101
|
Peckys DB, Alansary D, Niemeyer BA, de Jonge N. Visualizing Quantum Dot Labeled ORAI1 Proteins in Intact Cells Via Correlative Light and Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:902-912. [PMID: 27515473 DOI: 10.1017/s1431927616011491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ORAI1 proteins are ion channel subunits and the essential pore-forming units of the calcium release-activated calcium channel complex essential for T-cell activation and many other cellular processes. In this study, we used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to image plasma membrane expressed ORAI1 proteins in whole Jurkat T cells in the liquid state. Utilizing a stably transfected Jurkat T cell clone expressing human ORAI1 with an extracellular human influenza hemagglutinin (HA) tag we investigated if liquid-phase STEM can be applied to detect recombinant surface expressed protein. Streptavidin coated quantum dots were coupled in a one-to-one stoichiometry to ORAI1 proteins detected by biotinylated anti-HA fragmented antibody fragments. High-resolution electron microscopic images revealed the individual label locations from which protein pair distances were determined. These data were analyzed using the pair correlation function and, in addition, an analysis of cluster size and frequency was performed. ORAI1 was found to be present in hexamers in a small fraction only, and ORAI1 resided mostly in monomers and dimers.
Collapse
Affiliation(s)
- Diana B Peckys
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Dalia Alansary
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Barbara A Niemeyer
- 1Department of Molecular Biophysics,Saarland University,CIPMM,66421 Homburg,Germany
| | - Niels de Jonge
- 2INM - Leibniz Institute for New Materials,66123 Saarbrücken,Germany
| |
Collapse
|
102
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
103
|
Pacheco J, Dominguez L, Bohórquez-Hernández A, Asanov A, Vaca L. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci Rep 2016; 6:29634. [PMID: 27459950 PMCID: PMC4962086 DOI: 10.1038/srep29634] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022] Open
Abstract
STIM1 and Orai1 are the main components of a widely conserved Calcium influx pathway known as store-operated calcium entry (SOCE). STIM1 is a calcium sensor, which oligomerizes and activates Orai channels when calcium levels drop inside the endoplasmic reticulum (ER). The series of molecular rearrangements that STIM1 undergoes until final activation of Orai1 require the direct exposure of the STIM1 domain known as SOAR (Stim Orai Activating Region). In addition to these complex molecular rearrangements, other constituents like lipids at the plasma membrane, play critical roles orchestrating SOCE. PI(4,5)P2 and enriched cholesterol microdomains have been shown as important signaling platforms that recruit the SOCE machinery in steps previous to Orai1 activation. However, little is known about the molecular role of cholesterol once SOCE is activated. In this study we provide clear evidence that STIM1 has a cholesterol-binding domain located inside the SOAR region and modulates Orai1 channels. We demonstrate a functional association of STIM1 and SOAR to cholesterol, indicating a close proximity of SOAR to the inner layer of the plasma membrane. In contrast, the depletion of cholesterol induces the SOAR detachment from the plasma membrane and enhances its association to Orai1. These results are recapitulated with full length STIM1.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, México
| | - A Bohórquez-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | | | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| |
Collapse
|
104
|
Maccari I, Zhao R, Peglow M, Schwarz K, Hornak I, Pasche M, Quintana A, Hoth M, Qu B, Rieger H. Cytoskeleton rotation relocates mitochondria to the immunological synapse and increases calcium signals. Cell Calcium 2016; 60:309-321. [PMID: 27451384 DOI: 10.1016/j.ceca.2016.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022]
Abstract
Ca2+ microdomains and spatially resolved Ca2+ signals are highly relevant for cell function. In T cells, local Ca2+ signaling at the immunological synapse (IS) is required for downstream effector functions. We present experimental evidence that the relocation of the MTOC towards the IS during polarization drags mitochondria along with the microtubule network. From time-lapse fluorescence microscopy we conclude that mitochondria rotate together with the cytoskeleton towards the IS. We hypothesize that this movement of mitochondria towards the IS together with their functionality of absorption and spatial redistribution of Ca2+ is sufficient to significantly increase the cytosolic Ca2+ concentration. To test this hypothesis we developed a whole cell model for Ca2+ homoeostasis involving specific geometries for mitochondria and use the model to calculate the spatial distribution of Ca2+ concentrations within the cell body as a function of the rotation angle and the distance from the IS. We find that an inhomogeneous distribution of PMCA pumps on the cell membrane, in particular an accumulation of PMCA at the IS, increases the global Ca2+ concentration and decreases the local Ca2+ concentration at the IS with decreasing distance of the MTOC from the IS. Unexpectedly, a change of CRAC/Orai activity is not required to explain the observed Ca2+ changes. We conclude that rotation-driven relocation of the MTOC towards the IS together with an accumulation of PMCA pumps at the IS are sufficient to control the observed Ca2+ dynamics in T-cells during polarization.
Collapse
Affiliation(s)
- Ilaria Maccari
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Martin Peglow
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Karsten Schwarz
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Ivan Hornak
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - Mathias Pasche
- Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ariel Quintana
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Heiko Rieger
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany.
| |
Collapse
|
105
|
Phuong TTT, Yarishkin O, Križaj D. Subcellular propagation of calcium waves in Müller glia does not require autocrine/paracrine purinergic signaling. Channels (Austin) 2016; 10:421-427. [PMID: 27221769 DOI: 10.1080/19336950.2016.1193276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.
