101
|
Yang CY, Lu RJH, Lee MK, Hsiao FSH, Yen YP, Cheng CC, Hsu PS, Tsai YT, Chen SK, Liu IH, Chen PY, Lin SP. Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation. Front Cell Dev Biol 2021; 9:615098. [PMID: 33718357 PMCID: PMC7947861 DOI: 10.3389/fcell.2021.615098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.
Collapse
Affiliation(s)
- Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ming-Kang Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Felix Shih-Hsian Hsiao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Ya-Ping Yen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Chun Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
102
|
Liu T, Xing Y, Fan X, Chen Z, Zhao C, Liu L, Zhao M, Hu X, Dong B, Wang J, Cui H, Gong D, Geng T. Fasting and overfeeding affect the expression of the immunity- or inflammation-related genes in the liver of poultry via endogenous retrovirus. Poult Sci 2021; 100:973-981. [PMID: 33518151 PMCID: PMC7858184 DOI: 10.1016/j.psj.2020.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
It is known that nutrition and immunity are connected, but the mechanism is not very clear. Endogenous retroviruses (ERV) account for 8 to 10% of the human and mouse genomes and play an important role in some biological processes of animals. Recent studies indicate that the activation of ERV can affect the expression of the immunity- or inflammation-related genes, and the activities of ERV are subjected to regulation of many factors including nutritional factors. Therefore, we hypothesize that nutritional status can affect the expression of the immunity- or inflammation-related genes via ERV. To verify this hypothesis, the nutritional status of animals was altered by fasting or overfeeding, and the expression of intact ERV (ERVK18P, ERVK25P) and immunity- or inflammation-related genes (DDX41, IFIH1, IFNG, IRF7, STAT3) in the liver was determined by quantitative PCR, followed by overexpressing ERVK25P in goose primary hepatocytes and determining the expression of the immunity- or inflammation-related genes. The data showed that compared with the control group (no fasting), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the fasted chickens but decreased in the liver of the fasted geese. Moreover, compared with the control group (routinely fed), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the overfed geese. In addition, overexpression of ERVK25P in goose primary hepatocytes can induce the expression of the immunity- or inflammation-related genes. In conclusion, these findings suggest that ERV mediate the effects of fasting and overfeeding on the expression of the immunity- or inflammation-related genes, the mediation varied with poultry species, and ERV and the immunity- or inflammation-related genes may be involved in the development of goose fatty liver. This study provides a potential mechanism for the connection between nutrition and immunity.
Collapse
Affiliation(s)
- Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xue Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenzhen Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuming Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Biao Dong
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hengmi Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
103
|
A chicken DNA methylation clock for the prediction of broiler health. Commun Biol 2021; 4:76. [PMID: 33462334 PMCID: PMC7814119 DOI: 10.1038/s42003-020-01608-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
The domestic chicken (Gallus gallus domesticus) is the globally most important source of commercially produced meat. While genetic approaches have played an important role in the development of chicken stocks, little is known about chicken epigenetics. We have systematically analyzed the chicken DNA methylation machinery and DNA methylation landscape. While overall DNA methylation distribution was similar to mammals, sperm DNA appeared hypomethylated, which correlates with the absence of the DNMT3L cofactor in the chicken genome. Additional analysis revealed the presence of low-methylated regions, which are conserved gene regulatory elements that show tissue-specific methylation patterns. We also used whole-genome bisulfite sequencing to generate 56 single-base resolution methylomes from various tissues and developmental time points to establish an LMR-based DNA methylation clock for broiler chicken age prediction. This clock was used to demonstrate epigenetic age acceleration in animals with experimentally induced inflammation. Our study provides detailed insights into the chicken methylome and suggests a novel application of the DNA methylation clock as a marker for livestock health. Raddatz, Lyko and colleagues use whole-genome bisulfite sequencing data to generate a methylation clock for chicken. This clock was able to detect age acceleration in broiler chickens under experimentally induced inflammation.
Collapse
|
104
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
105
|
Abstract
5-Methylcytosine (5mC) is an epigenetic mark known to contribute to the regulation of gene expression in a wide range of biological systems. Ten Eleven Translocation (TET) dioxygenases oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in metazoans and fungi. Moreover, two recent reports imply the existence of other species of modified cytosine in unicellular alga Chlamydomonas reinhardtii and malaria parasite Plasmodium falciparum. Here we provide an overview of the spectrum of cytosine modifications and their roles in demethylation of DNA and regulation of gene expression in different eukaryotic organisms.
Collapse
Affiliation(s)
- Maria Eleftheriou
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK.
| |
Collapse
|
106
|
Villanueva-Hayes C, Millership SJ. Imprinted Genes Impact Upon Beta Cell Function in the Current (and Potentially Next) Generation. Front Endocrinol (Lausanne) 2021; 12:660532. [PMID: 33986727 PMCID: PMC8112240 DOI: 10.3389/fendo.2021.660532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Beta cell failure lies at the centre of the aetiology and pathogenesis of type 2 diabetes and the epigenetic control of the expression of critical beta cell genes appears to play a major role in this decline. One such group of epigenetically-controlled genes, termed 'imprinted' genes, are characterised by transgenerational monoallelic expression due to differential allelic DNA methylation and play key functional roles within beta cells. Here, we review the evidence for this functional importance of imprinted genes in beta cells as well as their nutritional regulation by the diet and their altered methylation and/or expression in rodent models of diabetes and in type 2 diabetic islets. We also discuss imprinted genes in the context of the next generation, where dietary overnutrition in the parents can lead to their deregulation in the offspring, alongside beta cell dysfunction and defective glucose handling. Both the modulation of imprinted gene expression and the likelihood of developing type 2 diabetes in adulthood are susceptible to the impact of nutritional status in early life. Imprinted loci, therefore, represent an excellent opportunity with which to assess epigenomic changes in beta cells due to the diet in both the current and next generation.
