101
|
Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc Natl Acad Sci U S A 2011; 108:7920-5. [PMID: 21518874 DOI: 10.1073/pnas.1104423108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient to induce two genetic alterations in the Ig loci: class switch recombination (CSR) and somatic hypermutation (SHM). However, it is still unknown how a single-molecule AID differentially regulates CSR and SHM. Here we identified Spt6 as an AID-interacting protein by yeast two-hybrid screening and immunoprecipitation followed by mass spectrometry. Knockdown of Spt6 resulted in severe reduction of CSR in both the endogenous Ig locus in B cells and an artificial substrate in fibroblast cells. Conversely, knockdown of Spt6 did not reduce but slightly enhanced SHM in an artificial substrate in B cells, indicating that Spt6 is required for AID to induce CSR but not SHM. These results suggest that Spt6 is involved in differential regulation of CSR and SHM by AID.
Collapse
|
102
|
Keim C, Grinstein V, Basu U. Recombinant retroviral production and infection of B cells. J Vis Exp 2011:2371. [PMID: 21372789 DOI: 10.3791/2371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The transgenic expression of genes in eukaryotic cells is a powerful reverse genetic approach in which a gene of interest is expressed under the control of a heterologous expression system to facilitate the analysis of the resulting phenotype. This approach can be used to express a gene that is not normally found in the organism, to express a mutant form of a gene product, or to over-express a dominant-negative form of the gene product. It is particularly useful in the study of the hematopoietic system, where transcriptional regulation is a major control mechanism in the development and differentiation of B cells, reviewed. Mouse genetics is a powerful tool for the study of human genes and diseases. A comparative analysis of the mouse and human genome reveals conservation of synteny in over 90% of the genome. Also, much of the technology used in mouse models is applicable to the study of human genes, for example, gene disruptions and allelic replacement. However, the creation of a transgenic mouse requires a great deal of resources of both a financial and technical nature. Several projects have begun to compile libraries of knock out mouse strains (KOMP, EUCOMM, NorCOMM) or mutagenesis induced strains (RIKEN), which require large-scale efforts and collaboration. Therefore, it is desirable to first study the phenotype of a desired gene in a cell culture model of primary cells before progressing to a mouse model. Retroviral DNA integrates into the host DNA, preferably within or near transcription units or CpG islands, resulting in stable and heritable expression of the packaged gene of interest while avoiding transcriptional silencing. The genes are then transcribed under the control of a high efficiency retroviral promoter, resulting in a high efficiency of transcription and protein production. Therefore, retroviral expression can be used with cells that are difficult to transfect, provided the cells are in an active state during mitosis. Because the structural genes of the virus are contained within the packaging cell line, the expression vectors used to clone the gene of interest contain no structural genes of the virus, which both eliminates the possibility of viral revertants and increases the safety of working with viral supernatants as no infectious virions are produced. Here we present a protocol for recombinant retroviral production and subsequent infection of splenic B cells. After isolation, the cultured splenic cells are stimulated with Th derived lymphokines and anti-CD40, which induces a burst of B cell proliferation and differentiation. This protocol is ideal for the study of events occurring late in B cell development and differentiation, as B cells are isolated from the spleen following initial hematopoietic events but prior to antigenic stimulation to induce plasmacytic differentiation.