Collapse
Affiliation(s)
- Tam T T Phuong
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA
| | - Oleg Yarishkin
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA
| | - David Križaj
- a Department of Ophthalmology & Visual Sciences , University of Utah School of Medicine , Salt Lake City , UT , USA.,b Department of Neurobiology & Anatomy , University of Utah School of Medicine , Salt Lake City , UT , USA.,c Department of Bioengineering , University of Utah , Salt Lake City , UT USA
| |
Collapse
|
106
|
Gibhardt CS, Zimmermann KM, Zhang X, Belousov VV, Bogeski I. Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium 2016; 60:55-64. [PMID: 27142890 DOI: 10.1016/j.ceca.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022]
Abstract
Calcium and redox signals are presently established as essential regulators of many cellular processes. Nevertheless, we are still far from fully understanding the physiological and pathological importance of these universal second messengers. It is becoming increasingly apparent that many cellular functions are not regulated by global changes in the abundance of Ca(2+) ions and/or reactive oxygen and nitrogen species (ROS and RNS), but by the formation of transient local micro-domains or by signaling limited to a particular cellular compartment. Therefore, it is essential to identify and quantify Ca(2+) and redox signals in single cells with a high spatial and temporal resolution. The best tools for this purpose are the genetically encoded fluorescent indicators (GEFI). These protein sensors can be targeted into different cellular compartments, feature different colors, can be used to establish transgenic animal models, and are relatively inert to the cellular environment. Based on the chemical properties of Ca(2+) and ROS/RNS, currently more sensors exist for the detection of Ca(2+)- than for redox signals. Here, we shortly describe the most popular genetically encoded fluorescent Ca(2+) and redox indicators, discuss advantages and disadvantages based on our experience, show examples of different applications, and thus provide a brief guide that will help scientists choose the right combination of Ca(2+) and redox sensors to answer specific scientific questions.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Katharina M Zimmermann
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Xin Zhang
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | | | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
107
|
Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J. Modulation of Calcium Entry by Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:405-21. [PMID: 27161238 DOI: 10.1007/978-3-319-26974-0_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of mitochondria in intracellular Ca(2+) signaling relies mainly in its capacity to take up Ca(2+) from the cytosol and thus modulate the cytosolic [Ca(2+)]. Because of the low Ca(2+)-affinity of the mitochondrial Ca(2+)-uptake system, this organelle appears specially adapted to take up Ca(2+) from local high-Ca(2+) microdomains and not from the bulk cytosol. Mitochondria would then act as local Ca(2+) buffers in cellular regions where high-Ca(2+) microdomains form, that is, mainly close to the cytosolic mouth of Ca(2+) channels, both in the plasma membrane and in the endoplasmic reticulum (ER). One of the first targets proposed already in the 1990s to be regulated in this way by mitochondria were the store-operated Ca(2+) channels (SOCE). Mitochondria, by taking up Ca(2+) from the region around the cytosolic mouth of the SOCE channels, would prevent its slow Ca(2+)-dependent inactivation, thus keeping them active for longer. Since then, evidence for this mechanism has accumulated mainly in immunitary cells, where mitochondria actually move towards the immune synapse during T cell activation. However, in many other cell types the available data indicate that the close apposition between plasma and ER membranes occurring during SOCE activation precludes mitochondria from getting close to the Ca(2+)-entry sites. Alternative pathways for mitochondrial modulation of SOCE, both Ca(2+)-dependent and Ca(2+)-independent, have also been proposed, but further work will be required to elucidate the actual mechanisms at work. Hopefully, the recent knowledge of the molecular nature of the mitochondrial Ca(2+) uniporter will allow soon more precise studies on this matter.
Collapse
Affiliation(s)
- Rosalba Fonteriz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Jessica Matesanz-Isabel
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Jessica Arias-Del-Val
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain.
| |
Collapse
|
108
|
Villalobos C, Sobradillo D, Hernández-Morales M, Núñez L. Remodeling of Calcium Entry Pathways in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:449-66. [DOI: 10.1007/978-3-319-26974-0_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
109
|
Abstract
Store Operated Ca(2+) Entry (SOCE), the main Ca(2+) influx mechanism in non-excitable cells, is implicated in the immune response and has been reported to be affected in several pathologies including cancer. The basic molecular constituents of SOCE are Orai, the pore forming unit, and STIM, a multidomain protein with at least two principal functions: one is to sense the Ca(2+) content inside the lumen of the endoplasmic reticulum(ER) and the second is to activate Orai channels upon depletion of the ER. The link between Ca(2+) depletion inside the ER and Ca(2+) influx from extracellular media is through a direct association of STIM and Orai, but for this to occur, both molecules have to interact and form clusters where ER and plasma membrane (PM) are intimately apposed. In recent years a great number of components have been identified as participants in SOCE regulation, including regions of plasma membrane enriched in cholesterol and sphingolipids, the so called lipid rafts, which recruit a complex platform of specialized microdomains, which cells use to regulate spatiotemporal Ca(2+) signals.