Collapse
|
107
|
Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, Osorio-Concepción M, Navarro E, Calo S. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int J Mol Sci 2020; 21:E9348. [PMID: 33302447 PMCID: PMC7763443 DOI: 10.3390/ijms21249348] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.
Collapse
Affiliation(s)
- Carlos Lax
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Ghizlane Tahiri
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán CP 58030, Mexico;
| | - José T. Cánovas-Márquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José A. Pérez-Ruiz
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Macario Osorio-Concepción
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Eusebio Navarro
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033 Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
108
|
Laureau R, Dyatel A, Dursuk G, Brown S, Adeoye H, Yue JX, De Chiara M, Harris A, Ünal E, Liti G, Adams IR, Berchowitz LE. Meiotic Cells Counteract Programmed Retrotransposon Activation via RNA-Binding Translational Repressor Assemblies. Dev Cell 2020; 56:22-35.e7. [PMID: 33278343 DOI: 10.1016/j.devcel.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.
Collapse
Affiliation(s)
- Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samantha Brown
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hannah Adeoye
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | | | - Anthony Harris
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
109
|
Gross N, Taylor T, Crenshaw T, Khatib H. The Intergenerational Impacts of Paternal Diet on DNA Methylation and Offspring Phenotypes in Sheep. Front Genet 2020; 11:597943. [PMID: 33250925 PMCID: PMC7674940 DOI: 10.3389/fgene.2020.597943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Knowledge of non-genomic inheritance of traits is currently limited. Although it is well established that maternal diet influences offspring inheritance of traits through DNA methylation, studies on the impact of prepubertal paternal diet on DNA methylation are rare. This study aimed to evaluate the impact of prepubertal diet in Polypay rams on complex traits, DNA methylation, and transmission of traits to offspring. A total of 10 littermate pairs of F0 rams were divided so that one ram was fed a control diet, and the other was fed the control diet with supplemental methionine. Diet was associated with earlier age at puberty in treatment vs. control F0 rams. F0 treatment rams tended to show decreased pubertal weight compared to control rams; however, no differences were detected in overall growth. A total of ten F0 rams were bred, and the entire F1 generation was fed a control diet. Diet of F0 rams had a significant association with scrotal circumference (SC) and weight at puberty of F1 offspring. The paternal diet was not significantly associated with F1 ram growth or age at puberty. The DNA methylation of F0 ram sperm was assessed, and genes related to both sexual development (e.g., DAZAP1, CHD7, TAB1, MTMR2, CELSR1, MGAT1) and body weight (e.g., DUOX2, DUOXA2) were prevalent in the data. These results provide novel information about the mechanisms through which the prepubertal paternal diet may alter body weight at puberty and sexual development.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
110
|
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nat Commun 2020; 11:5712. [PMID: 33177501 PMCID: PMC7658363 DOI: 10.1038/s41467-020-19430-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Nearly half of the human genome is made of transposable elements (TEs) whose activity continues to impact its structure and function. Among them, Long INterspersed Element class 1 (LINE-1 or L1) elements are the only autonomously active TEs in humans. L1s are expressed and mobilized in different cancers, generating mutagenic insertions that could affect tumor malignancy. Tumor suppressor microRNAs are ∼22nt RNAs that post-transcriptionally regulate oncogene expression and are frequently downregulated in cancer. Here we explore whether they also influence L1 mobilization. We show that downregulation of let-7 correlates with accumulation of L1 insertions in human lung cancer. Furthermore, we demonstrate that let-7 binds to the L1 mRNA and impairs the translation of the second L1-encoded protein, ORF2p, reducing its mobilization. Overall, our data reveals that let-7, one of the most relevant microRNAs, maintains somatic genome integrity by restricting L1 retrotransposition. Human Long INterspersed Element class 1 (LINE-1) elements are expressed and mobilized in many types of cancer, contributing to malignancy. Here the authors show that the tumor suppressor microRNA let-7 targets the LINE-1 mRNA and reduces LINE-1 mobilization.