Collapse
Affiliation(s)
- Celia Keim
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, USA
| | | | | |
Collapse
|
103
|
Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng H, Lima CD, Alt FW. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 2011; 144:353-63. [PMID: 21255825 DOI: 10.1016/j.cell.2011.01.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/27/2010] [Accepted: 12/31/2010] [Indexed: 11/19/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) heavy-chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and nontemplate strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA-processing/degradation complex, in targeting AID to both DNA strands. In B lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for noncoding RNA surveillance machinery in generating antibody diversity.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Immune Disease Institute, Children's Hospital Boston, Department of Genetics, Harvard Medical School, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol 2011; 111:109-41. [PMID: 21970953 DOI: 10.1016/b978-0-12-385991-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human cancer is a genetic disease resulting from the stepwise accumulation of genetic alterations in various tumor-related genes. Normal mutation rates, however, cannot account for the abundant genetic changes accumulated in tumor cells, suggesting that certain molecular mechanisms underlie such a large number of genetic alterations. Activation-induced cytidine deaminase (AID), a nucleotide-editing enzyme that triggers DNA alterations and double-strand DNA breaks in the immunoglobulin gene, has been identified in activated B lymphocytes. Recent studies revealed that AID-mediated genotoxic effects target not only immunoglobulin genes but also a variety of other genes in both B lymphocytes and non-lymphoid cells. Consistent with the finding that several transcription factors including nuclear factor-κB (NF-κB) mediate AID expression in B cells, proinflammatory cytokine stimulation of several types of gastrointestinal epithelial cells, such as gastric, colonic, hepatic, and biliary epithelium, induces aberrant AID expression through the NF-κB signaling pathway. In vivo studies revealed that constitutive AID expression promotes the tumorigenic pathway by enhancing the susceptibility to mutagenesis in a variety of epithelial organs. The activity of AID as a genome mutator provides a new avenue for studies aimed at understanding mutagenesis mechanisms during carcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
105
|
Cato MH, Chintalapati SK, Yau IW, Omori SA, Rickert RC. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 2011; 31:127-37. [PMID: 20956554 PMCID: PMC3019862 DOI: 10.1128/mcb.00650-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.
Collapse
Affiliation(s)
- Matthew H. Cato
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Suresh K. Chintalapati
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Irene W. Yau
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sidne A. Omori
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert C. Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
106
|
The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat Immunol 2010; 12:160-6. [PMID: 21186367 PMCID: PMC3724472 DOI: 10.1038/ni.1977] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/01/2010] [Indexed: 01/09/2023]
Abstract
During immunoglobulin class switch recombination (CSR), activation induced cytidine deaminase (AID) induces DNA double strand breaks into transcribed, repetitive DNA elements called switch sequences. The mechanism that promotes the binding of AID specifically to switch regions remains to be elucidated. We have used a proteomic screen that employs in vivo biotinylation of AID and have identified the splicing regulator polypyrimidine tract binding protein-2 (PTBP2) as an AID interactor. Short hairpin RNA-mediated knock-down of PTBP2 in B cells led to a striking reduction in binding of AID to transcribed switch regions that resulted in marked impairment of CSR. PTBP2 is thus an effector of CSR that promotes binding of AID to switch region DNA.
Collapse
|
107
|
Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol Cell Biol 2010; 31:442-9. [PMID: 21135131 DOI: 10.1128/mcb.00349-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.
Collapse
|
108
|
Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 2010; 12:62-9. [PMID: 21113164 DOI: 10.1038/ni.1964] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/02/2010] [Indexed: 12/13/2022]
Abstract
The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.
Collapse
|
109
|
Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, Reina San-Martin B, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010; 143:122-33. [PMID: 20887897 DOI: 10.1016/j.cell.2010.09.017] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.
Collapse
Affiliation(s)
- Rushad Pavri
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Lee H, Trott JS, Haque S, McCormick S, Chiorazzi N, Mongini PKA. A Cyclooxygenase-2/Prostaglandin E2Pathway Augments Activation-Induced Cytosine Deaminase Expression within Replicating Human B Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5300-14. [DOI: 10.4049/jimmunol.1000574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
111
|
Abstract
In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation-induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | |
Collapse
|
112
|
The interaction between AID and CIB1 is nonessential for antibody gene diversification by gene conversion or class switch recombination. PLoS One 2010; 5:e11660. [PMID: 20652029 PMCID: PMC2907397 DOI: 10.1371/journal.pone.0011660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/10/2010] [Indexed: 11/19/2022] Open
Abstract
Activation-induced deaminase (AID) initiates somatic hypermutation, gene conversion and class switch recombination by deaminating variable and switch region DNA cytidines to uridines. AID is predominantly cytoplasmic and must enter the nuclear compartment to initiate these distinct antibody gene diversification reactions. Nuclear AID is relatively short-lived, as it is efficiently exported by a CRM1-dependent mechanism and it is susceptible to proteasome-dependent degradation. To help shed light on mechanisms of post-translational regulation, a yeast-based screen was performed to identify AID-interacting proteins. The calcium and integrin binding protein CIB1 was identified by sequencing and the interaction was confirmed by immunoprecipitation experiments. The AID/CIB1 resisted DNase and RNase treatment, and it is therefore unlikely to be mediated by nucleic acid. The requirement for CIB1 in AID-mediated antibody gene diversification reactions was assessed in CIB1-deficient DT40 cells and in knockout mice, but immunoglobulin gene conversion and class switch recombination appeared normal. The DT40 system was also used to show that CIB1 over-expression has no effect on gene conversion and that AID-EGFP subcellular localization is normal. These combined data demonstrate that CIB1 is not required for AID to mediate antibody gene diversification processes. It remains possible that CIB1 has an alternative, a redundant or a subtle non-limiting regulatory role in AID biology.