Collapse
|
110
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
111
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
112
|
Wu W, Yan C, Shi X, Li L, Liu W, Xu C. Lipid in T-cell receptor transmembrane signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:130-8. [DOI: 10.1016/j.pbiomolbio.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
|
113
|
Lin W, Suo Y, Deng Y, Fan Z, Zheng Y, Wei X, Chu Y. Morphological change of CD4(+) T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse. BMC Immunol 2015; 16:49. [PMID: 26306899 PMCID: PMC4549951 DOI: 10.1186/s12865-015-0108-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The changes in T-cell morphology during immunological synapse (IS) formation are essential for T-cell activation. Previous researches have shown that T cell changed from spherical to elongated and/or flattened during in contact with B cell. As most powerful antigen presenting cell, dendritic cell (DC) has a strong ability to activate T cells. However, the morphological change of T cell which contacts DC and the relationship between morphological change and T-cell activation are not very clear. Thus, we studied the morphological change of CD4(+) T cell during contact with DC. RESULTS Using live-cell imaging, we discovered diversity in the T-cell morphological changes during contact with DCs. The elongation-flattening of CD4(+) T cells correlated with a low-level Ca(2+) response and a loss of T-cell receptor (TCR) signalling molecules in the IS, including zeta-chain associated protein kinase 70 (ZAP-70), phospholipase C-γ (PLC-γ) and protein kinase C-θ (PKC-θ), whereas rounding-flattening correlated with sufficient CD4(+) T-cell activation. Different morphological changes were correlated with the different amount of accumulated filamentous actin (F-actin) in the IS. Disruption of F-actin by cytochalasin D impaired the morphological change and the localisation of calcium microdomains in the IS and decreased the calcium response in CD4(+) T cells. CONCLUSION Our study discovered the diversity in morphological change of T cells during contacted with DCs. During this process, the different morphological changes of T cells modulate T-cell activation by the different amount of F-actin accumulation in the IS, which controls the distribution of calcium microdomains to affect T-cell activation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yuting Deng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yijie Zheng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
114
|
An imaging flow cytometry-based approach to measuring the spatiotemporal calcium mobilisation in activated T cells. J Immunol Methods 2015; 423:120-30. [PMID: 25967946 DOI: 10.1016/j.jim.2015.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 11/22/2022]
Abstract
Calcium ions (Ca(2+)) are a ubiquitous transducer of cellular signals controlling key processes such as proliferation, differentiation, secretion and metabolism. In the context of T cells, stimulation through the T cell receptor has been shown to induce the release of Ca(2+) from intracellular stores. This sudden elevation within the cytoplasm triggers the opening of ion channels in the plasma membrane allowing an influx of extracellular Ca(2+) that in turn activates key molecules such as calcineurin. This cascade ultimately results in gene transcription and changes in the cellular state. Traditional methods for measuring Ca(2+) include spectrophotometry, conventional flow cytometry (CFC) and live cell imaging techniques. While each method has strengths and weaknesses, none can offer a detailed picture of Ca(2+) mobilisation in response to various agonists. Here we report an Imaging Flow Cytometry (IFC)-based method that combines the throughput and statistical rigour of CFC with the spatial information of a microscope. By co-staining cells with Ca(2+) indicators and organelle-specific dyes we can address the spatiotemporal patterns of Ca(2+) flux in Jurkat cells after stimulation with anti-CD3. The multispectral, high-throughput nature of IFC means that the organelle co-staining functions to direct the measurement of Ca(2+) indicator fluorescence to either the endoplasmic reticulum (ER) or the mitochondrial compartments without the need to treat cells with detergents such as digitonin to eliminate cytoplasmic background. We have used this system to look at the cellular localisation of Ca(2+) after stimulating cells with CD3, thapsigargin or ionomycin in the presence or absence of extracellular Ca(2+). Our data suggest that there is a dynamic interplay between the ER and mitochondrial compartments and that mitochondria act as a sink for both intracellular and extracellular derived Ca(2+). Moreover, by generating an NFAT-GFP expressing Jurkat line, we were able to combine mitochondrial Ca(2+) measurements with nuclear translocation. In conclusion, this method enables the high throughput study of spatiotemporal patterns of Ca2(+) signals in T cells responding to different stimuli.
Collapse
|
115
|
Redox regulation of T-cell receptor signaling. Biol Chem 2015; 396:555-68. [DOI: 10.1515/hsz-2014-0312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/27/2015] [Indexed: 11/15/2022]
Abstract
Abstract
T-cell receptor (TCR) triggering by antigens activates a sophisticated intracellular signaling network leading to transcriptional activation, proliferation and differentiation of T cells. These events ultimately culminate in adaptive immune responses. Over recent years it has become evident that reactive oxygen species (ROS) play an important role in T-cell activation. It is now clear that ROS are involved in the regulation of T-cell mediated physiological and pathological processes. Upon TCR triggering, T cells produce oxidants, which originate from different cellular sources. In addition, within inflamed tissues, T cells are exposed to exocrine ROS produced by activated phagocytes or other ROS-producing cells. Oxidative modifications can have different effects on T-cell function. Indeed, they can stimulate T-cell activation but they can be also detrimental. These opposite effects of oxidation likely depend on different factors such as ROS concentration and source and also on the differentiation status of the T cells. Despite the well-stablished fact that ROS represent important modulators of T-cell activation, the precise molecular mechanisms of their action are far from clear. Here, we summarize the present knowledge on redox regulation of T-cell function with a particular emphasis on the redox regulation of TCR signaling.
Collapse
|
116
|
Christo SN, Diener KR, Hayball JD. The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 2015; 93:694-704. [PMID: 25823995 DOI: 10.1038/icb.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
The role of intracellular calcium ion oscillations in T-cell physiology is being increasingly appreciated by studies that describe how unique temporal and spatial calcium ion signatures can control different signalling pathways. Within this review, we provide detailed mechanisms of calcium ion oscillations, and emphasise the pivotal role that calcium signalling plays in directing crucial events pertaining to T-cell functionality. We also describe methods of calcium ion quantification, and take the opportunity to discuss how a deeper understanding of calcium signalling combined with new detection and quantification methodologies can be used to better design immunotherapies targeting T-cell responses.
Collapse
Affiliation(s)
- Susan N Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
117
|
Alansary D, Bogeski I, Niemeyer BA. Facilitation of Orai3 targeting and store-operated function by Orai1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1541-50. [PMID: 25791427 DOI: 10.1016/j.bbamcr.2015.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
Orai1 subunits interacting with STIM1 molecules comprise the major components responsible for calcium release-activated calcium (CRAC) channels. The homologs Orai2 and Orai3 yield smaller store-operated currents when overexpressed and are mostly unable to substitute Orai1. Orai3 subunits are also essential components of store independent channel complexes and also tune inhibition of ICRAC by reactive oxygen species. Here we use patch-clamp, microscopy, Ca(2+)-imaging and biochemical experiments to investigate the interdependence of Orai2, Orai3 and Orai1. We demonstrate that store-operation and localization of Orai3 but not of Orai2 to STIM1 clusters in HEK cells or to the immunological synapse in T cells is facilitated by Orai1 while Orai3's store-independent activity remains unaffected. On the other hand, one Orai3 subunit confers redox-resistance to heteromeric channels. The inefficient store operation of Orai3 is partly due to the lack of three critical C-terminal residues, the insertion of which improves interaction with STIM1 and abrogates Orai3's dependence on Orai1. Our results suggest that Orai3 down-tunes efficient STIM1 gating when in a heteromeric complex with Orai1.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
118
|
Saüc S, Bulla M, Nunes P, Orci L, Marchetti A, Antigny F, Bernheim L, Cosson P, Frieden M, Demaurex N. STIM1L traps and gates Orai1 channels without remodeling the cortical ER. J Cell Sci 2015; 128:1568-79. [PMID: 25736291 PMCID: PMC4406124 DOI: 10.1242/jcs.164228] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/26/2015] [Indexed: 12/23/2022] Open
Abstract
STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca2+ entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca2+ influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca2+ imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1−/−/Stim2−/− fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca2+ elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides.