Collapse
|
111
|
Zeng Y, Ren R, Kaur G, Hardikar S, Ying Z, Babcock L, Gupta E, Zhang X, Chen T, Cheng X. The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev 2020; 34:1546-1558. [PMID: 33004415 PMCID: PMC7608744 DOI: 10.1101/gad.341925.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
The de novo DNA methyltransferases Dnmt3a and Dnmt3b play crucial roles in developmental and cellular processes. Their enzymatic activities are stimulated by a regulatory protein Dnmt3L (Dnmt3-like) in vitro. However, genetic evidence indicates that Dnmt3L functions predominantly as a regulator of Dnmt3a in germ cells. How Dnmt3a and Dnmt3b activities are regulated during embryonic development and in somatic cells remains largely unknown. Here we show that Dnmt3b3, a catalytically inactive Dnmt3b isoform expressed in differentiated cells, positively regulates de novo methylation by Dnmt3a and Dnmt3b with a preference for Dnmt3b. Dnmt3b3 is equally potent as Dnmt3L in stimulating the activities of Dnmt3a2 and Dnmt3b2 in vitro. Like Dnmt3L, Dnmt3b3 forms a complex with Dnmt3a2 with a stoichiometry of 2:2. However, rescue experiments in Dnmt3a/3b/3l triple-knockout (TKO) mouse embryonic stem cells (mESCs) reveal that Dnmt3b3 prefers Dnmt3b2 over Dnmt3a2 in remethylating genomic sequences. Dnmt3a2, an active isoform that lacks the N-terminal uncharacterized region of Dnmt3a1 including a nuclear localization signal, has very low activity in TKO mESCs, indicating that an accessory protein is absolutely required for its function. Our results suggest that Dnmt3b3 and perhaps similar Dnmt3b isoforms facilitate de novo DNA methylation during embryonic development and in somatic cells.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhengzhou Ying
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lance Babcock
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
112
|
Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nat Commun 2020; 11:5417. [PMID: 33110091 PMCID: PMC7591512 DOI: 10.1038/s41467-020-19279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
Collapse
|
113
|
de Oliveira DT, Guerra-Sá R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Mol Biol Rep 2020; 47:9097-9122. [PMID: 33089404 DOI: 10.1007/s11033-020-05916-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Scientific advances in recent decades have revealed an incredible degree of plasticity in gene expression in response to various environmental, nutritional, physiological, pathological, and behavioral conditions. Epigenetics emerges in this sense, as the link between the internal (genetic) and external (environmental) factors underlying the expression of the phenotype. Methylation of DNA and histone post-translationa modifications are canonical epigenetic events. Additionally, noncoding RNAs molecules (microRNAs and lncRNAs) have also been proposed as another layer of epigenetic regulation. Together, these events are responsible for regulating gene expression throughout life, controlling cellular fate in both normal and pathological development. Despite being a relatively recent science, epigenetics has been arousing the interest of researchers from different segments of the life sciences and the general public. This review highlights the recent advances in the characterization of the epigenetic events and points promising use of these brands for the diagnosis, prognosis, and therapy of diseases. We also present several classes of epigenetic modifying compounds with therapeutic applications (so-call epidrugs) and their current status in clinical trials and approved by the FDA. In summary, hopefully, we provide the reader with theoretical bases for a better understanding of the epigenetic mechanisms and of the promising application of these marks and events in the medical clinic.
Collapse
Affiliation(s)
- Daiane Teixeira de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Renata Guerra-Sá
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
114
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|
115
|
Cusack M, King HW, Spingardi P, Kessler BM, Klose RJ, Kriaucionis S. Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Res 2020; 30:1393-1406. [PMID: 32963030 PMCID: PMC7605266 DOI: 10.1101/gr.257576.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at retrotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation-deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
Collapse
Affiliation(s)
- Martin Cusack
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom;
| |
Collapse
|
116
|
NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 2020; 52:1088-1098. [PMID: 32929285 DOI: 10.1038/s41588-020-0689-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
De novo DNA methylation (DNAme) in mammalian germ cells is dependent on DNMT3A and DNMT3L. However, oocytes and spermatozoa show distinct patterns of DNAme. In mouse oocytes, de novo DNAme requires the lysine methyltransferase (KMTase) SETD2, which deposits H3K36me3. We show here that SETD2 is dispensable for de novo DNAme in the male germline. Instead, the lysine methyltransferase NSD1, which broadly deposits H3K36me2 in euchromatic regions, plays a critical role in de novo DNAme in prospermatogonia, including at imprinted genes. However, males deficient in germline NSD1 show a more severe defect in spermatogenesis than Dnmt3l-/- males. Notably, unlike DNMT3L, NSD1 safeguards a subset of genes against H3K27me3-associated transcriptional silencing. In contrast, H3K36me2 in oocytes is predominantly dependent on SETD2 and coincides with H3K36me3. Furthermore, females with NSD1-deficient oocytes are fertile. Thus, the sexually dimorphic pattern of DNAme in mature mouse gametes is orchestrated by distinct profiles of H3K36 methylation.
Collapse
|
117
|
Liu S, Yuan S, Gao X, Tao X, Yu W, Li X, Chen S, Xu A. Functional regulation of an ancestral RAG transposon ProtoRAG by a trans-acting factor YY1 in lancelet. Nat Commun 2020; 11:4515. [PMID: 32908127 PMCID: PMC7481187 DOI: 10.1038/s41467-020-18261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
The discovery of ancestral RAG transposons in early deuterostomia reveals the origin of vertebrate V(D)J recombination. Here, we analyze the functional regulation of a RAG transposon, ProtoRAG, in lancelet. We find that a specific interaction between the cis-acting element within the TIR sequences of ProtoRAG and a trans-acting factor, lancelet YY1-like (bbYY1), is important for the transcriptional regulation of lancelet RAG-like genes (bbRAG1L and bbRAG2L). Mechanistically, bbYY1 suppresses the transposition of ProtoRAG; meanwhile, bbYY1 promotes host DNA rejoins (HDJ) and TIR-TIR joints (TTJ) after TIR-dependent excision by facilitating the binding of bbRAG1L/2 L to TIR-containing DNA, and by interacting with the bbRAG1L/2 L complex. Our data thus suggest that bbYY1 has dual functions in fine-tuning the activity of ProtoRAG and maintaining the genome stability of the host.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, People's Republic of China.
