101
|
Habib AGK, Sugiura K, Ueno M. Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. PLoS One 2018; 13:e0190523. [PMID: 29298360 PMCID: PMC5752009 DOI: 10.1371/journal.pone.0190523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ring chromosomes are circular chromosomal abnormalities that have been reported in association with some genetic disorders and cancers. In Schizosaccharomyces pombe, lack of function of protection of telomere 1 (Pot1) or telomerase catalytic subunit (Trt1) results in survivors with circular chromosomes. Hitherto, it is poorly understood how cells with circular chromosomes survive and how circular chromosomes are maintained. Fission yeast Cut17/Bir1, Ark1, Pic1, and Nbl1 is a conserved chromosome passenger complex (CPC) functioning mainly throughout mitosis. Here, using a temperature-sensitive mutant of CPC subunits, we determined that CPC is synthetically lethal in combination with either Pot1 or Trt1. The pot1Δ pic1-T269 double mutant, which has circular chromosomes, showed a high percentage of chromosome mis-segregation and DNA damage foci at 33°C. We furthermore found that neither Shugoshin Sgo2 nor heterochromatin protein Swi6, which contribute to the centromeric localization of CPC, were required for the survival in the absence of Pot1. Both the pot1Δ sgo2Δ and pot1Δ swi6Δ double mutants displayed a high percentage of DNA damage foci, but a low percentage of chromosome mis-segregation, suggesting the link between the high percentage of chromosome mis-segregation and the lethality of the CPC pot1Δ double mutant. Our results suggest that CPC is required for the survival of cells with circular chromosomes and sheds light on the possible roles of CPC in the maintenance of circular chromosomes.
Collapse
Affiliation(s)
- Ahmed G. K. Habib
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
102
|
Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-A Cse4 interacts with the N-terminus of Sgo1 and regulates its association with centromeric chromatin. Cell Cycle 2018; 17:11-23. [PMID: 28980861 DOI: 10.1080/15384101.2017.1380129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Kriti S Thapa
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Panyue Chen
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Suyu Wang
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Tony R Hazbun
- b Purdue University , Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research (PUCCR) , West Lafayette , IN , USA
| | - Munira A Basrai
- a Genetics Branch , National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
103
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
104
|
Hindriksen S, Lens SMA, Hadders MA. The Ins and Outs of Aurora B Inner Centromere Localization. Front Cell Dev Biol 2017; 5:112. [PMID: 29312936 PMCID: PMC5743930 DOI: 10.3389/fcell.2017.00112] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael A Hadders
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
105
|
Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen. Genetics 2017; 208:589-603. [PMID: 29259000 PMCID: PMC5788524 DOI: 10.1534/genetics.117.300527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis.
Collapse
|
106
|
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Front Cell Dev Biol 2017; 5:109. [PMID: 29322045 PMCID: PMC5733479 DOI: 10.3389/fcell.2017.00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.
Collapse
Affiliation(s)
- Adele L Marston
- Wellcome Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, UMR7622, Paris, France.,Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR7622 Developmental Biology Lab, Paris, France
| |
Collapse
|
107
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
108
|
Sato-Carlton A, Nakamura-Tabuchi C, Chartrand SK, Uchino T, Carlton PM. Phosphorylation of the synaptonemal complex protein SYP-1 promotes meiotic chromosome segregation. J Cell Biol 2017; 217:555-570. [PMID: 29222184 PMCID: PMC5800814 DOI: 10.1083/jcb.201707161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomes that have undergone crossing over in meiotic prophase must maintain sister chromatid cohesion somewhere along their length between the first and second meiotic divisions. Although many eukaryotes use the centromere as a site to maintain cohesion, the holocentric organism Caenorhabditis elegans instead creates two chromosome domains of unequal length termed the short arm and long arm, which become the first and second site of cohesion loss at meiosis I and II. The mechanisms that confer distinct functions to the short and long arm domains remain poorly understood. Here, we show that phosphorylation of the synaptonemal complex protein SYP-1 is required to create these domains. Once crossover sites are designated, phosphorylated SYP-1 and PLK-2 become cooperatively confined to short arms and guide phosphorylated histone H3 and the chromosomal passenger complex to the site of meiosis I cohesion loss. Our results show that PLK-2 and phosphorylated SYP-1 ensure creation of the short arm subdomain, promoting disjunction of chromosomes in meiosis I.