Collapse
Affiliation(s)
- Sophie Saüc
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Monica Bulla
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Lelio Orci
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Fabrice Antigny
- Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Laurent Bernheim
- Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland Basic Neurosciences, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Rue Michel-Servet CH-1211, Geneva 4, Switzerland
| |
Collapse
|
119
|
Bose T, Cieślar-Pobuda A, Wiechec E. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells. Cell Death Dis 2015; 6:e1648. [PMID: 25695601 PMCID: PMC4669790 DOI: 10.1038/cddis.2015.23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.
Collapse
Affiliation(s)
- T Bose
- Leibniz-Institute of Neurobiology, Brenneckestrasse 6, D-39 Magdeburg, Germany
| | - A Cieślar-Pobuda
- 1] Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden [2] Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - E Wiechec
- Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
120
|
Pászty K, Caride AJ, Bajzer Ž, Offord CP, Padányi R, Hegedűs L, Varga K, Strehler EE, Enyedi A. Plasma membrane Ca2+-ATPases can shape the pattern of Ca2+transients induced by store-operated Ca2+entry. Sci Signal 2015; 8:ra19. [DOI: 10.1126/scisignal.2005672] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
121
|
Simma N, Bose T, Kahlfuss S, Mankiewicz J, Lowinus T, Lühder F, Schüler T, Schraven B, Heine M, Bommhardt U. NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 2014; 12:75. [PMID: 25477292 PMCID: PMC4269920 DOI: 10.1186/s12964-014-0075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.
Collapse
Affiliation(s)
- Narasimhulu Simma
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Tanima Bose
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Judith Mankiewicz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, Waldweg 33, 37073, Göttingen, Germany.
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | - Martin Heine
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
122
|
Schumann J, Stanko K, Woertge S, Appelt C, Schumann M, Kühl AA, Panov I, Schliesser U, Vogel S, Ahrlich S, Vaeth M, Berberich-Siebelt F, Waisman A, Sawitzki B. The mitochondrial protein TCAIM regulates activation of T cells and thereby promotes tolerance induction of allogeneic transplants. Am J Transplant 2014; 14:2723-35. [PMID: 25363083 DOI: 10.1111/ajt.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023]
Abstract
Primary T cell activation and effector cell differentiation is required for rejection of allogeneic grafts in naïve recipients. It has become evident, that mitochondria play an important role for T cell activation. Expression of several mitochondrial proteins such as TCAIM (T cell activation inhibitor, mitochondrial) is down-regulated upon T cell receptor triggering. Here we report that TCAIM inhibited spontaneous development of memory and effector T cells. CD4(+) T cells from Tcaim knock-in (KI) mice showed reduced activation, cytokine secretion and proliferation in vitro. Tcaim KI T cells tolerated allogeneic skin grafts upon transfer into Rag-1 KO mice. CD4(+) and CD8(+) T cells from these mice did not infiltrate skin grafts and kept a naïve or central memory phenotype, respectively. They were unable to acquire effector phenotype and functions. TCAIM altered T cell activation-induced mitochondrial distribution and reduced mitochondrial reactive oxygen species (mROS) production. Thus, TCAIM controls T cell activation and promotes tolerance induction probably by regulating TCR-mediated mitochondrial distribution and mROS production.
Collapse
Affiliation(s)
- J Schumann
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Ron-Harel N, Sharpe AH, Haigis MC. Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology 2014; 61:131-8. [PMID: 25402204 DOI: 10.1159/000362502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
The aging immune system is unable to optimally respond to pathogens and generate long-term immunological memory against encountered antigens. Amongst the immune components most affected by aging are T lymphocytes. T lymphocytes are cells of the cell-mediated immune system, which can recognize microbial antigens and either directly kill infected cells or support the maturation and activation of other immune cells. When activated, T cells undergo a metabolic switch to accommodate their changing needs at every stage of the immune response. Here we review the different aspects of metabolic regulation of T cell activation, focusing on the emerging role of mitochondrial metabolism, and discuss changes that may contribute to age-related decline in T cell potency. Better understanding of the role of mitochondrial metabolism in immune cell function could provide insights into mechanisms of immune senescence with the potential for developing novel therapeutic approaches to improve immune responses in aged individuals.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
124
|
Abstract
UNLABELLED Rapid HIV-1 spread between CD4 T lymphocytes occurs at retrovirus-induced immune cell contacts called virological synapses (VS). VS are associated with striking T cell polarization and localized virus budding at the site of contact that facilitates cell-cell spread. In addition to this, spatial clustering of organelles, including mitochondria, to the contact zone has been previously shown. However, whether cell-cell contact specifically induces dynamic T cell remodeling during VS formation and what regulates this process remain unclear. Here, we report that contact between an HIV-1-infected T cell and an uninfected target T cell specifically triggers polarization of mitochondria concomitant with recruitment of the major HIV-1 structural protein Gag to the site of cell-cell contact. Using fixed and live-cell imaging, we show that mitochondrial and Gag polarization in HIV-1-infected T cells occurs within minutes of contact with target T cells, requires the formation of stable cell-cell contacts, and is an active, calcium-dependent process. We also find that perturbation of mitochondrial polarization impairs cell-cell spread of HIV-1 at the VS. Taken together, these data suggest that HIV-1-infected T cells are able to sense and respond to contact with susceptible target cells and undergo dynamic cytoplasmic remodeling to create a synaptic environment that supports efficient HIV-1 VS formation between CD4 T lymphocytes. IMPORTANCE HIV-1 remains one of the major global health challenges of modern times. The capacity of HIV-1 to cause disease depends on the virus's ability to spread between immune cells, most notably CD4 T lymphocytes. Cell-cell transmission is the most efficient way of HIV-1 spread and occurs at the virological synapse (VS). The VS forms at the site of contact between an infected cell and an uninfected cell and is characterized by polarized assembly and budding of virions and clustering of cellular organelles, including mitochondria. Here, we show that cell-cell contact induces rapid recruitment of mitochondria to the contact site and that this supports efficient VS formation and consequently cell-cell spread. Additionally, we observed that cell-cell contact induces a mitochondrion-dependent increase in intracellular calcium, indicative of cellular signaling. Taken together, our data suggest that VS formation is a regulated process and thus a potential target to block HIV-1 cell-cell spread.