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xu Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, Beijing, People's Republic of China.
| |
Collapse
|
118
|
Furano AV, Jones CE, Periwal V, Callahan KE, Walser JC, Cook PR. Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p. PLoS Genet 2020; 16:e1008991. [PMID: 32797042 PMCID: PMC7449397 DOI: 10.1371/journal.pgen.1008991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/26/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Accounting for continual evolution of deleterious L1 retrotransposon families, which can contain hundreds to thousands of members remains a major issue in mammalian biology. L1 activity generated upwards of 40% of some mammalian genomes, including humans where they remain active, causing genetic defects and rearrangements. L1 encodes a coiled coil-containing protein that is essential for retrotransposition, and the emergence of novel primate L1 families has been correlated with episodes of extensive amino acid substitutions in the coiled coil. These results were interpreted as an adaptive response to maintain L1 activity, however its mechanism remained unknown. Although an adventitious mutation can inactivate coiled coil function, its effect could be buffered by epistatic interactions within the coiled coil, made more likely if the family contains a diverse set of coiled coil sequences-collectively referred to as the coiled coil sequence space. Amino acid substitutions that do not affect coiled coil function (i.e., its phenotype) could be "hidden" from (not subject to) purifying selection. The accumulation of such substitutions, often referred to as cryptic genetic variation, has been documented in various proteins. Here we report that this phenomenon was in effect during the latest episode of primate coiled coil evolution, which occurred 30-10 MYA during the emergence of primate L1Pa7-L1Pa3 families. First, we experimentally demonstrated that while coiled coil function (measured by retrotransposition) can be eliminated by single epistatic mutations, it nonetheless can also withstand extensive amino acid substitutions. Second, principal component and cluster analysis showed that the coiled coil sequence space of each of the L1Pa7-3 families was notably increased by the presence of distinct, coexisting coiled coil sequences. Thus, sampling related networks of functional sequences rather than traversing discrete adaptive states characterized the persistence L1 activity during this evolutionary event.
Collapse
Affiliation(s)
- Anthony V. Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Charlie E. Jones
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vipul Periwal
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathryn E. Callahan
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Claude Walser
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pamela R. Cook
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
119
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
120
|
Zoch A, Auchynnikava T, Berrens RV, Kabayama Y, Schöpp T, Heep M, Vasiliauskaitė L, Pérez-Rico YA, Cook AG, Shkumatava A, Rappsilber J, Allshire RC, O'Carroll D. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 2020; 584:635-639. [PMID: 32674113 PMCID: PMC7612247 DOI: 10.1038/s41586-020-2557-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge: the need to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young, active transposable elements2-4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of transposable elements3,5. piRNAs are proposed to tether MIWI2 to nascent transposable element transcripts; however, the mechanism by which MIWI2 directs the de novo methylation of transposable elements is poorly understood, although central to the immortality of the germline. Here we define the interactome of MIWI2 in mouse fetal gonocytes undergoing de novo genome methylation and identify a previously unknown MIWI2-associated factor, SPOCD1, that is essential for the methylation and silencing of young transposable elements. The loss of Spocd1 in mice results in male-specific infertility but does not affect either piRNA biogenesis or the localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein whose expression is restricted to the period of de novo genome methylation. It co-purifies in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery, as well as with constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent transposable element transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a previously unrecognized and essential executor of mammalian piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rebecca V Berrens
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Lina Vasiliauskaitė
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Yuvia A Pérez-Rico
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
121
|
Global changes in epigenomes during mouse spermatogenesis: possible relation to germ cell apoptosis. Histochem Cell Biol 2020; 154:123-134. [PMID: 32653936 DOI: 10.1007/s00418-020-01900-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Mammalian spermatogenesis is characterized by disproportionate germ cell apoptosis. The high frequency of apoptosis is considered a safety mechanism that serves to avoid unfavorable transmission of paternal aberrant genetic information to the offspring as well as elimination mechanism for removal of overproduced immature or damaged spermatogenic cells. The molecular mechanisms involved in the induction of germ cell apoptosis include both intrinsic mitochondrial Bcl-2/Bax and extrinsic Fas/FasL pathways. However, little is known about the nuclear trigger of those systems. Recent studies indicate that epigenomes are essential in the regulation of gene expression through remodeling of the chromatin structure, and are genome-like transmission materials that reflect the effects of various environmental factors. In spermatogenesis, epigenetic errors can act as the trigger for elimination of germ cells with abnormal chromatin structure, abnormal gene expression and/or morphological defects (disordered differentiation). In this review, we focus on the relationship between global changes in epigenetic parameters and germ cell apoptosis in mice and other mammals.
Collapse
|
122
|
Colwell M, Wanner NM, Drown C, Drown M, Dolinoy DC, Faulk C. Paradoxical whole genome DNA methylation dynamics of 5'aza-deoxycytidine in chronic low-dose exposure in mice. Epigenetics 2020; 16:209-227. [PMID: 32619143 DOI: 10.1080/15592294.2020.1790951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Decitabine (5-aza-2'deoxycytidine; DAC) is a DNA methyltransferase inhibitor used to hypomethylate the epigenome. Current dosing regimens of DAC for use in mice vary widely and their hypomethylating ability has not been robustly characterized, despite reliable results of hypomethylation of the epigenome with cell lines in vitro and tissue specificity in vivo. We investigated the effects on the DNA methylome and gene expression within mice exposed to chronic low doses of DAC ranging from 0 to 0.35 mg/kg over a period of 7 weeks without causing toxicity. Our dose paradigm resulted in no cytotoxic effects within target tissues, although testes weight and sperm concentration significantly reduced as dose increased (p-value <0.05). By whole genome bisulphite sequencing (WGBS), we identify tissue and dose-specific differentially methylated CpGs (DMCs) and regions (DMRs) in testes and liver. Testes methylation is more sensitive to DAC exposure when compared to liver, cortex, and hippocampus. Gene expression was dysregulated in testes and liver, targeting non-specific pathways as dose increases. Together our data suggest DNA methylation and gene expression are disrupted by in vivo DAC treatment in a non-uniform manner contrary to expectations, and that no dose level or regimen is sufficient to cause systemic hypomethylation in whole mice.
