101
|
Garg AD, Maes H, Romano E, Agostinis P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem Photobiol Sci 2015; 14:1410-24. [DOI: 10.1039/c4pp00466c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autophagy is fundamentally a cytoprotective and pro-survival process yet studies have shown that it has an exceedingly contextual role in cancer biology; depending on the phase, location or type of oncogenic trigger and/or therapy, its role could fluctuate from pro- to anti-tumourigenic.
Collapse
Affiliation(s)
- Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Hannelore Maes
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Erminia Romano
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit
- Department for Cellular and Molecular Medicine
- University of Leuven (KULeuven)
- Leuven
- Belgium
| |
Collapse
|
102
|
Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, Forestier-Roman I, Martinez-Ferrer M, Hernandez E, Vlaar C, Ferrer-Acosta Y, Washington AV, Cubano LA, Rodriguez-Orengo J, Dharmawardhane S. The Rac Inhibitor EHop-016 Inhibits Mammary Tumor Growth and Metastasis in a Nude Mouse Model. Transl Oncol 2014; 7:546-55. [PMID: 25389450 PMCID: PMC4225654 DOI: 10.1016/j.tranon.2014.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 μM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico ; Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Tessa Humphries-Bickley
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Columba De La Parra
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Ingrid Forestier-Roman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Magaly Martinez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Eliud Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cornelis Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | - Luis A Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico
| | - Jose Rodriguez-Orengo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
103
|
Xia L, Wu Y, Kang S, Ma J, Yang J, Zhang F. CecropinXJ, a silkworm antimicrobial peptide, induces cytoskeleton disruption in esophageal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 2014; 46:867-76. [PMID: 25122621 DOI: 10.1093/abbs/gmu070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial peptides exist in the non-specific immune system of organism and participate in the innate host defense of each species. CecropinXJ, a cationic antimicrobial peptide, possesses potent anticancer activity and acts preferentially on cancer cells instead of normal cells, but the mechanism of cancer cell death induced by cecropinXJ remains largely unknown. This study was performed to investigate the cytoskeleton-disrupting effects of cecropinXJ on human esophageal carcinoma cell line Eca109 using scanning electron microscopy observation, fluorescence imaging, cell migration and invasion assays, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. The electronic microscope and fluorescence imaging observation suggested that cecropinXJ could result in morphological changes and induce damage to microtubules and actin of Eca109 cells in a dose-dependent manner. The cell migration and invasion assays demonstrated that cecropinXJ could inhibit migration and invasion of tumor cells. Western blot and qRT-PCR analysis showed that there was obvious correlation between microtubule depolymerization and actin polymerization induced by cecropinXJ. Moreover, cecropinXJ might also cause decreased expression of α-actin, β-actin, γ-actin, α-tubulin, and β-tubulin genes in concentration- and time-dependent manners. In summary, this study indicates that cecropinXJ triggers cytotoxicity in Eca109 cells through inducing the cytoskeleton destruction and regulating the expression of cytoskeleton proteins. This cecropinXJ-mediated cytoskeleton-destruction effect is instrumental in our understanding of the detailed action of antimicrobial peptides in human cancer cells and cecropinXJ might be a potential therapeutic agent for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanling Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Su Kang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ji Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jianhua Yang
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
104
|
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N, Van Gool SW. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2014; 136:E313-25. [PMID: 25208916 DOI: 10.1002/ijc.29202] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
Abstract
The oncolytic features of several naturally oncolytic viruses have been shown on Glioblastoma Multiforme cell lines and in xenotransplant models. However, orthotopic glioma studies in immunocompetent animals are lacking. Here we investigated Newcastle disease virus (NDV) in the orthotopic, syngeneic murine GL261 model. Seven days after tumor induction, mice received NDV intratumorally. Treatment significantly prolonged median survival and 50% of animals showed long-term survival. We demonstrated immunogenic cell death (ICD) induction in GL261 cells after NDV infection, comprising calreticulin surface exposure, release of HMGB1 and increased PMEL17 cancer antigen expression. Uniquely, we found absence of secreted ATP. NDV-induced ICD occurred independently of caspase signaling and was blocked by Necrostatin-1, suggesting the contribution of necroptosis. Autophagy induction following NDV infection of GL261 cells was demonstrated as well. In vivo, elevated infiltration of IFN-γ(+) T cells was observed in NDV-treated tumors, along with reduced accumulation of myeloid derived suppressor cells. The importance of a functional adaptive immune system in this paradigm was demonstrated in immunodeficient Rag2(-/-) mice and in CD8(+) T cell depleted animals, where NDV slightly prolonged survival, but failed to induce long-term cure. Secondary tumor induction with GL261 cells or LLC cells in mice surviving long-term after NDV treatment, demonstrated the induction of a long-term, tumor-specific immunological memory response by ND virotherapy. For the first time, we describe the therapeutic activity of NDV against GL261 tumors, evidenced in an orthotopic mouse model. The therapeutic effect relies on the induction of ICD in the tumor cells, which primes adaptive antitumor immunity.