Collapse
|
125
|
Bonifaz LC, Cervantes-Silva MP, Ontiveros-Dotor E, López-Villegas EO, Sánchez-García FJ. A Role For Mitochondria In Antigen Processing And Presentation. Immunology 2014; 144:461-471. [PMID: 25251370 PMCID: PMC4557683 DOI: 10.1111/imm.12392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022] Open
Abstract
Immune synapse formation is critical for T lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen presenting cells (APCs) and T lymphocytes is a two-way signaling process. However, the role of mitochondria in antigen presenting cells during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing, and -presentation process. Here we show that HEL-loaded B lymphocytes, as a type of APCs, undergo a small but significant mitochondrial depolarization by 1-2 h following antigen exposure thus suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analyzed. Oligomycin treatment reduced the amount of specific MHC-peptide complexes but not total MHC II on the cell membrane of B lymphocytes which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes that endogenously express HEL and by B lymphocytes loaded with the HEL48-62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taking together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APCs mitochondria were found to re-organize towards the APC-T immune synapse. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
| | - Mariana P Cervantes-Silva
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - Elizabeth Ontiveros-Dotor
- Unidad de Investigación Médica en Inmunoquímica, Hospital de especialidades, Instituto Mexicano del Seguro SocialMéxico, D.F., México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - Edgar O López-Villegas
- Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| | - F Javier Sánchez-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMéxico, D.F., México
| |
Collapse
|
126
|
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev 2014; 256:118-32. [PMID: 24117817 DOI: 10.1111/imr.12110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.
Collapse
Affiliation(s)
- Helena Soares
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, Paris, France; CNRS, URA-1961, Paris, France
| | | | | |
Collapse
|
127
|
Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-κB pathways in CD4+ T cells. Antioxid Redox Signal 2014; 20:1533-47. [PMID: 24328503 PMCID: PMC3942676 DOI: 10.1089/ars.2013.5437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Fus1 has been established as mitochondrial tumor suppressor, immunomodulator, and antioxidant protein, but molecular mechanism of these activities remained to be identified. Based on putative calcium-binding and myristoyl-binding domains that we identified in Fus1, we explored our hypothesis that Fus1 regulates mitochondrial calcium handling and calcium-coupled processes. RESULTS Fus1 loss resulted in reduced rate of mitochondrial calcium uptake in calcium-loaded epithelial cells, splenocytes, and activated CD4(+) T cells. The reduced rate of mitochondrial calcium uptake in Fus1-deficient cells correlated with cytosolic calcium increase and dysregulation of calcium-coupled mitochondrial parameters, such as reactive oxygen species production, ΔμH(+), mitochondrial permeability transition pore opening, and GSH content. Inhibition of calcium efflux via mitochondria, Na(+)/Ca(2+) exchanger significantly improved the mitochondrial calcium uptake in Fus1(-/-) cells. Ex vivo analysis of activated CD4(+) T cells showed Fus1-dependent changes in calcium-regulated processes, such as surface expression of CD4 and PD1/PD-L1, proliferation, and Th polarization. Fus1(-/-) T cells showed increased basal expression of calcium-dependent NF-κB and NFAT targets but were unable to fully activate these pathways after stimulation. INNOVATION Our results establish Fus1 as one of the few identified regulators of mitochondrial calcium handling. Our data support the idea that alterations in mitochondrial calcium dynamics could lead to the disruption of metabolic coupling in mitochondria that, in turn, may result in multiple cellular and systemic abnormalities. CONCLUSION Our findings suggest that Fus1 achieves its protective role in inflammation, autoimmunity, and cancer via the regulation of mitochondrial calcium and calcium-coupled parameters.