Collapse
Affiliation(s)
- Mathia Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine , St. Paul, MN, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Melissa Drown
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan , Ann Arbor, MI, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| |
Collapse
|
123
|
Żylicz JJ, Heard E. Molecular Mechanisms of Facultative Heterochromatin Formation: An X-Chromosome Perspective. Annu Rev Biochem 2020; 89:255-282. [PMID: 32259458 DOI: 10.1146/annurev-biochem-062917-012655] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox (Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription (Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
Collapse
Affiliation(s)
- Jan J Żylicz
- Mammalian Developmental Epigenetics Group, Institut Curie, CNRS UMR 3215, INSERM U934, PSL University, 75248 Paris Cedex 05, France.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, United Kingdom
| | - Edith Heard
- Directors' Research, EMBL Heidelberg, 69117 Heidelberg, Germany;
| |
Collapse
|
124
|
Zhou Y, Liu S, Hu Y, Fang L, Gao Y, Xia H, Schroeder SG, Rosen BD, Connor EE, Li CJ, Baldwin RL, Cole JB, Van Tassell CP, Yang L, Ma L, Liu GE. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol 2020; 18:85. [PMID: 32631327 PMCID: PMC7339546 DOI: 10.1186/s12915-020-00793-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date. RESULTS Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47 corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak, pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect 50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites. CONCLUSIONS This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries about DNA methylation and its role in complex traits.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
125
|
Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology 2020; 8:924-942. [PMID: 31901222 PMCID: PMC7346722 DOI: 10.1111/andr.12753] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Infertility is a common reproductive disorder, with male factor infertility accounting for approximately half of all cases. Taking a paternal perceptive, recent research has shown that sperm epigenetics, such as changes in DNA methylation, histone modification, chromatin structure, and noncoding RNA expression, can impact reproductive and offspring health. Importantly, environmental conditions during the preconception period has been demonstrated to shape sperm epigenetics. OBJECTIVES To provide an overview on epigenetic modifications that regulate normal gene expression and epigenetic remodeling that occurs during spermatogenesis, and to discuss the epigenetic alterations that may occur to the paternal germline as a consequence of preconception environmental conditions and exposures. MATERIALS AND METHODS We examined published literature available on databases (PubMed, Google Scholar, ScienceDirect) focusing on adult male preconception environmental exposures and sperm epigenetics in epidemiologic studies and animal models. RESULTS The preconception period is a sensitive developmental window in which a variety of exposures such as toxicants, nutrition, drugs, stress, and exercise, affects sperm epigenetics. DISCUSSION AND CONCLUSION Understanding the environmental legacy of the sperm epigenome during spermatogenesis will enhance our understanding of reproductive health and improve reproductive success and offspring well-being.
Collapse
Affiliation(s)
| | | | - J. Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
126
|
Sai L, Jia Q, Zhang Y, Han R, Geng X, Yu G, Li S, Shao H, Zheng Y, Peng C. Genome-wide analysis of DNA methylation in testis of male rat exposed to chlorpyrifos. Toxicol Res (Camb) 2020; 9:509-518. [PMID: 32905263 PMCID: PMC7467273 DOI: 10.1093/toxres/tfaa050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
In our previous study, we found that subchronic exposure of chlorpyrifos (CPF) can cause reproductive damage in male rats. However, the mechanisms underlying the reproductive effects of CPF are not well understood. DNA methylation is essential for epigenetic gene regulation in development and disease. Therefore, we aim to compare DNA methylation profiles between controls and CPF-treated rats in order to identify the epigenetic mechanism of male reproductive toxicity induced by CPF. Methylated DNA immunoprecipitation with high-throughput sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in testes of control and CPF-treated rats for 90 days. We identified 27 019 differentially methylated regions (DMRs) (14 150 upmethylated and 12 869 downmethylated) between CPF-exposed and control groups. The DMR-related genes are mainly involved in 113 pathways predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The result showed that high methylation gene PIK3CD may play a key role in epigenetic regulation of multiple pathways, such as Ras signaling pathway, AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, VEGF signaling pathway, and glioma and Fc epsilon RI signaling pathway in rats exposed to CPF. Our study provides significant explanations for the epigenetic mechanism of male reproductive toxicology induced by CPF.
Collapse
Affiliation(s)
- Linlin Sai
- Department of Toxicology, Public Health College, Qingdao University, 308 Ningxia Road, Shinan District Qingdao, Shandong 266071, China
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Qiang Jia
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Yecui Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Ru Han
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Xiao Geng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Gongchang Yu
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Shumin Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Yuxin Zheng
- Department of Toxicology, Public Health College, Qingdao University, 308 Ningxia Road, Shinan District Qingdao, Shandong 266071, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
127
|
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52:728-739. [PMID: 32601478 PMCID: PMC7383350 DOI: 10.1038/s41588-020-0657-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Yu Fu
- Bioinformatics Program, Boston University, Boston, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Katharine Cecchini
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deniz M Özata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amena Arif
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cansu Colpan
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
128
|
Dahlet T, Argüeso Lleida A, Al Adhami H, Dumas M, Bender A, Ngondo RP, Tanguy M, Vallet J, Auclair G, Bardet AF, Weber M. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat Commun 2020; 11:3153. [PMID: 32561758 PMCID: PMC7305168 DOI: 10.1038/s41467-020-16919-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Mouse embryos acquire global DNA methylation of their genome during implantation. However the exact roles of DNA methyltransferases (DNMTs) in embryos have not been studied comprehensively. Here we systematically analyze the consequences of genetic inactivation of Dnmt1, Dnmt3a and Dnmt3b on the methylome and transcriptome of mouse embryos. We find a strict division of function between DNMT1, responsible for maintenance methylation, and DNMT3A/B, solely responsible for methylation acquisition in development. By analyzing severely hypomethylated embryos, we uncover multiple functions of DNA methylation that is used as a mechanism of repression for a panel of genes including not only imprinted and germline genes, but also lineage-committed genes and 2-cell genes. DNA methylation also suppresses multiple retrotransposons and illegitimate transcripts from cryptic promoters in transposons and gene bodies. Our work provides a thorough analysis of the roles of DNA methyltransferases and the importance of DNA methylation for transcriptome integrity in mammalian embryos.