Collapse
Affiliation(s)
| | | | | | - Tomoki Uchino
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
109
|
Miyazaki S, Kim J, Sakuno T, Watanabe Y. Hierarchical Regulation of Centromeric Cohesion Protection by Meikin and Shugoshin during Meiosis I. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:259-266. [PMID: 29196561 DOI: 10.1101/sqb.2017.82.033811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinetochore is the key apparatus regulating chromosome segregation. Particularly in meiosis, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation), and sister chromatid cohesion mediated by cohesin is protected at centromeres in the following anaphase. Shugoshin, which localizes to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, Moa1 (meikin), which was initially characterized as a mono-orientation factor in fission yeast, also regulates cohesion protection. Moa1, which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1), inducing the persistent accumulation of Bub1 at kinetochores. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Further, molecular genetic analyses reveal a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin during meiosis I.
Collapse
Affiliation(s)
- Seira Miyazaki
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Jihye Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Takeshi Sakuno
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| |
Collapse
|
110
|
Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA, Han F. Cohesion and centromere activity are required for phosphorylation of histone H3 in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1121-1131. [PMID: 29032586 DOI: 10.1111/tpj.13748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 05/03/2023]
Abstract
Haspin-mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi-orientation of sister chromatids.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
111
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
112
|
Escorcia W, Forsburg SL. Destabilization of the replication fork protection complex disrupts meiotic chromosome segregation. Mol Biol Cell 2017; 28:2978-2997. [PMID: 28855376 PMCID: PMC5662257 DOI: 10.1091/mbc.e17-02-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
The replication fork protection complex (FPC) coordinates multiple processes that are crucial for unimpeded passage of the replisome through various barriers and difficult to replicate areas of the genome. We examine the function of Swi1 and Swi3, fission yeast's primary FPC components, to elucidate how replication fork stability contributes to DNA integrity in meiosis. We report that destabilization of the FPC results in reduced spore viability, delayed replication, changes in recombination, and chromosome missegregation in meiosis I and meiosis II. These phenotypes are linked to accumulation and persistence of DNA damage markers in meiosis and to problems with cohesion stability at the centromere. These findings reveal an important connection between meiotic replication fork stability and chromosome segregation, two processes with major implications to human reproductive health.
Collapse
Affiliation(s)
- Wilber Escorcia
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
113
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
114
|
Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8:66709-66727. [PMID: 29029549 PMCID: PMC5630449 DOI: 10.18632/oncotarget.19640] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40–50% is due to “male factor” infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fahar Ibtisham
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zachary Banker
- Foreign Language College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
115
|
Cheng JM, Liu YX. Age-Related Loss of Cohesion: Causes and Effects. Int J Mol Sci 2017; 18:E1578. [PMID: 28737671 PMCID: PMC5536066 DOI: 10.3390/ijms18071578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Aneuploidy is a leading genetic cause of birth defects and lower implantation rates in humans. Most errors in chromosome number originate from oocytes. Aneuploidy in oocytes increases with advanced maternal age. Recent studies support the hypothesis that cohesion deterioration with advanced maternal age represents a leading cause of age-related aneuploidy. Cohesin generates cohesion, and is established only during the premeiotic S phase of fetal development without any replenishment throughout a female's period of fertility. Cohesion holds sister chromatids together until meiosis resumes at puberty, and then chromosome segregation requires the release of sister chromatid cohesion from chromosome arms and centromeres at anaphase I and anaphase II, respectively. The time of cohesion cleavage plays an important role in correct chromosome segregation. This review focuses specifically on the causes and effects of age-related cohesion deterioration in female meiosis.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
116
|
Miyazaki S, Kim J, Yamagishi Y, Ishiguro T, Okada Y, Tanno Y, Sakuno T, Watanabe Y. Meikin-associated polo-like kinase specifies Bub1 distribution in meiosis I. Genes Cells 2017; 22:552-567. [PMID: 28497540 DOI: 10.1111/gtc.12496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 01/09/2023]
Abstract
In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.