Collapse
Affiliation(s)
- Roman Uzhachenko
- 1 Department of Biochemistry and Cancer Biology, VICC, Meharry Medical College , Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
128
|
Voronina S, Okeke E, Parker T, Tepikin A. How to win ATP and influence Ca(2+) signaling. Cell Calcium 2014; 55:131-8. [PMID: 24613709 DOI: 10.1016/j.ceca.2014.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
This brief review discusses recent advances in studies of mitochondrial Ca(2+) signaling and considers how the relationships between mitochondria and Ca(2+) responses are shaped in secretory epithelial cells. Perhaps the more precise title of this review could have been "How to win ATP and influence Ca(2+) signaling in secretory epithelium with emphasis on exocrine secretory cells and specific focus on pancreatic acinar cells". But "brevity is a virtue" and the authors hope that many of the mechanisms discussed are general and applicable to other tissues and cell types. Among these mechanisms are mitochondrial regulation of Ca(2+) entry and the role of mitochondria in the formation of localized Ca(2+) responses. The roles of Ca(2+) signaling in the physiological adjustment of bioenergetics and in mitochondrial damage are also briefly discussed.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Emmanuel Okeke
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Tony Parker
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
129
|
Srikanth S, Gwack Y. Molecular regulation of the pore component of CRAC channels, Orai1. CURRENT TOPICS IN MEMBRANES 2014; 71:181-207. [PMID: 23890116 DOI: 10.1016/b978-0-12-407870-3.00008-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is a fundamental mechanism ubiquitously employed by cells to elevate intracellular Ca(2+) concentrations ([Ca(2+)]i). Increased intracellular Ca(2+) ions act as a second messenger that can stimulate a variety of downstream signaling pathways affecting proliferation, secretion, differentiation, and death of cells. In immune cells, immune receptor stimulation induces endoplasmic reticulum Ca(2+) store depletion that subsequently activates Ca(2+)-release-activated-Ca(2+) (CRAC) channels, a prototype of store-operated Ca(2+) (SOC) channels. Identification of Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tool to dissect the mechanism of activation and regulation of these channels. In this review, we discuss the recent advances in understanding the regulatory mechanisms and posttranslational modifications that regulate diverse aspects of CRAC channel function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
130
|
Panyi G, Beeton C, Felipe A. Ion channels and anti-cancer immunity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130106. [PMID: 24493754 DOI: 10.1098/rstb.2013.0106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca(2+) signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca(2+)-activated KCa3.1 K(+) channels, and the interplay between Orai and STIM to produce the Ca(2+)-release-activated Ca(2+) (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.
Collapse
Affiliation(s)
- Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, , Egyetem ter 1, Life Science Building, Room 2.301, Debrecen, Hungary
| | | | | |
Collapse
|
131
|
Miro-1 links mitochondria and microtubule Dynein motors to control lymphocyte migration and polarity. Mol Cell Biol 2014; 34:1412-26. [PMID: 24492963 DOI: 10.1128/mcb.01177-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The recruitment of leukocytes to sites of inflammation is crucial for a functional immune response. In the present work, we explored the role of mitochondria in lymphocyte adhesion, polarity, and migration. We show that during adhesion to the activated endothelium under physiological flow conditions, lymphocyte mitochondria redistribute to the adhesion zone together with the microtubule-organizing center (MTOC) in an integrin-dependent manner. Mitochondrial redistribution and efficient lymphocyte adhesion to the endothelium require the function of Miro-1, an adaptor molecule that couples mitochondria to microtubules. Our data demonstrate that Miro-1 associates with the dynein complex. Moreover, mitochondria accumulate around the MTOC in response to the chemokine CXCL12/SDF-1α; this redistribution is regulated by Miro-1. CXCL12-dependent cell polarization and migration are reduced in Miro-1-silenced cells, due to impaired myosin II activation at the cell uropod and diminished actin polymerization. These data point to a key role of Miro-1 in the control of lymphocyte adhesion and migration through the regulation of mitochondrial redistribution.
Collapse
|
132
|
Srikanth S, Kim KD, Gwack Y. Methods to measure cytoplasmic and mitochondrial Ca(2+) concentration using Ca(2+)-sensitive dyes. Methods Enzymol 2014; 543:1-20. [PMID: 24924125 DOI: 10.1016/b978-0-12-801329-8.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca(2+) is a ubiquitous second messenger that is involved in regulation of various signaling pathways. Cytoplasmic Ca(2+) is maintained at low concentrations (~100 nM) by many active mechanisms. Increases in intracellular Ca(2+) concentration ([Ca(2+)]i) indeed can initiate multiple signaling pathways, depending both on their pattern and subcellular localization. In T cells, the stimulation of T-cell receptor leads to an increase in [Ca(2+)]i upon the opening of Ca(2+) release-activated calcium (CRAC) channels. T cells can actually sustain high [Ca(2+)]i for several hours, resulting in the activation of transcriptional programs orchestrated by members of the nuclear factor of activated T-cell (NFAT) protein family. Here, we describe an imaging method widely employed to measure cytoplasmic [Ca(2+)] in naïve and effector T cells based on the ratiometric dye Fura-2. Furthermore, we discuss a pharmacological method relying on an inhibitor of CRAC channels, 2-aminoethyldiphenyl borate, to validate the role of CRAC channels in cytoplasmic Ca(2+) elevation. Finally, we describe an approach to measure mitochondrial [Ca(2+)] based on another fluorescent dye, Rhod-2. With appropriate variations, our methodological approach can be employed to assess the effect and regulation of cytosolic and mitochondrial Ca(2+) waves in multiple experimental settings, including cultured cancer cells.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Kyun-Do Kim
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
133
|
Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol 2013; 34:820-31. [PMID: 24344200 DOI: 10.1128/mcb.01273-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that play an important role in neuronal development, plasticity, and excitotoxicity. NMDAR antagonists are neuroprotective in animal models of neuronal diseases, and the NMDAR open-channel blocker memantine is used to treat Alzheimer's disease. In view of the clinical application of these pharmaceuticals and the reported expression of NMDARs in immune cells, we analyzed the drug's effects on T-cell function. NMDAR antagonists inhibited antigen-specific T-cell proliferation and cytotoxicity of T cells and the migration of the cells toward chemokines. These activities correlated with a reduction in T-cell receptor (TCR)-induced Ca(2+) mobilization and nuclear localization of NFATc1, and they attenuated the activation of Erk1/2 and Akt. In the presence of antagonists, Th1 effector cells produced less interleukin-2 (IL-2) and gamma interferon (IFN-γ), whereas Th2 cells produced more IL-10 and IL-13. However, in NMDAR knockout mice, the presumptive expression of functional NMDARs in wild-type T cells was inconclusive. Instead, inhibition of NMDAR antagonists on the conductivity of Kv1.3 and KCa3.1 potassium channels was found. Hence, NMDAR antagonists are potent immunosuppressants with therapeutic potential in the treatment of immune diseases, but their effects on T cells have to be considered in that Kv1.3 and KCa3.1 channels are their major effectors.