Collapse
|
113
|
Garin A, Meyer-Hermann M, Contie M, Figge MT, Buatois V, Gunzer M, Toellner KM, Elson G, Kosco-Vilbois MH. Toll-like Receptor 4 Signaling by Follicular Dendritic Cells Is Pivotal for Germinal Center Onset and Affinity Maturation. Immunity 2010; 33:84-95. [PMID: 20643339 DOI: 10.1016/j.immuni.2010.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/08/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
114
|
Patenaude AM, Di Noia JM. The mechanisms regulating the subcellular localization of AID. Nucleus 2010; 1:325-31. [PMID: 21327080 PMCID: PMC3027040 DOI: 10.4161/nucl.1.4.12107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 11/19/2022] Open
Abstract
Activation induced deaminase (AID) is a unique enzyme that directly introduces mutations in the immunoglobulin genes to generate antibody diversity during the humoral immune response. Since this mutator enzyme poses a measurable risk of off-target mutation, which can be deleterious or transforming for a cell, several regulatory mechanisms exist to control its activity. At least three of these mechanisms affect AID subcellular localization. It was recently found that AID is actively imported into the nucleus, most likely through importin-α/β recognizing a structural nuclear localization signal. However, AID is largely excluded from the nucleus in steady state thanks to two mechanisms. In addition to nuclear export through the exportin CRM1, a mechanism retaining AID in the cytoplasm exists. Cytoplasmic retention hinders the passive diffusion of AID into the nucleus playing an important role in the nuclear exclusion of AID. Subcellular localization of AID also determines its stability. The regulation of the nuclear fraction of AID by these many mechanisms has functional implications for antibody diversification.
Collapse
|
115
|
Maeda K, Singh SK, Eda K, Kitabatake M, Pham P, Goodman MF, Sakaguchi N. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J Biol Chem 2010; 285:23945-53. [PMID: 20507984 DOI: 10.1074/jbc.m110.131441] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AID (activation-induced cytidine deaminase) catalyzes transcription-dependent deamination of C --> U in immunoglobulin variable (IgV) regions to initiate somatic hypermutation (SHM) in germinal center B-cells. SHM is essential in generating high affinity antibodies. Here we show that when coexpressed with GANP (germinal center-associated nuclear protein) in COS-7 cells, AID is transported from the cytoplasm and concentrated in the nucleus. GANP forms a complex with AID in cotransfected cells in vivo and in vitro. We have isolated AID mutants that bind with reduced affinity to GANP compared with wild type AID. One of these mutants, AID (D143A) binds GANP with a 10-fold lower affinity compared with wild type AID yet retains substantial C-deamination activity in vitro. Mutant AID (D143A) remains localized predominantly in the cytoplasm when coexpressed with GANP. Exogenous expression of GANP in Ramos B-cells promotes binding of AID to IgV DNA and mRNA and increases SHM frequency. These data suggest that GANP may serve as an essential link required to transport AID to B-cell nuclei and to target AID to actively transcribed IgV regions.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
116
|
Kim Y, Tian M. The recruitment of activation induced cytidine deaminase to the immunoglobulin locus by a regulatory element. Mol Immunol 2010; 47:1860-5. [PMID: 20334924 DOI: 10.1016/j.molimm.2010.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Activation induced cytidine deaminase (AID) is critical for the diversification of immunoglobulin (Ig). AID is generally thought to function by deaminating cytidines into uridines in the target DNA within the Ig loci, and the subsequent processing of the uridines, through DNA repair or replication, could lead to three different forms of Ig diversification events: class switch recombination, somatic hypermutation and gene conversion. Although AID is important for effective immunity, its mutagenic activity needs to be restricted to the Ig loci in order to avoid rampant mutations in the genome. In our previous studies, we have identified an Ig lambda regulatory element (Region A) that is important for AID mediated gene conversion in chicken B cells, but its mechanism of function was unclear. In this report, we provide evidence that the regulatory element plays a role in recruiting AID to the Ig lambda locus.