Collapse
Affiliation(s)
- Thomas Dahlet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Andrea Argüeso Lleida
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Hala Al Adhami
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ambre Bender
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Richard P Ngondo
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
- IBMP, CNRS UPR2357, 67084, Strasbourg, France
| | - Manon Tanguy
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ghislain Auclair
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Anaïs F Bardet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France.
| |
Collapse
|
129
|
DNA methylation dynamics at transposable elements in mammals. Essays Biochem 2020; 63:677-689. [PMID: 31654072 DOI: 10.1042/ebc20190039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements dominate the mammalian genome, but their contribution to genetic and epigenetic regulation has been largely overlooked. This was in part due to technical limitations, which made the study of repetitive sequences at single copy resolution difficult. The advancement of next-generation sequencing assays in the last decade has greatly enhanced our understanding of transposable element function. In some instances, specific transposable elements are thought to have been co-opted into regulatory roles during both mouse and human development, while in disease such regulatory potential can contribute to malignancy. DNA methylation is arguably the best characterised regulator of transposable element activity. DNA methylation is associated with transposable element repression, and acts to limit their genotoxic potential. In specific developmental contexts, erasure of DNA methylation is associated with a burst of transposable element expression. Developmental regulation of DNA methylation enables transposon activation, ensuring their survival and propagation throughout the host genome, and also allows the host access to regulatory sequences encoded within the elements. Here I discuss DNA methylation at transposable elements, describing its function and dynamic regulation throughout murine and human development.
Collapse
|
130
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
131
|
The influence of DNA methylation on monoallelic expression. Essays Biochem 2020; 63:663-676. [PMID: 31782494 PMCID: PMC6923323 DOI: 10.1042/ebc20190034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023]
Abstract
Monoallelic gene expression occurs in diploid cells when only one of the two alleles of a gene is active. There are three main classes of genes that display monoallelic expression in mammalian genomes: (1) imprinted genes that are monoallelically expressed in a parent-of-origin dependent manner; (2) X-linked genes that undergo random X-chromosome inactivation in female cells; (3) random monoallelically expressed single and clustered genes located on autosomes. The heritability of monoallelic expression patterns during cell divisions implies that epigenetic mechanisms are involved in the cellular memory of these expression states. Among these, methylation of CpG sites on DNA is one of the best described modification to explain somatic inheritance. Here, we discuss the relevance of DNA methylation for the establishment and maintenance of monoallelic expression patterns among these three groups of genes, and how this is intrinsically linked to development and cellular states.
Collapse
|
132
|
Wang J, Huang J, Shi G. Retrotransposons in pluripotent stem cells. CELL REGENERATION 2020; 9:4. [PMID: 32588192 PMCID: PMC7306833 DOI: 10.1186/s13619-020-00046-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China
| | - Junjiu Huang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Guang Shi
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
133
|
Law NC, Oatley JM. Developmental underpinnings of spermatogonial stem cell establishment. Andrology 2020; 8:852-861. [PMID: 32356598 DOI: 10.1111/andr.12810] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood. OBJECTIVES To propose an evolving concept for how the foundational SSC population is established. MATERIALS AND METHODS This review summarizes recent and historical findings from peer-reviewed publications made primarily with mouse models while incorporating limited studies from humans and livestock. RESULTS AND CONCLUSION Establishment of the SSC population appears to follow a biphasic pattern involving a period of fate programming followed by an establishment phase that culminates in formation of the SSC population. This model for establishment of the foundational SSC population from precursors is anticipated to extend across mammalian species and include humans and livestock, albeit on different timescales.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
134
|
Transposon Reactivation in the Germline May Be Useful for Both Transposons and Their Host Genomes. Cells 2020; 9:cells9051172. [PMID: 32397241 PMCID: PMC7290860 DOI: 10.3390/cells9051172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up a large portion of these genomes. They can be considered as perfectly fine members of genomes replicating with resident genes and being transmitted vertically to the next generation. However, unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been considered as parasitic members ensuring their own replication. In another view, TEs may also be considered as symbiotic sequences providing shared benefits after mutualistic interactions with their host genome. In this review, we recall the relationship between TEs and their host genome and discuss why transient relaxation of TE silencing within specific developmental windows may be useful for both.
Collapse
|
135
|
Yang F, Lan Y, Pandey RR, Homolka D, Berger SL, Pillai RS, Bartolomei MS, Wang PJ. TEX15 associates with MILI and silences transposable elements in male germ cells. Genes Dev 2020; 34:745-750. [PMID: 32381626 PMCID: PMC7263141 DOI: 10.1101/gad.335489.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/03/2020] [Indexed: 12/29/2022]
Abstract
Here, Yang et al. report that TEX15, a testis-specific protein, is required for transposable element (TE) silencing. They show that loss of Tex15 causes TE desilencing with intact piRNA production, and their findings identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation. DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
136
|
Abstract
With the increasing incidence of male infertility, routine detection of semen is insufficient to accurately assess male fertility. Infertile men, who have lower odds of conceiving naturally, exhibit high levels of sperm DNA fragmentation (SDF). The mechanisms driving SDF include abnormal spermatogenesis, oxidative stress damage, and abnormal sperm apoptosis. As these factors can induce SDF and subsequent radical changes leading to male infertility, detection of the extent of SDF has become an efficient routine method for semen analysis. Although it is still debated, SDF detection has become a research hotspot in the field of reproductive medicine as a more accurate indicator for assessing sperm quality and male fertility. SDF may be involved in male infertility, reproductive assisted outcomes, and growth and development of offspring. The effective detection methods of SDF are sperm chromatin structure analysis (SCSA), terminal transferase-mediated dUTP end labeling (TUNEL) assay, single-cell gel electrophoresis (SCGE) assay, and sperm chromatin dispersion (SCD) test, and all of these methods are valuable for assisted reproductive techniques. Currently, the preferred method for detecting sperm DNA integrity is SCSA. However, the regulation network of SDF is very complex because the sperm DNA differs from the somatic cell DNA with its unique structure. A multitude of molecular factors, including coding genes, non-coding genes, or methylated DNA, participate in the complex physiological regulation activities associated with SDF. Studying SDF occurrence and the underlying mechanisms may effectively improve its clinical treatments. This review aimed to outline the research status of SDF mechanism and detection technology-related issues, as well as the effect of increased SDF rate, aiming to provide a basis for clinical male infertility diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Qiu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Hua Yang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Chunyuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
137
|
Abstract
In 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box–zinc finger (KRAB-ZF) proteins.