Collapse
Affiliation(s)
- Seira Miyazaki
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 410-769, Korea
| | - Yuya Yamagishi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | - Tadashi Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yuji Tanno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Takeshi Sakuno
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yoshinori Watanabe
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| |
Collapse
|
117
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
118
|
Jonak K, Zagoriy I, Oz T, Graf P, Rojas J, Mengoli V, Zachariae W. APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast. Cell Cycle 2017; 16:1145-1152. [PMID: 28514186 DOI: 10.1080/15384101.2017.1320628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
Collapse
Affiliation(s)
- Katarzyna Jonak
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Ievgeniia Zagoriy
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Tugce Oz
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Peter Graf
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Julie Rojas
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Valentina Mengoli
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| | - Wolfgang Zachariae
- a Laboratory of Chromosome Biology , Max Planck Institute of Biochemistry , Martinsried , Germany
| |
Collapse
|
119
|
Grishaeva TM, Bogdanov YF. Evolutionary conservation of recombination proteins and variability of meiosis-specific proteins of chromosomes. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417040081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
120
|
Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler JA, Han F. Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. THE NEW PHYTOLOGIST 2017; 214:682-694. [PMID: 28079247 DOI: 10.1111/nph.14415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 05/03/2023]
Abstract
The genomic stability of all organisms requires precise cell division with proper chromosome orientation. The Bub1-H2Aph-Sgo1 pathway and spindle assembly checkpoint (SAC) components have been identified in yeast and mammals that are important for sister centromere orientation and chromosome segregation. However, their roles in plants are not clear. Maize meiotic mutants and minichromosomes were used to study the role of H2AThr133 phosphorylation and SAC components in sister centromere orientation and chromosome segregation. Unlike previously reported, SAC protein Bub1-Sgo1 recruitment was independent of Rec8 in maize and did not play a role in centromere protection in meiosis I. Chromatin immunoprecipitation sequencing analysis with immnolocalization results indicate most CENH3 nucleosomes contain phosphorylated H2AThr133 in centromeric regions. H2AThr133ph spreads to encompass centromeric regions including the inner centromeric and pericentromeric regions during (pro)metaphase. The presence and localization of SAC components and H2AThr133ph on maize lines containing sister chromatids separate precociously in anaphase I revealed no direct role of these proteins on centromere orientation in meiosis I . This work sheds light on the relationship between H2AThr133ph and CENH3 nucleosome in plants, and the phosphorylation with dynamic location changes in centomeric regions suggests temporal and spatial regulation roles for H2A phosphorylation in chromosome segregation.
Collapse
Affiliation(s)
- Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
121
|
Cellular Dynamics Controlled by Phosphatases. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
122
|
Folco HD, Chalamcharla VR, Sugiyama T, Thillainadesan G, Zofall M, Balachandran V, Dhakshnamoorthy J, Mizuguchi T, Grewal SIS. Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature 2017; 543:126-130. [PMID: 28199302 PMCID: PMC5567995 DOI: 10.1038/nature21372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 12/28/2016] [Indexed: 01/03/2023]
Affiliation(s)
- H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Venkata R Chalamcharla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomoyasu Sugiyama
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
123
|
Zheng H, Wu H, Pan X, Jin W, Li X. Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea mays L.) Under Low Nitrogen Supply. PLANT & CELL PHYSIOLOGY 2017; 58:342-353. [PMID: 28007967 DOI: 10.1093/pcp/pcw195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.
Collapse
Affiliation(s)
- Hongyan Zheng
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Huamao Wu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoying Pan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Weiwei Jin
- The National Maize Center, and Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
124
|
Argüello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, Graf P, Zachariae W. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell 2017; 40:37-52. [PMID: 28017619 DOI: 10.1016/j.devcel.2016.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
Abstract
Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.
Collapse
Affiliation(s)
- Orlando Argüello-Miranda
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter Graf
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
125
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
126
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
127
|
Affiliation(s)
- Junko Kanoh
- Institute for Protein Research, Osaka University
| |
Collapse
|
128
|
Bolaños-Villegas P, De K, Pradillo M, Liu D, Makaroff CA. In Favor of Establishment: Regulation of Chromatid Cohesion in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:846. [PMID: 28588601 PMCID: PMC5440745 DOI: 10.3389/fpls.2017.00846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 05/07/2023]
Abstract
In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby sister chromatids are paired and held together, is essential for accurate segregation of the sister chromatids and homologous chromosomes into daughter cells during mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex comprised of structural maintenance of chromosome adenosine triphosphatases and accessory proteins that regulate the association of the complex with chromosomes or that are involved in the establishment or release of cohesion. The cohesin complex also plays important roles in the repair of DNA double-strand breaks, regulation of gene expression and chromosome condensation. In this review, we summarize progress in understanding cohesion dynamics in plants, with the aim of uncovering differences at specific stages. We also highlight dissimilarities between plants and other eukaryotes with respect to the key players involved in the achievement of cohesion, pointing out areas that require further study.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Laboratory of Molecular and Cell Biology, Fabio Baudrit Agricultural Research Station, University of Costa RicaAlajuela, Costa Rica
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, ColumbusOH, United States
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - Desheng Liu
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
| | - Christopher A. Makaroff
- Hughes Laboratories, Department of Chemistry and Biochemistry, Miami University, OxfordOH, United States
- *Correspondence: Christopher A. Makaroff, Pablo Bolaños-Villegas,
| |
Collapse
|
129
|
Premature Silencing of the Spindle Assembly Checkpoint Is Prevented by the Bub1-H2A-Sgo1-PP2A Axis in Saccharomyces cerevisiae. Genetics 2016; 205:1169-1178. [PMID: 28040741 DOI: 10.1534/genetics.116.195727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors mistakes in kinetochore-microtubule interaction and its activation prevents anaphase entry. The SAC remains active until all chromosomes have achieved bipolar attachment which applies tension on kinetochores. Our previous data in budding yeast Saccharomyces cerevisiae show that Ipl1/Aurora B kinase and a centromere-associated protein, Sgo1, are required to prevent SAC silencing prior to tension generation, but we believe that this regulatory network is incomplete. Bub1 kinase is one of the SAC components, and Bub1-dependent H2A phosphorylation triggers centromere recruitment of Sgo1 by H2A in yeast and human cells. Although yeast cells lacking the kinase domain of Bub1 show competent SAC activation, we found that the mutant cells fail to maintain a prolonged checkpoint arrest in the presence of tensionless attachment. Mutation of the Bub1 phosphorylation site in H2A also results in premature SAC silencing in yeast cells. Previous data indicate that Sgo1 protein binds to PP2ARts1, and we found that rts1Δ mutants exhibited premature SAC silencing as well. We further revealed that sgo1 mutants with abolished binding to H2A or PP2ARts1 displayed premature SAC silencing. Together, our results suggest that, in budding yeast S. cerevisiae, the Bub1-H2A-Sgo1-PP2ARts1 axis prevents SAC silencing and helps prolonged checkpoint arrest prior to tension establishment at kinetochores.
