, Sparreboom A. Drug transporters: recent advances and therapeutic applications. Clin Pharmacol Ther 2010; 87:3-7. [PMID: 20019691 DOI: 10.1038/clpt.2009.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
142
|
Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications. Pharmacol Ther 2010; 125:79-91. [DOI: 10.1016/j.pharmthera.2009.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 01/27/2023]
|
143
|
Haenisch B, Bönisch H. Interaction of the human plasma membrane monoamine transporter (hPMAT) with antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:33-9. [PMID: 20012264 DOI: 10.1007/s00210-009-0479-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
Abstract
Monoamine neurotransmission is efficiently terminated through synaptic reuptake of released neurotransmitters by high-affinity Na(+)- and Cl(-)-dependent neuronal monoamine transporters of the SLC6A family located in the plasma membrane of presynaptic nerve terminals. Recently, a low-affinity, high-capacity Na(+)- and Cl(-)-independent plasma membrane monoamine transporter (PMAT) belonging to the SLC29 solute carrier family has been cloned. PMAT was shown to transport monoamine neurotransmitters as well as organic cations such as 1-phenyl-4-methyl-pyridinium (MPP(+)). Thus, the PMAT which is highly expressed in the human brain may be involved in the modulation of central monoaminergic neurotransmission and it may be a target for drugs used to treat depression and schizophrenia, i.e., dysregulations of the monoamine homeostasis in the central nervous system (CNS). Therefore, we examined in transfected cells the influence on [(3)H]-MPP(+) transport by the human PMAT (hPMAT) of nine monoamine transport inhibiting antidepressants (ADs) belonging to pharmacologically diverse classes (imipramine, desipramine, amitriptyline, bupropion, fluoxetine, sertraline, paroxetine, reboxetine, and venlafaxine), of the atypical ADs tianeptine and trimipramine and of five antipsychotics (levomepromazine, haloperidol, clozapine, olanzapine, and risperidone). All examined drugs inhibited the hPMAT; however, half-maximum inhibition (IC(50)) was observed at concentrations which were much higher than reported clinical plasma concentrations of these drugs. Thus, inhibition of the hPMAT by these CNS drugs may not (or only marginally) contribute to their therapeutic effects.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, 53113, Bonn, Germany
| | | |
Collapse
|
144
|
Abstract
Drugs and their metabolites are eliminated mainly by excretion into urine and bile. Studies in whole animals, isolated organs, cells, and membrane vesicles led to the conclusion that different transport systems are responsible for the transport of different classes of organic compounds (small, large, anionic, and cationic). In the early 1990s, functional expression cloning resulted in the identification of the first transporters for organic anions and cations. Eventually, all the major transport systems involved in the uptake of these organic compounds were cloned and characterized, and we now know that they belong to the organic anion transporters (OATs) and organic cation transporters (OCTs) of the SLC22A superfamily and the organic anion-transporting polypeptides (OATPs) of the SLCO superfamily of polyspecific drug transporters. Today we can explain, at the molecular level, why small and hydrophilic organic compounds are excreted predominantly through urine whereas large and amphipathic compounds are excreted mainly through bile, and we can start to predict drug-drug interactions in the case of new compounds.
Collapse
|
145
|
Ma L, Wu X, Ling-Ling E, Wang DS, Liu HC. The transmembrane transport of metformin by osteoblasts from rat mandible. Arch Oral Biol 2009; 54:951-62. [PMID: 19700143 DOI: 10.1016/j.archoralbio.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that metformin, one of systemic antihyperglycemic drugs, can slow bone loss caused by diabetes mellitus and has an osteogenic action on osteoblasts in vitro. It is tempting to speculate that metformin would be transported into bone tissues around dental implant by topical administration to improve the bone-implant contact in diabetic patients. In this study, the osteoblasts from rat mandible were cultured with 5.5 mM (control) or 16.5 mM d-glucose, then the uptake of metformin by osteoblasts was detected with high performance liquid chromatography (HPLC). Rat organic cation transporter (rOct) expression was characterized by immunocytochemistry, RT-PCR and Western blotting. It was found that, the uptake of metformin was saturable, Na(+)-dependent, affected by extracellular pH and inhibited by both phenformin and cimetidine (an inhibitor of Octs). rOct1 but no rOct2 was expressed extensively in osteoblasts and the protein level of rOct1 could be up-regulated by metformin. The uptake of metformin and phosphorylated-rOct1 at hyperglycaemic cell culture (16.5 mM d-glucose) significantly increased versus 5.5 mM control (p < 0.05). In conclusion, rat osteoblasts have the ability to transport the metformin intra-cellularly, the uptake of metformin by osteoblasts is a secondary active transportation mediated by rOct1 and high-glucose can improve the uptake of metformin by osteoblasts through phosphorylation of rOct1. The current results suggest that metformin could be used for dental implant topically in type 2 diabetic patients to increase the bone formation, therefore, to enhance the success rate of dental implants clinically.