Collapse
Affiliation(s)
- Miroslava Ondičová
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Colum P. Walsh
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
138
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
139
|
Ishak CA, De Carvalho DD. Reactivation of Endogenous Retroelements in Cancer Development and Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Domesticated retroelements contribute extensively as regulatory elements within host gene networks. Upon germline integration, retroelement mobilization is restricted through epigenetic silencing, mutational degradation, and innate immune defenses described as the viral mimicry response. Recent discoveries reveal how early events in tumorigenesis reactivate retroelements to facilitate onco-exaptation, replication stress, retrotransposition, mitotic errors, and sterile inflammation, which collectively disrupt genome integrity. The characterization of altered epigenetic homeostasis at retroelements in cancer cells also reveals new epigenetic targets whose inactivation can bolster responses to cancer therapies. Recent discoveries reviewed here frame reactivated retroelements as both drivers of tumorigenesis and therapy responses, where their reactivation by emerging epigenetic therapies can potentiate immune checkpoint blockade, cancer vaccines, and other standard therapies.
Collapse
Affiliation(s)
- Charles A. Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
140
|
Mahadevan IA, Kumar S, Rao MRS. Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes. Epigenetics Chromatin 2020; 13:9. [PMID: 32131873 PMCID: PMC7057672 DOI: 10.1186/s13072-020-00335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Collapse
Affiliation(s)
- Iyer Aditya Mahadevan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
| | | |
Collapse
|
141
|
Yu YCY, Hui TZ, Kao TH, Liao HF, Yang CY, Hou CC, Hsieh HT, Chang JY, Tsai YT, Pinskaya M, Yang KC, Chen YR, Morillon A, Tsai MH, Lin SP. Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. Front Cell Dev Biol 2020; 8:103. [PMID: 32195249 PMCID: PMC7064442 DOI: 10.3389/fcell.2020.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Global heterochromatin reduction, which is one of the hallmarks of senescent cells, is associated with reduced transposable element repression and increased risk of chromatin instability. To ensure genomic integrity, the irreparable cells in a population exit permanently from the cell cycle, and this process is termed "senescence." However, senescence only blocks the expansion of unwanted cells, and the aberrant chromatin of senescent cells remains unstable. Serendipitously, we found that the transient ectopic expression of a repressive epigenetic modulator, DNA methyltransferase 3-like (DNMT3L) was sufficient to delay the premature senescence progression of late-passage mouse embryonic fibroblasts (MEFs) associated with a tightened global chromatin structure. DNMT3L induces more repressive H3K9 methylation on endogenous retroviruses and downregulates the derepressed transposons in aging MEFs. In addition, we found that a pulse of ectopic DNMT3L resulted in the reestablishment of H3K27me3 on polycomb repressive complex 2 (PRC2)-target genes that were derepressed in old MEFs. We demonstrated that ectopic DNMT3L interacted with PRC2 in MEFs. Our data also suggested that ectopic DNMT3L might guide PRC2 to redress deregulated chromatin regions in cells undergoing senescence. This study might lead to an epigenetic reinforcement strategy for overcoming aging-associated epimutation and senescence.
Collapse
Affiliation(s)
- Yoyo Chih-Yun Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tony Zk Hui
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Tzu-Hao Kao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Hou
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ting Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Marina Pinskaya
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, Taipei, Taiwan
| |
Collapse
|
142
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
143
|
UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death Dis 2020; 11:142. [PMID: 32081844 PMCID: PMC7035279 DOI: 10.1038/s41419-020-2333-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
5’-hydroxymethylcytosine (5hmC), an important 5’-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.