Collapse
|
130
|
Grishaeva TM, Kulichenko D, Bogdanov YF. Bioinformatical analysis of eukaryotic shugoshins reveals meiosis-specific features of vertebrate shugoshins. PeerJ 2016; 4:e2736. [PMID: 27917322 PMCID: PMC5134366 DOI: 10.7717/peerj.2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Shugoshins (SGOs) are proteins that protect cohesins located at the centromeres of sister chromatids from their early cleavage during mitosis and meiosis in plants, fungi, and animals. Their function is to prevent premature sister-chromatid disjunction and segregation. The study focused on the structural differences among SGOs acting during mitosis and meiosis that cause differences in chromosome behavior in these two types of cell division in different organisms. Methods A bioinformatical analysis of protein domains, conserved amino acid motifs, and physicochemical properties of 32 proteins from 25 species of plants, fungi, and animals was performed. Results We identified a C-terminal amino acid motif that is highly evolutionarily conserved among the SGOs protecting centromere cohesion of sister chromatids in meiotic anaphase I, but not among mitotic SGOs. This meiotic motif is arginine-rich in vertebrates. SGOs differ in different eukaryotic kingdoms by the sets and locations of amino acid motifs and the number of α-helical regions in the protein molecule. Discussion These structural differences between meiotic and mitotic SGOs probably could be responsible for the prolonged SGOs resistance to degradation during meiotic metaphase I and anaphase I. We suggest that the “arginine comb” in C-end meiotic motifs is capable of interaction by hydrogen bonds with guanine bases in the minor groove of DNA helix, thus protecting SGOs from hydrolysis. Our findings support independent evolution of meiosis in different lineages of multicellular organisms.
Collapse
Affiliation(s)
- Tatiana M Grishaeva
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Darya Kulichenko
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Yuri F Bogdanov
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| |
Collapse
|
131
|
Wong WK, Kelly T, Li J, Ma HT, Poon RYC. SGO1C is a non-functional isoform of Shugoshin and can disrupt sister chromatid cohesion by interacting with PP2A-B56. Cell Cycle 2016; 14:3965-77. [PMID: 26506018 DOI: 10.1080/15384101.2015.1104439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Shugoshin (SGO1) plays a pivotal role in sister chromatid cohesion during mitosis by protecting the centromeric cohesin from mitotic kinases and WAPL. Mammalian cells contain at least 6 alternatively spliced isoforms of SGO1. The relationship between the canonical SGO1A with shorter isoforms including SGO1C remains obscure. Here we show that SGO1C was unable to replace the loss of SGO1A. Instead, expression of SGO1C alone induced aberrant mitosis similar to depletion of SGO1A, promoting premature sister chromatid separation, activation of the spindle-assembly checkpoint, and mitotic arrest. In disagreement with previously published data, we found that SGO1C localized to kinetochores. However, the ability to induce aberrant mitosis did not correlate with its kinetochore localization. SGO1C mutants that abolished binding to kinetochores still triggered premature sister chromatid separation. We provide evidence that SGO1C-mediated mitotic arrest involved the sequestering of PP2A-B56 pool. Accordingly, SGO1C mutants that abolished binding to PP2A localized to kinetochores but did not induce aberrant mitosis. These studies imply that the expression of SGO1C should be tightly regulated to prevent dominant-negative effects on SGO1A and genome instability.