Collapse
Affiliation(s)
- Carolien A Koks
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Fan H, Liu F, Dong G, Ren D, Xu Y, Dou J, Wang T, Sun L, Hou Y. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis 2014; 5:e1416. [PMID: 25210799 PMCID: PMC4225223 DOI: 10.1038/cddis.2014.375] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19(+)CD27(-) and CD19(+)IgM(+) B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19(+) B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients.
Collapse
Affiliation(s)
- H Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - F Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - G Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - D Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Y Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - J Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - T Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - L Sun
- Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Y Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
106
|
Structure, function, and epigenetic regulation of BNIP3: a pathophysiological relevance. Mol Biol Rep 2014; 41:7705-14. [PMID: 25096512 DOI: 10.1007/s11033-014-3664-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/27/2014] [Indexed: 12/31/2022]
Abstract
BCL-2 [B-cell leukemia/lymphoma 2]/adenovirus E1B 19KD interacting protein 3 (BNIP3) is an atypical BH3 domain only containing member of Bcl2 family of proteins. BNIP3 is known to be involved in various cellular processes depending on the cell type and conditions and also shown to play a role in various disease conditions including myocardial ischemia, autophagy and apoptosis. Though its role in autophagy and its pro-death activity have been reported in various studies, recent findings have shown its contradictory role in the regulation of these cellular processes. The various studies have shown its epigenetic regulation in disease development and progression and also found to be cytoprotective. In this review, we have focused on the structural and functional aspects of BNIP3 in relation to recent advances of its role in autophagy and apoptosis. Also its role of epigenetic regulation of several genes involved in various diseases was also discussed.
Collapse
|
107
|
Maes H, Agostinis P. Autophagy and mitophagy interplay in melanoma progression. Mitochondrion 2014; 19 Pt A:58-68. [PMID: 25042464 DOI: 10.1016/j.mito.2014.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Autophagy, or self-eating, is the most extensively studied lysosomal degradation pathway for the recycling of obsolete or damaged cytoplasmic materials, including proteins and organelles. Although this pathway was initially thought to function as trafficking system for 'in bulk' degradation by the lysosomes of cytoplasmic material, it is now widely appreciated that cargo selection by the autophagic machinery is a major process underlying the cytoprotective or--possibly--pro-death functions ascribed to this catabolic process. Indeed increasing evidence suggests that in mammalian cells the removal of dysfunctional or aged mitochondria occurs through a selective degradation pathway known as 'mitophagy'. Due to the crucial role of mitochondria in energy metabolism, redox control and cell survival/death decision, deregulated mitophagy can potentially impact a variety of crucial cell autonomous and non-autonomous processes. Accumulating evidence indicates that during malignant transformation aggressive cancers hijack autophagy to preserve energy fitness and to acquire the plasticity required to adapt to the hostile microenvironment. However, whether and how mitophagy contributes to carcinogenesis, which pathways regulate this process in the cancer cells and how cancer cell-mitophagy impacts and modifies the tumor microenvironment and therapeutic responses, remain largely unanswered issues. In this review, we discuss novel paradigms and pathways regulating mitophagy in mammalian cells and the impact this process might have on one of the most dreadful human malignancies, melanoma.
Collapse
Affiliation(s)
- Hannelore Maes
- Laboratory of Cell Death and Therapy, Department Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death and Therapy, Department Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium.
| |
Collapse
|