Collapse
Affiliation(s)
- Yonghwan Kim
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station, A5000, Austin, TX 78712, USA
| | | |
Collapse
|
117
|
Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227-35. [DOI: 10.1093/intimm/dxq023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
118
|
Metzner M, Schuh W, Roth E, Jäck HM, Wabl M. Two forms of activation-induced cytidine deaminase differing in their ability to bind agarose. PLoS One 2010; 5:e8883. [PMID: 20111710 PMCID: PMC2811734 DOI: 10.1371/journal.pone.0008883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activation-induced cytidine deaminase (AID) is a B-cell-specific DNA mutator that plays a key role in the formation of the secondary antibody repertoire in germinal center B cells. In the search for binding partners, protein coimmunoprecipitation assays are often performed, generally with agarose beads. METHODOLOGY/PRINCIPAL FINDINGS We found that, regardless of whether cell lysates containing exogenous or endogenous AID were examined, one of two mouse AID forms bound to agarose alone. CONCLUSIONS/SIGNIFICANCE These binding characteristics may be due to the known post-translational modifications of AID; they may also need to be considered in coimmunoprecipitation experiments to avoid false-positive results.
Collapse
Affiliation(s)
- Mirjam Metzner
- Nikolaus-Fiebiger Center, Department of Internal Medicine III, Division of Molecular Immunology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
119
|
Wang M, Rada C, Neuberger MS. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. ACTA ACUST UNITED AC 2010; 207:141-53. [PMID: 20048284 PMCID: PMC2812546 DOI: 10.1084/jem.20092238] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.
Collapse
Affiliation(s)
- Meng Wang
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, England, UK
| | | | | |
Collapse
|
120
|
Inherited defects of immunoglobulin class switch recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:166-74. [PMID: 20687504 DOI: 10.1007/978-1-4419-6448-9_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The investigation of an inherited primary immunodeficiency, the immunoglobulin class switch recombination deficiency, has allowed the delineation of complex molecular events that underlie antibody maturation in humans. The Activation-induced cytidine deaminase (AID)-deficiency, characterized by a defect in Class Switch Recombination (CSR) and somatic hypermutation, has revealed the master role of this molecule in the induction of DNA damage, the first step required for these two processes. The description that mutations in the gene encoding the Uracil-DNA glycosylase (UNG) lead to defective CSR has been essential for defining the DNA-editing activity of AID. Analysis of post meiotic segregation 2 (PMS2)-deficient patients gave evidence for the role of this mismatch repair enzyme in the generation of the DNA breaks that are required for CSR. Novel findings are awaited from the study ofyet-genetically undefined CSR-deficiencies, probably leading to the identification of AID cofactor(s) and/or proteins involved in CSR-induced DNA repair.
Collapse
|
121
|
Yamagami J, Kacir S, Ishii K, Payne AS, Siegel DL, Stanley JR. Antibodies to the desmoglein 1 precursor proprotein but not to the mature cell surface protein cloned from individuals without pemphigus. THE JOURNAL OF IMMUNOLOGY 2009; 183:5615-21. [PMID: 19843946 DOI: 10.4049/jimmunol.0901691] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In pemphigus foliaceus (PF), autoantibodies against desmoglein 1 (Dsg1) cause blisters. Using Ab phage display, we have cloned mAbs from a PF patient. These mAbs, like those from a previous patient, were directed against mature Dsg1 (matDsg1) on the cell surface of keratinocytes and precursor Dsg1 (preDsg1) in the cytoplasm. To determine whether individuals without pemphigus have B cell tolerance to Dsg1, we cloned mAbs from two patients with thrombotic thrombocytopenic purpura and a healthy person. We found mAbs against preDsg1, but not matDsg1. All but 1 of the 23 anti-preDsg1 mAbs from PF patients and those without PF used the VH3-09 (or closely related VH3-20) H chain gene, whereas no PF anti-matDsg1 used these genes. V(H) cDNA encoding anti-preDsg1 had significantly fewer somatic mutations than did anti-matDsg1 cDNA, consistent with chronic Ag-driven hypermutation of the latter compared with the former. These data indicate that individuals without PF do not have B cell tolerance to preDsg1 and that loss of tolerance to matDsg1 is not due to epitope shifting of anti-preDsg1 B cells (because of different V(H) gene usage). However, presentation of peptides from Dsg1 by preDsg1-specific B cells may be one step in developing autoimmunity in PF.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
122
|
A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 2009; 10:1147-53. [PMID: 19841648 DOI: 10.1038/ni.1799] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery and characterization of activation-induced cytidine deaminase (AID) 10 years ago provided the basis for a mechanistic understanding of secondary antibody diversification and the subsequent generation and maintenance of cellular memory in B lymphocytes, which signified a major advance in the field of B cell immunology. Here we celebrate and review the triumphs in the mission to understand the mechanisms through which AID influences antibody diversification, as well as the implications of AID function on human physiology. We also take time to point out important ongoing controversies and outstanding questions in the field and highlight key experiments and techniques that hold the potential to elucidate the remaining mysteries surrounding this vital protein.