Collapse
Affiliation(s)
- Wing Ki Wong
- a Division of Life Science; Center for Cancer Research; and State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology; Kowloon , Hong Kong , China
| | - Terrenz Kelly
- a Division of Life Science; Center for Cancer Research; and State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology; Kowloon , Hong Kong , China
| | - Jingjing Li
- a Division of Life Science; Center for Cancer Research; and State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology; Kowloon , Hong Kong , China
| | - Hoi Tang Ma
- a Division of Life Science; Center for Cancer Research; and State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology; Kowloon , Hong Kong , China
| | - Randy Y C Poon
- a Division of Life Science; Center for Cancer Research; and State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology; Kowloon , Hong Kong , China
| |
Collapse
|
132
|
Identification of Tension Sensing Motif of Histone H3 in Saccharomyces cerevisiae and Its Regulation by Histone Modifying Enzymes. Genetics 2016; 204:1029-1043. [PMID: 27672091 DOI: 10.1534/genetics.116.192443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
To ensure genome stability during cell division, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies before segregation. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. In budding yeast, the residue Gly44 of histone H3 is critical for retaining the conserved Shugoshin protein Sgo1p at the pericentromeres for monitoring the tension status during mitosis. Studies carried out in this work showed that Lys42, Gly44, and Thr45 of H3 form the core of a tension sensing motif (TSM). Similar to the previously reported G44S mutant, K42A, G44A, and T45A alleles all rendered cells unable to respond to erroneous spindle attachment, a phenotype suppressed by Sgo1p overexpression. TSM functions by physically recruiting or retaining Sgo1p at pericentromeres as evidenced by chromatin immunoprecipitation and by in vitro pulldown experiments. Intriguingly, the function of TSM is likely regulated by multiple histone modifying enzymes, including the histone acetyltransferase Gcn5p, and deacetylases Rpd3p and Hos2p Defects caused by TSM mutations can be suppressed by the expression of a catalytically inactive mutant of Gcn5p Conversely, G44S mutant cells exhibit prominent chromatin instability phenotype in the absence of RPD3 Importantly, the gcn5- suppressor restores the tension sensing function in tsm- background in a fashion that bypasses the need of stably associating Sgo1p with chromatin. These results demonstrate that the TSM of histone H3 is a key component of a mechanism that ensures faithful segregation, and that interaction with chromatin modifying enzymes may be an important part of the mitotic quality control process.
Collapse
|
133
|
Chen J, Liu J. Erroneous Silencing of the Mitotic Checkpoint by Aberrant Spindle Pole-Kinetochore Coordination. Biophys J 2016; 109:2418-35. [PMID: 26636952 DOI: 10.1016/j.bpj.2015.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/02/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
To segregate chromosomes during cell division, microtubules that form the bipolar spindle attach to and pull on paired chromosome kinetochores. The spindle assembly checkpoint (SAC) is activated at unattached and misattached kinetochores to prevent further mitotic progression. The SAC is silenced after all the kinetochores establish proper and stable attachment to the spindle. Robust timing of SAC silencing after the last kinetochore-spindle attachment herein dictates the fidelity of chromosome segregation. Chromosome missegregation is rare in typical somatic cell mitosis, but frequent in cancer cell mitosis and in meiosis I of mammalian oocytes. In the latter cases, SAC is normally activated in response to disruptions of kinetochore-spindle attachments, suggesting that frequent chromosome missegregation ensues from faulty SAC silencing. In-depth understanding of how SAC silencing malfunctions in these cases is yet missing, but is believed to hold promise for treatment of cancer and prevention of human miscarriage and birth defects. We previously established a spatiotemporal model that, to the best of our knowledge, explained the robustness of SAC silencing in normal mitosis for the first time. In this article, we take advantage of the whole-cell perspective of the spatiotemporal model to identify possible causes of chromosome missegregation out of the distinct features of spindle assembly exhibited by cancer cells and mammalian oocytes. The model results explain why multipolar spindle could inhibit SAC silencing and spindle pole clustering could promote it-albeit accompanied by more kinetochore attachment errors. The model also eliminates geometric factors as the cause for nonrobust SAC silencing in oocyte meiosis, and instead, suggests atypical kinetochore-spindle attachment in meiosis as a potential culprit. Overall, the model shows that abnormal spindle-pole formation and its aberrant coordination with atypical kinetochore-spindle attachments could compromise the robustness of SAC silencing. Our model highlights systems-level coupling between kinetochore-spindle attachment and spindle-pole formation in SAC silencing.