Collapse
|
144
|
Cavalcante MG, Souza LF, Vicari MR, de Bastos CEM, de Sousa JV, Nagamachi CY, Pieczarka JC, Martins C, Noronha RCR. Molecular cytogenetics characterization of Rhinoclemmys punctularia (Testudines, Geoemydidae) and description of a Gypsy-H3 association in its genome. Gene 2020; 738:144477. [PMID: 32061764 DOI: 10.1016/j.gene.2020.144477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 01/24/2023]
Abstract
The wide variation found in the size of eukaryotic genomes is largely related to the accumulation of repetitive sequences. Studies show that these sequences can go through an evolutionary process (molecular co-optation) and acquire new genomic functions. Cytogenetic studies reveal a wide karyotypic variation between chelonians (order Testudines) (2n = 26-68), attributed mainly to the number of microchromosomes. The study of repetitive DNAs has the potential to provide data on the dynamics of these sequences, and how they influence the organization of the genome. Here, we reveal the first in situ mapping data of 45S rDNA, histone H3 genes, and telomeric sequences, for a species of the genus Rhinoclemmys, R. punctularia. The karyotype described here for R. punctularia is different from previous reports for the diploid complement of this species, with differences probably attributable to centric fissions and pericentric inversions or centromere repositioning. The 45S rDNA are on a single chromosome pair (like in other turtles), telomeric sequences are in terminal position on all the chromosomes, and histone H3 is dispersed in low copy number, with clusters in pericentromeric regions of three chromosome pairs. We report on the presence of a Gypsy retrotransposon insert located within H3 histone of R. punctularia, and the H3 region sequenced contained the open reading frame of the histone sequence. Comparative modeling revealed a functional pattern for the protein, thus suggesting that the Gypsy element might have been recruited for new functions in the genome of this species.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luciano Farias Souza
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Carlos Eduardo Matos de Bastos
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
145
|
Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, Deng W, Yang J, Zhou TT, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience 2020; 23:100908. [PMID: 32114381 PMCID: PMC7049665 DOI: 10.1016/j.isci.2020.100908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes are involved in DNA demethylation, important in regulating embryo development, stem cell pluripotency and tumorigenesis. Alterations of DNA methylation with age have been shown in various somatic cell types. We investigated whether Tet1 and Tet2 regulate aging. We showed that Tet1-deficient mice undergo a progressive reduction of spermatogonia stem cells and spermatogenesis and thus accelerated infertility with age. Tet1 deficiency decreases 5hmC levels in spermatogonia and downregulates a subset of genes important for cell cycle, germ cell differentiation, meiosis and reproduction, such as Ccna1 and Spo11, resulting in premature reproductive aging. Moreover, Tet1 and 5hmC both regulate signaling pathways key for stem cell development, including Wnt and PI3K-Akt, autophagy and stress response genes. In contrast, effect of Tet2 deficiency on male reproductive aging is minor. Hence, Tet1 maintains spermatogonia stem cells with age, revealing an important role of Tet1 in regulating stem cell aging. Tet1 regulates stem cell aging and differentiation Tet1 plays an important role in maintaining spermatogonial stem cells Loss of Tet1 results in exhaustion of spermatogonia and premature reproductive aging Effect of Tet2 deficiency on reproductive aging in males is minor
Collapse
Affiliation(s)
- Guian Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Mo Gou
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Gong
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Chenglei Tian
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wei Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiao Yang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tian-Tian Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
146
|
LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet 2020; 244:21-29. [PMID: 32088612 DOI: 10.1016/j.cancergen.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the same population. There are almost 500,000 copies of L1 occupied around 30% of the human genome. Although most of them are inactive, around 150-200 copies are actively jumping in a human genome. L1 encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort (n = 15) of paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset and progression of this particular type of cancer.
Collapse
|
147
|
Tristan-Ramos P, Morell S, Sanchez L, Toledo B, Garcia-Perez JL, Heras SR. sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190346. [PMID: 32075559 DOI: 10.1098/rstb.2019.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cell culture-based retrotransposition reporter assay has been (and is) an essential tool for the study of vertebrate Long INterspersed Elements (LINEs). Developed more than 20 years ago, this assay has been instrumental in characterizing the role of LINE-encoded proteins in retrotransposition, understanding how ribonucleoprotein particles are formed, how host factors regulate LINE mobilization, etc. Moreover, variations of the conventional assay have been developed to investigate the biology of other currently active human retrotransposons, such as Alu and SVA. Here, we describe a protocol that allows combination of the conventional cell culture-based LINE-1 retrotransposition reporter assay with short interfering RNAs (siRNAs) and microRNA (miRNAs) mimics or inhibitors, which has allowed us to uncover specific miRNAs and host factors that regulate retrotransposition. The protocol described here is highly reproducible, quantitative, robust and flexible, and allows the study of several small RNA classes and various retrotransposons. To illustrate its utility, here we show that siRNAs to Fanconi anaemia proteins (FANC-A and FANC-C) and an inhibitor of miRNA-20 upregulate and downregulate human L1 retrotransposition, respectively. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Pablo Tristan-Ramos
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Santiago Morell
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Laura Sanchez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain
| | - Belen Toledo
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose L Garcia-Perez
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sara R Heras
- Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, GENYO, Granada, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
148
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
149
|
Tan K, Song HW, Wilkinson MF. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development 2020; 147:dev.183251. [PMID: 31964773 DOI: 10.1242/dev.183251] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Pro-spermatogonia (SG) serve as the gateway to spermatogenesis. Using single-cell RNA sequencing (RNAseq), we studied the development of ProSG, their SG descendants and testicular somatic cells during the perinatal period in mice. We identified both gene and protein markers for three temporally distinct ProSG cell subsets, including a migratory cell population with a transcriptome distinct from the previously defined T1- and T2-ProSG stages. This intermediate (I)-ProSG subset translocates from the center of seminiferous tubules to the spermatogonial stem cell (SSC) 'niche' in its periphery soon after birth. We identified three undifferentiated SG subsets at postnatal day 7, each of which expresses distinct genes, including transcription factor and signaling genes. Two of these subsets have the characteristics of newly emergent SSCs. We also molecularly defined the development of Sertoli, Leydig and peritubular myoid cells during the perinatal period, allowing us to identify candidate signaling pathways acting between somatic and germ cells in a stage-specific manner during the perinatal period. Our study provides a rich resource for those investigating testicular germ and somatic cell developmental during the perinatal period.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA .,Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
150
|
Amukamara AU, Washington JT, Sanchez Z, McKinney EC, Moore AJ, Schmitz RJ, Moore PJ. More Than DNA Methylation: Does Pleiotropy Drive the Complex Pattern of Evolution of Dnmt1? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|