Collapse
|
123
|
Prochnow C, Bransteitter R, Chen XS. APOBEC deaminases-mutases with defensive roles for immunity. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:893-902. [PMID: 19911124 DOI: 10.1007/s11427-009-0133-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.
Collapse
Affiliation(s)
- Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
124
|
Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochem Soc Trans 2009; 37:561-8. [PMID: 19442251 DOI: 10.1042/bst0370561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation. Among these regulatory processes, AID phosphorylation at Ser(38) has been a focus of particularly intense study and debate. In the present paper, we discuss recent biochemical and mouse genetic studies that begin to elucidate the functional significance of AID Ser(38) phosphorylation in the context of the evolution of this mode of AID regulation and the potential roles that it may play in activated B-cells during a normal immune response.
Collapse
|
125
|
Ordinario EC, Yabuki M, Larson RP, Maizels N. Temporal regulation of Ig gene diversification revealed by single-cell imaging. THE JOURNAL OF IMMUNOLOGY 2009; 183:4545-53. [PMID: 19748985 DOI: 10.4049/jimmunol.0900673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rearranged Ig V regions undergo activation-induced cytidine deaminase (AID)-initiated diversification in sequence to produce either nontemplated or templated mutations, in the related pathways of somatic hypermutation and gene conversion. In chicken DT40 B cells, gene conversion normally predominates, producing mutations templated by adjacent pseudo-V regions, but impairment of gene conversion switches mutagenesis to a nontemplated pathway. We recently showed that the activator, E2A, functions in cis to promote diversification, and that G(1) phase of cell cycle is the critical window for E2A action. By single-cell imaging of stable AID-yellow fluorescent protein transfectants, we now demonstrate that AID-yellow fluorescent protein can stably localize to the nucleus in G(1) phase, but undergoes ubiquitin-dependent proteolysis later in cell cycle. By imaging of DT40 polymerized lactose operator-lambda(R) cells, in which polymerized lactose operator tags the rearranged lambda(R) gene, we show that both the repair polymerase Poleta and the multifunctional factor MRE11/RAD50/NBS1 localize to lambda(R), and that lambda(R)/Poleta colocalizations occur predominately in G(1) phase, when they reflect repair of AID-initiated damage. We find no evidence of induction of gamma-H2AX, the phosphorylated variant histone that is a marker of double-strand breaks, and Ig gene conversion may therefore proceed by a pathway involving templated repair at DNA nicks rather than double-strand breaks. These results lead to a model in which Ig gene conversion initiates and is completed or nearly completed in G(1) phase. AID deaminates ssDNA, and restriction of mutagenesis to G(1) phase would contribute to protecting the genome from off-target attack by AID when DNA replication occurs in S phase.
Collapse
Affiliation(s)
- Ellen C Ordinario
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
126
|
Wang M, Yang Z, Rada C, Neuberger MS. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol 2009; 16:769-76. [PMID: 19543289 PMCID: PMC4851237 DOI: 10.1038/nsmb.1623] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/22/2009] [Indexed: 11/09/2022]
Abstract
DNA deaminases underpin pathways in antibody diversification (AID) and anti-viral immunity (APOBEC3s). Here we show how a high-throughput bacterial papillation assay can be used to screen for AID mutants with increased catalytic activity. The upmutations focus on a small number of residues, some highlighting regions likely implicated in AID’s substrate interaction. Notably, many of the upmutations bring the sequence of AID closer to that of APOBEC3s. AID upmutants can yield increased antibody diversification, raising the possibility that modification of AID’s specific activity might be used to regulate antibody diversification in vivo. However, upmutation of AID also led to increased frequency of chromosomal translocations suggesting that AID’s specific activity may have been limited by the risk of genomic instability.