Collapse
Affiliation(s)
- Jing Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
134
|
Hill VK, Kim JS, Waldman T. Cohesin mutations in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:1-11. [PMID: 27207471 PMCID: PMC4980180 DOI: 10.1016/j.bbcan.2016.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 12/19/2022]
Abstract
Cohesin is a highly-conserved protein complex that plays important roles in sister chromatid cohesion, chromatin structure, gene expression, and DNA repair. In humans, cohesin is a ubiquitously expressed, multi-subunit protein complex composed of core subunits SMC1A, SMC3, RAD21, STAG1/2 and regulatory subunits WAPL, PDS5A/B, CDCA5, NIPBL, and MAU2. Recent studies have demonstrated that genes encoding cohesin subunits are somatically mutated in a wide range of human cancers. STAG2 is the most commonly mutated subunit, and in a recent analysis was identified as one of only 12 genes that are significantly mutated in four or more cancer types. In this review we summarize the findings reported to date and comment on potential functional implications of cohesin mutation in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Victoria K Hill
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| | - Jung-Sik Kim
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| | - Todd Waldman
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| |
Collapse
|
135
|
Wang J, Wang Z, Yu T, Yang H, Virshup DM, Kops GJPL, Lee SH, Zhou W, Li X, Xu W, Rao Z. Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell 2016; 7:516-26. [PMID: 27350047 PMCID: PMC4930772 DOI: 10.1007/s13238-016-0283-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023] Open
Abstract
Protein phosphatase 2A (PP2A) accounts for the majority of total Ser/Thr phosphatase activities in most cell types and regulates many biological processes. PP2A holoenzymes contain a scaffold A subunit, a catalytic C subunit, and one of the regulatory/targeting B subunits. How the B subunit controls PP2A localization and substrate specificity, which is a crucial aspect of PP2A regulation, remains poorly understood. The kinetochore is a critical site for PP2A functioning, where PP2A orchestrates chromosome segregation through its interactions with BubR1. The PP2A-BubR1 interaction plays important roles in both spindle checkpoint silencing and stable microtubule-kinetochore attachment. Here we present the crystal structure of a PP2A B56-BubR1 complex, which demonstrates that a conserved BubR1 LxxIxE motif binds to the concave side of the B56 pseudo-HEAT repeats. The BubR1 motif binds to a groove formed between B56 HEAT repeats 3 and 4, which is quite distant from the B56 binding surface for PP2A catalytic C subunit and thus is unlikely to affect PP2A activity. In addition, the BubR1 binding site on B56 is far from the B56 binding site of shugoshin, another kinetochore PP2A-binding protein, and thus BubR1 and shugoshin can potentially interact with PP2A-B56 simultaneously. Our structural and biochemical analysis indicates that other proteins with the LxxIxE motif may also bind to the same PP2A B56 surface. Thus, our structure of the PP2A B56-BubR1 complex provides important insights into how the B56 subunit directs the recruitment of PP2A to specific targets.
Collapse
Affiliation(s)
- Jiao Wang
- College of Life Sciences, Nankai University, Tianjin, 30071, China
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Tingting Yu
- College of Life Sciences, Nankai University, Tianjin, 30071, China
| | - Huan Yang
- College of Life Sciences, Nankai University, Tianjin, 30071, China
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
- Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Geert J P L Kops
- Molecular Cancer Research and Cancer Genomics Centre, and Department of Medical Oncology, UMC Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Sang Hyun Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin, 30071, China
| | - Xin Li
- College of Life Sciences, Nankai University, Tianjin, 30071, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100010, China.
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, 30071, China.
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100010, China.
| |
Collapse
|
136
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
137
|
Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation. PLoS Genet 2016; 12:e1006102. [PMID: 27304859 PMCID: PMC4909299 DOI: 10.1371/journal.pgen.1006102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. Meiosis produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions after only a single round of DNA replication. To identify novel regulators of meiosis, we screened a library of fission yeast deletion mutants and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analysis of live dbl2Δ cells by fluorescence microscopy showed that chromosomes frequently failed to segregate during the first meiotic division. Further cytological and biochemical analyses revealed that this segregation defect is due to persistent intermediates of DNA double-strand break repair, also called DNA joint molecules. Our results indicate that Dbl2 is required for formation of Fbh1 DNA helicase foci at the sites of DNA double-strand break repair in order to process DNA joint molecules and allow segregation of chromosomes during meiotic divisions. Our bioinformatics searches revealed that Dbl2 is highly conserved in fungi, animals and plants, suggesting that Dbl2 plays a similar role in other organisms–the formation of viable sex cells and healthy progeny.
Collapse
|
138
|
Bogdanov YF. Inverted meiosis and its place in the evolution of sexual reproduction pathways. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
139
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-197. [PMID: 26849908 PMCID: PMC4867242 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
140
|
Tang A, Shi P, Song A, Zou D, Zhou Y, Gu P, Huang Z, Wang Q, Lin Z, Gao X. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte. Cell Cycle 2016; 15:1450-61. [PMID: 27096707 DOI: 10.1080/15384101.2016.1175256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1(st) meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.