Collapse
Affiliation(s)
- Long Ma
- Department of Stomatology, China PLA General Hospital, Beijing 100853, China
| | | | | | | | | |
Collapse
|
146
|
Iwai M, Minematsu T, Narikawa S, Usui T, Kamimura H. Involvement of Human Organic Cation Transporter 1 in the Hepatic Uptake of 1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium Bromide (YM155 Monobromide), a Novel, Small Molecule Survivin Suppressant. Drug Metab Dispos 2009; 37:1856-63. [DOI: 10.1124/dmd.109.027359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
147
|
Zhang X, Wright SH. MATE1 has an external COOH terminus, consistent with a 13-helix topology. Am J Physiol Renal Physiol 2009; 297:F263-71. [PMID: 19515813 DOI: 10.1152/ajprenal.00123.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mammalian members of the Multidrug And Toxin Extruder family, i.e., MATE1 and MATE2-K, are suspected of mediating the luminal step in renal secretion of organic cations. The 1,000+ prokaryotic/fungal/plant MATE family members are predicted to have 12 transmembrane helices (TMHs), whereas MATE1/2-K appear to have an additional (13th) COOH-terminal helix. Here, we determined whether rabbit MATE1 has an external COOH terminus, consistent with the presence of 13 TMHs. A V5 epitope tag at the COOH terminus of MATE1 was freely accessible to external V5 antibody, whereas tags at the NH(2) terminus, or at sites of truncation within the long cytoplasmic loop between predicted TMHs 12 and 13, were only accessible to the V5 antibody following permeabilization of the membrane. The truncated mutants that lacked TMH13 still retained transport activity, indicating that the terminal helix was not necessary for transport function. Cells that expressed a mutant lacking only TMH13 displayed similar K(t) and J(max) values to those of the full-length protein, although when normalized to protein expressed at the plasma membrane, the transport rate of the mutant was <10% that of full-length MATE1. An effectively cysteine-less MATE1 mutant (Delta13Cys) was functional and refractory to reaction with the impermeant marker of accessible cysteine residues, maleimide-PEO(2)-biotin. Delta13Cys mutants with an added cysteine residue at the truncation sites within the terminal cytoplasmic loop reacted with maleimide biotin only after permeabilization of the membrane, whereas a mutant with a cysteine residue at the COOH terminus was freely accessible to maleimide biotin. These data are consistent with a mammalian MATE topology that includes 13 TMHs and indicate that the terminal TMH, although not necessary for transport function, may influence the turnover characteristics of the transporter.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
148
|
Umehara KI, Shirai N, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Identification of Human Metabolites of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, and Investigation of the Transporter-Mediated Renal and Hepatic Excretion of These Metabolites. Drug Metab Dispos 2009; 37:1646-57. [DOI: 10.1124/dmd.108.026294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
149
|
Wu W, Baker ME, Eraly SA, Bush KT, Nigam SK. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics 2009; 38:116-24. [PMID: 19417012 DOI: 10.1152/physiolgenomics.90309.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the organic anion transporter Oat1 was first identified as NKT (Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. J Biol Chem 272: 6471-6478, 1997), it was argued that it, together with Oct1, may be part of a larger subfamily (now known as SLC22) involved in organic ion and xenobiotic transport. The least studied among SLC22 transporters are the so-called unknown substrate transporters (USTs). Here, five novel genes located in a cluster on mouse chromosome 19, immediately between Slc22a8 (Oat3)/Slc22a6 (Oat1) and Slc22a19 (Oat5), were identified as homologs of human USTs. These genes display preferential expression in liver and kidney, and one gene, AB056422, has several splicing variants with differential tissue expression and embryonic expression. Along with Slc22a6, Slc22a8, and Slc22a19, these Usts define the largest known cluster of mammalian Slc22 genes. Given the established functions of Oats, these genes may also be involved in organic anion transport. Usts have characteristic motifs and share a signature residue in the possible active site of transmembrane domain 7, a conserved, positively charged, amino acid, Arg356, possibly a site for interaction with organic anions. In certain species, Oat1 and Oat3 appeared to be highly conserved, whereas the Ust part of this cluster appeared to undergo repeated species-specific amplification, suggesting strong environmental selection pressure, and perhaps providing an explanation for copy number variation in the human locus. One Ust amplification in mouse appears to be recent. This cluster may be coordinately regulated and under selective pressure in a species-specific manner.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093-0693, USA
| | | | | | | | | |
Collapse
|
150
|
Overbeek A, Lambalk CB. Phenotypic and pharmacogenetic aspects of ovulation induction in WHO II anovulatory women. Gynecol Endocrinol 2009; 25:222-34. [PMID: 19408171 DOI: 10.1080/09513590802571118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Because of an enormous increase in pharmacogenetic and -genomic knowledge, an era of predicting drug response on the basis of one's genome is drawing close to reality. Anovulation is the most common cause of infertility, and outcomes of treatment are often unpredictable. This review aims to summarise in what way genetic variability might modify effects of drug-metabolising enzymes, transporters and receptors, thereby altering response to drugs used in ovulation induction.
Collapse
Affiliation(s)
- Annelies Overbeek
- Department of Obstetrics and Gynaecology, Division of Reproductive Medicine, VU University Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|