Collapse
|
134
|
Fairless R, Williams SK, Diem R. Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res 2013; 357:455-62. [PMID: 24326615 DOI: 10.1007/s00441-013-1758-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
135
|
Martín-Cófreces NB, Baixauli F, Sánchez-Madrid F. Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol 2013; 24:61-72. [PMID: 24119664 DOI: 10.1016/j.tcb.2013.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023]
Abstract
To ensure proper cell function, intracellular organelles are not randomly distributed within the cell, but polarized and highly constrained by the cytoskeleton and associated adaptor proteins. This relationship between distribution and function was originally found in neurons and epithelial cells; however, recent evidence suggests that it is a general phenomenon occurring in many highly specialized cells including T lymphocytes. Recent studies reveal that the orchestrated redistribution of organelles is dependent on antigen-specific activation of and immune synapse (IS) formation by T cells. This review highlights the functional implications of organelle polarization in early T cell activation and examines recent findings on how the IS sets the rhythm of organelle motion and the spread of the activation signal to the nucleus.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Francesc Baixauli
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain; Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.
| |
Collapse
|
136
|
Schmeitz C, Hernandez-Vargas EA, Fliegert R, Guse AH, Meyer-Hermann M. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties. Front Immunol 2013; 4:277. [PMID: 24065966 PMCID: PMC3776162 DOI: 10.3389/fimmu.2013.00277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022] Open
Abstract
Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic, or initiates apoptosis depends on extracellular triggers and intracellular signaling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modeling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC) is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.
Collapse
Affiliation(s)
- Christine Schmeitz
- Department of Systems Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
137
|
Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 2013; 13:76. [PMID: 23890218 PMCID: PMC3733826 DOI: 10.1186/1475-2867-13-76] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
138
|
The critical role of STIM1-dependent Ca2+ signalling during T-cell development and activation. Int J Biochem Cell Biol 2013; 45:2491-5. [PMID: 23906672 DOI: 10.1016/j.biocel.2013.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/10/2013] [Accepted: 07/19/2013] [Indexed: 11/22/2022]
Abstract
T lymphocytes are key cellular effectors of adaptive immunity able to recognize a virtually limitless number of antigenic peptides and mount an immune response. Ca(2+) signals are crucial to the development and activation of T cells and Stromal Interaction Molecule 1 (STIM1) has been identified as a critical modulator of intracellular Ca(2+) levels in T cells. Although the role of STIM1 in T cell activation has been extensively investigated, the role of STIM1 in T cell development has been somewhat controversial. Indeed, deficiencies in STIM1 expression and function lead to both developmental defects associated with the development of autoimmunity yet also interfere with T cell activation leading to severe combined immunodeficiency signifying a multifaceted role of STIM1 in T cell physiology and pathophysiology.
Collapse
|
139
|
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:557-68. [PMID: 23860253 DOI: 10.1016/j.bbamem.2013.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
140
|
Antalffy G, Pászty K, Varga K, Hegedűs L, Enyedi Á, Padányi R. A C-terminal di-leucine motif controls plasma membrane expression of PMCA4b. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2561-2572. [PMID: 23830917 DOI: 10.1016/j.bbamcr.2013.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 01/17/2023]
Abstract
Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.
Collapse
Affiliation(s)
- Géza Antalffy
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences and Department of Biophysics, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences and Department of Biophysics, Semmelweis University, Budapest, Hungary
| | - Karolina Varga
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Luca Hegedűs
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Enyedi
- Hungarian National Blood Transfusion Service, Budapest, Hungary; Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Padányi
- Hungarian National Blood Transfusion Service, Budapest, Hungary.
| |
Collapse
|
141
|
Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 2013; 54:37-45. [DOI: 10.1016/j.ceca.2013.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
|
142
|
Hooper R, Samakai E, Kedra J, Soboloff J. Multifaceted roles of STIM proteins. Pflugers Arch 2013; 465:1383-96. [PMID: 23568369 DOI: 10.1007/s00424-013-1270-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Abstract
Stromal interaction molecules (STIM1 and STIM2) are critical components of store-operated calcium entry. Sensing depletion of endoplasmic reticulum (ER) Ca(2+) stores, STIM couples with plasma membrane Orai channels, resulting in the influx of Ca(2+) across the PM into the cytosol. Although best recognized for their primary role as ER Ca(2+) sensors, increasing evidence suggests that STIM proteins have a broader variety of sensory capabilities than first envisaged, reacting to cell stressors such as oxidative stress, temperature, and hypoxia. Further, the array of partners for STIM proteins is now understood to range far beyond the Orai channel family. Here we discuss the implications of STIM's expanding role, both as a stress sensor and a general modulator of multiple physiological processes in the cell.
Collapse
Affiliation(s)
- Robert Hooper
- Department of Biochemistry, Temple University School of Medicine, 3440 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | |
Collapse
|
143
|
The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse. Pflugers Arch 2013; 465:1341-53. [PMID: 23553419 DOI: 10.1007/s00424-013-1256-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Establishment of the immunological synapse (IS) between T lymphocytes and antigen-presenting cells is a key step in the adaptive immune response. Several proteins accumulate in the IS, such as the Kv1.3 potassium channel; however, the mechanism of this translocation is unknown. PSD-95 and SAP97 are adaptor proteins that regulate the polarized cell surface expression and localization of Kv1 channels in neurons. We investigated whether these proteins affect the redistribution of Kv1.3 into the IS in non-excitable human T cells. We show here that PSD-95 and SAP97 are expressed in Jurkat and interact with the C terminus of Kv1.3. Disruption of the interaction between PSD-95 or SAP97 and Kv1.3 in Jurkat was realized by the expression of a C-terminal truncated Kv1.3, which lacks the binding domain for these proteins, or by the knockdown of the expression of PSD-95 or SAP97 using specific shRNA. Expression of the truncated Kv1.3 or knockdown of PSD-95, but not the knockdown of SAP97, inhibited the recruitment of Kv1.3 into the IS; the fraction of cells showing polarized Kv1.3 expression upon engagement in an IS was significantly lower than in control cells expressing the full-length Kv1.3, and the rearrangement of Kv1.3 did not show time dependence. In contrast, Jurkat cells expressing the full-length channel showed marked time dependence in the recruitment into the IS peaking at 1 min after the conjugation of the cells. These results demonstrate that PSD-95 participates in the targeting of Kv1.3 into the IS, implying its important role in human T-cell activation.