Collapse
Affiliation(s)
- An Tang
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Peiliang Shi
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Anying Song
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Dayuan Zou
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Yue Zhou
- b State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , China
| | - Pengyu Gu
- c Neurobiology Department , University of Massachusetts Medical School , Worcester , MA , USA
| | - Zan Huang
- d College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Qinghua Wang
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Zhaoyu Lin
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| | - Xiang Gao
- a State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Collaborative Innovation Center of Genetics and Development, Nanjing University , Nanjing , China
| |
Collapse
|
141
|
Blattner AC, Chaurasia S, McKee BD, Lehner CF. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres. PLoS Genet 2016; 12:e1005996. [PMID: 27120695 PMCID: PMC4847790 DOI: 10.1371/journal.pgen.1005996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.
Collapse
Affiliation(s)
- Ariane C. Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Soumya Chaurasia
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Bruce D. McKee
- Department of Biochemistry, Cellular and Molecular Biology (BCMB), University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
142
|
Qi ST, Wang ZB, Huang L, Liang LF, Xian YX, Ouyang YC, Hou Y, Sun QY, Wang WH. Casein kinase 1 (α, δ and ε) localize at the spindle poles, but may not be essential for mammalian oocyte meiotic progression. Cell Cycle 2016; 14:1675-85. [PMID: 25927854 DOI: 10.1080/15384101.2015.1030548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CK1 (casein kinase 1) is a family of serine/threonine protein kinase that is ubiquitously expressed in eukaryotic organism. CK1 members are involved in the regulation of many cellular processes. Particularly, CK1 was reported to phosphorylate Rec8 subunits of cohesin complex and regulate chromosome segregation in meiosis in budding yeast and fission yeast. (1-3) Here we investigated the expression, subcellular localization and potential functions of CK1α, CK1δ and CK1ε during mouse oocyte meiotic maturation. We found that CK1α, CK1δ and CK1ε all concentrated at the spindle poles and co-localized with γ-tubulin in oocytes at both metaphase I (MI) and metaphase II (MII) stages. However, depletion of CK1 by RNAi or overexpression of wild type or kinase-dead CK1 showed no effects on either spindle organization or chromosome segregation during oocyte meiotic maturation. Thus, CK1 is not the kinase that phosphorylates Rec8 cohesin in mammalian oocytes, and CK1 may not be essential for spindle organization and meiotic progression although they localize at spindle poles.
Collapse
Affiliation(s)
- Shu-Tao Qi
- a Key Laboratory of Major Obstetrics Diseases of Guangdong Province; The Third Affiliated hospital of Guangzhou Medical University ; Guangdong , China
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
144
|
Park SH, Xie S, Rao CV, Dai W. Haplo-insufficiency of both BubR1 and SGO1 accelerates cellular senescence. J Hematol Oncol 2016; 9:7. [PMID: 26847209 PMCID: PMC4743409 DOI: 10.1186/s13045-016-0238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/28/2016] [Indexed: 12/02/2022] Open
Abstract
Background Spindle assembly checkpoint components BubR1 and Sgo1 play a key role in the maintenance of chromosomal instability during cell division. These proteins function to block the anaphase entry until all condensed chromosomes have been attached by the microtubules emanating from both spindle poles. Haplo-insufficiency of either BubR1 or SGO1 results in enhanced chromosomal instability and tumor development in the intestine. Recent studies show that spindle checkpoint proteins also have a role in slowing down the ageing process. Therefore, we want to study whether haplo-insufficiency of both BubR1 and SGO1 accelerates cellular senescence in mice. Methods We took advantage of the availability of BubR1 and SGO1 knockout mice and generated primary murine embryonic fibroblasts (MEFs) with mutations in either BubR1, SGO1, or both and analyzed cellular senescence of the MEFs of various genetic backgrounds. Results We observed that BubR1+/−SGO+/− MEFs had an accelerated cellular senescence characterized by morphological changes and expressed senescence-associated β-galactosidase. In addition, compared with wild-type MEFs or MEFs with a single gene deficiency, BubR1+/−SGO1+/− MEFs expressed enhanced levels of p21 but not p16. Conclusions Taken together, our observations suggest that combined deficiency of BubR1 and Sgo1 accelerates cellular senescence.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Departments of Environmental Medicine, Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 57 Old Forge Road, Tuxedo, New York, 10987, USA
| | - Steve Xie
- Institute of Pathology, Kings County Hospital Center, Brooklyn, New York, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development Program, Department of Medicine, Hem/Onc Section, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Wei Dai
- Departments of Environmental Medicine, Biochemistry & Molecular Pharmacology, New York University Langone Medical Center, 57 Old Forge Road, Tuxedo, New York, 10987, USA.
| |
Collapse
|
145
|
Challa K, Lee MS, Shinohara M, Kim KP, Shinohara A. Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Res 2016; 44:3190-203. [PMID: 26825462 PMCID: PMC4838362 DOI: 10.1093/nar/gkw034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/12/2016] [Indexed: 11/12/2022] Open
Abstract
Meiosis-specific cohesin, required for the linking of the sister chromatids, plays a critical role in various chromosomal events during meiotic prophase I, such as chromosome morphogenesis and dynamics, as well as recombination. Rad61/Wpl1 (Wapl in other organisms) negatively regulates cohesin functions. In this study, we show that meiotic chromosome axes are shortened in the budding yeast rad61/wpl1 mutant, suggesting that Rad61/Wpl1 negatively regulates chromosome axis compaction. Rad61/Wpl1 is required for efficient resolution of telomere clustering during meiosis I, indicating a positive effect of Rad61/Wpl1 on the cohesin function required for telomere dynamics. Additionally, we demonstrate distinct activities of Rad61/Wpl1 during the meiotic recombination, including its effects on the efficient processing of intermediates. Thus, Rad61/Wpl1 both positively and negatively regulates various cohesin-mediated chromosomal processes during meiosis.
Collapse
Affiliation(s)
- Kiran Challa
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Min-Su Lee
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Miki Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
146
|
Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat Commun 2016; 7:10393. [PMID: 26804021 PMCID: PMC4737732 DOI: 10.1038/ncomms10393] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fission yeast Schizosaccharomyces pombe. We show that Sgo2 localizes at the subtelomeres preferentially during G2 phase and is essential for the formation of a highly condensed subtelomeric chromatin body 'knob'. Furthermore, the absence of Sgo2 leads to the derepression of the subtelomeric genes and premature DNA replication at the subtelomeric late origins. Thus, the subtelomeric specialized chromatin domain organized by Sgo2 represses both transcription and replication to ensure proper gene expression and replication timing.
Collapse
|
147
|
Swegen A, Aitken RJ. Prospects for immunocontraception in feral horse population control: exploring novel targets for an equine fertility vaccine. Reprod Fertil Dev 2016; 28:853-863. [DOI: 10.1071/rd14280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022] Open
Abstract
Feral horses populate vast land areas and often induce significant ecological and economic damage throughout the landscape. Non-lethal population control methods are considered favourable in light of animal welfare, social and ethical considerations; however, no single effective, safe and species-specific contraceptive agent is currently available for use in free-ranging wild and feral horses. This review explores aspects of equine reproductive physiology that may provide avenues for the development of specific and long-lasting immunocontraceptive vaccines and some of the novel strategies that may be employed to facilitate appropriate antigen discovery in future research. Potential antigen targets pertaining to spermatozoa, the ovary and oocyte, as well as the early conceptus and its associated factors, are reviewed in the context of their suitability for immunocontraceptive vaccine development.
Collapse
|
148
|
Oh Brother, Where Art Thou? Finding Orthologs in the Twilight and Midnight Zones of Sequence Similarity. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
149
|
Patel J, Tan SL, Hartshorne GM, McAinsh AD. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biol Open 2015; 5:178-84. [PMID: 26718930 PMCID: PMC4823989 DOI: 10.1242/bio.016394] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The first meiotic division in human oocytes is highly error-prone and contributes to the uniquely high incidence of aneuploidy observed in human pregnancies. A successful meiosis I (MI) division entails separation of homologous chromosome pairs and co-segregation of sister chromatids. For this to happen, sister kinetochores must form attachments to spindle kinetochore-fibres emanating from the same pole. In mouse and budding yeast, sister kinetochores remain closely associated with each other during MI, enabling them to act as a single unified structure. However, whether this arrangement also applies in human meiosis I oocytes was unclear. In this study, we perform high-resolution imaging of over 1900 kinetochores in human oocytes, to examine the geometry and architecture of the human meiotic kinetochore. We reveal that sister kinetochores in MI are not physically fused, and instead individual kinetochores within a pair are capable of forming independent attachments to spindle k-fibres. Notably, with increasing female age, the separation between kinetochores increases, suggesting a degradation of centromeric cohesion and/or changes in kinetochore architecture. Our data suggest that the differential arrangement of sister kinetochores and dual k-fibre attachments may explain the high proportion of unstable attachments that form in MI and thus indicate why human oocytes are prone to aneuploidy, particularly with increasing maternal age. Summary: Sister kinetochores in meiosis I human oocytes are not physically fused, with the degree of separation increasing with maternal age. This may have implications for the high incidence of aneuploidy in human oocytes.
Collapse
Affiliation(s)
- Jessica Patel
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Geraldine M Hartshorne
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
150
|
Regulation of sister chromatid cohesion during the mitotic cell cycle. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1089-98. [DOI: 10.1007/s11427-015-4956-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
|