Collapse
|
144
|
Pla-Martín D, Rueda CB, Estela A, Sánchez-Piris M, González-Sánchez P, Traba J, de la Fuente S, Scorrano L, Renau-Piqueras J, Alvarez J, Satrústegui J, Palau F. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol Dis 2013; 55:140-51. [PMID: 23542510 DOI: 10.1016/j.nbd.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.
Collapse
Affiliation(s)
- David Pla-Martín
- Laboratory of Genetics and Molecular Medicine, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Srikanth S, Ribalet B, Gwack Y. Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 2013; 7:354-63. [PMID: 23454861 DOI: 10.4161/chan.23801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a widespread mechanism to elevate the intracellular Ca(2+) concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca(2+) store depletion that subsequently activates Ca(2+)-release-activated-Ca(2+) (CRAC) channels, a prototype of store-operated Ca(2+) (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Bernard Ribalet
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Yousang Gwack
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
146
|
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35:182-94. [PMID: 23483280 PMCID: PMC3887911 DOI: 10.1007/s10059-013-0073-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022] Open
Abstract
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca(2+)-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca(2+) store and in turn, initiates store-operated Ca(2+) entry (SOCE), one of the major mechanisms to raise the intracellular Ca(2+) concentrations in T cells. Ca(2+)-release-activated-Ca(2+) (CRAC) channels are a prototype of store-operated Ca(2+) (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca(2+) signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| |
Collapse
|
147
|
Robert V, Triffaux E, Savignac M, Pelletier L. Singularities of calcium signaling in effector T-lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1595-602. [PMID: 23266355 DOI: 10.1016/j.bbamcr.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/30/2022]
Abstract
CD4(+) helper T (Th) lymphocytes orchestrate the immune response and include several types of effectors such as Th1, Th17 and Th2 cells. They fight against intracellular, extracellular pathogens and parasites respectively. They may also cause distinct immunopathological disorders. Th1 and Th17 are implicated in the development of autoimmune diseases while Th2 cells can initiate allergic diseases. These subsets differ by their TCR-associated signaling. In addition, the regulation of intracellular calcium concentration is not the same in Th1, Th2 and 17 cells. Our group showed that Th2 cells selectively overexpressed voltage-activated calcium (Cav1)-related channels. An increasing number of groups report the presence of Cav1-related products in T-lymphocyte subsets. This is a matter of debate since these calcium channels are classically defined as activated by high cell membrane depolarization in excitable cells. However, the use of mice with ablation of some Cav1 subunits shows undoubtedly an immune phenotype raising the question of how Cav1 channels are regulated in lymphocytes. We showed that knocking down Cav1.2 and/or Cav1.3 subunits impairs the functions of Th2 lymphocytes and is beneficial in experimental models of asthma, while it has no effect on Th1 cell functions. Beyond the role of Cav1 channels in T-lymphocytes, the identification of key components selectively implicated in one or the other T cell subset paves the way for the design of new selective therapeutic targets in the treatment of immune disorders while preserving the other T-cell subsets. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
148
|
Kilch T, Alansary D, Peglow M, Dörr K, Rychkov G, Rieger H, Peinelt C, Niemeyer BA. Mutations of the Ca2+-sensing stromal interaction molecule STIM1 regulate Ca2+ influx by altered oligomerization of STIM1 and by destabilization of the Ca2+ channel Orai1. J Biol Chem 2012; 288:1653-64. [PMID: 23212906 DOI: 10.1074/jbc.m112.417246] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A drop of endoplasmic reticulum Ca(2+) concentration triggers its Ca(2+) ssensor protein stromal interaction molecule 1 (STIM1) to oligomerize and accumulate within endoplasmic reticulum-plasma membrane junctions where it activates Orai1 channels, providing store-operated Ca(2+) entry. To elucidate the functional significance of N-glycosylation sites of STIM1, we created different mutations of asparagine-131 and asparagine-171. STIM1 NN/DQ resulted in a strong gain of function. Patch clamp, Total Internal Reflection Fluorescent (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) analyses revealed that expression of STIM1 DQ mutants increases the number of active Orai1 channels and the rate of STIM1 translocation to endoplasmic reticulum-plasma membrane junctions with a decrease in current latency. Surprisingly, co-expression of STIM1 DQ decreased Orai1 protein, altering the STIM1:Orai1 stoichiometry. We describe a novel mathematical tool to delineate the effects of altered STIM1 or Orai1 diffusion parameters from stoichiometrical changes. The mutant uncovers a novel mechanism whereby "superactive" STIM1 DQ leads to altered oligomerization rate constants and to degradation of Orai1 with a change in stoichiometry of activator (STIM1) to effector (Orai1) ratio leading to altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tatiana Kilch
- Department of Biophysics, Saarland University, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1603-11. [PMID: 23220009 DOI: 10.1016/j.bbamcr.2012.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Abstract
Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
150
|
Shi X, Bi Y, Yang W, Guo X, Jiang Y, Wan C, Li L, Bai Y, Guo J, Wang Y, Chen X, Wu B, Sun H, Liu W, Wang J, Xu C. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 2012. [DOI: 10.1038/nature11699] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|