Collapse
Affiliation(s)
- Meng Wang
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
127
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
128
|
V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci U S A 2009; 106:8629-34. [PMID: 19443686 DOI: 10.1073/pnas.0903803106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The somatic hypermutation of Ig variable regions requires the activity of activation-induced cytidine deaminase (AID) which has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) motif hot spots in in vivo and in vitro assays. We compared mutation profiles of in vitro assays for the 3' flanking intron of VhJ558-Jh4 region to previously reported in vivo profiles for the same region in the Msh2(-/-)Ung(-/-) mice that lack base excision and mismatch repair. We found that the in vitro and in vivo mutation profiles were highly correlated for the top (nontranscribed) strand, while for the bottom (transcribed) strand the correlation is far lower. We used an in silico model of AID activity to elucidate the relative importance of motif targeting in vivo. We found that the mutation process entails substantial complexity beyond motif targeting, a large part of which is captured in vitro. To elucidate the contribution of the sequence environment to the observed differences between the top and bottom strands, we analyzed intermutational distances. The bottom strand shows an approximately exponential distribution of distances in vivo and in vitro, as expected from a null model. However, the top strand deviates strongly from this distribution in that mutations approximately 50 nucleotides apart are greatly reduced, again both in vivo and in vitro, illustrating an important strand asymmetry. While we have confirmed that AID targeting of hot and cold spots is a key part of the mutation process, our results suggest that the sequence environment plays an equally important role.
Collapse
|
129
|
Patenaude AM, Orthwein A, Hu Y, Campo VA, Kavli B, Buschiazzo A, Di Noia JM. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat Struct Mol Biol 2009; 16:517-27. [PMID: 19412186 DOI: 10.1038/nsmb.1598] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 04/02/2009] [Indexed: 11/09/2022]
Abstract
The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.
Collapse
|
130
|
|
131
|
Chelico L, Pham P, Goodman MF. Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci 2009; 364:583-93. [PMID: 19022738 DOI: 10.1098/rstb.2008.0195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activation-induced (cytidine) deaminase (AID) efficiently introduces multiple and diversified deaminations in immunoglobulin (Ig) variable and switch regions. Here, we review studies of AID, and the APOBEC family member, APOBEC3G, demonstrating that both enzymes introduce multiple deaminations by processive action on single-stranded DNA and that deaminations occur stochastically at hot- and cold-spot targets. In a more detailed analysis of AID, we examine phosphorylation-null mutants, particularly, S38A and S43P. S43P mutant AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. The phosphorylation-null mutants have essentially the same specific activity, processivity and ability to undergo transcription-dependent deamination compared with wild-type (WT) AID. Although the phosphorylation-null mutants still deaminate 5'-WRC hot spots, the mutant deamination spectra differ from WT AID. The mutants strongly prefer two motifs, 5'AGC and 5'GGC, which are disfavoured by WT AID. Differences in deamination specificities can be attributed primarily to the replacement of Ser rather than to the absence of phosphorylation. The 5'GGC motif occurs with exceptionally high frequency on the non-transcribed strand of human switch regions, IgG4 and IgE. The potential for S43P to catalyse large numbers of aberrant deaminations in switch region sequences suggests a possible relationship between non-canonical AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
132
|
Durandy A. Immunoglobulin class switch recombination: study through human natural mutants. Philos Trans R Soc Lond B Biol Sci 2009; 364:577-82. [PMID: 19008192 DOI: 10.1098/rstb.2008.0210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin class switch recombination deficiencies in humans are exquisite models to analyse the mechanisms of class switch recombination (CSR). Besides defects in CD40L/CD40 interaction, others result from an intrinsic B-cell deficiency. The recent elucidation of the molecular basis of some of them has made it possible to delineate the molecular events involved in antibody maturation. Activation-induced (cytidine) deaminase (AID) and uracil-N-glycosylase deficiencies have demonstrated the role of AID as the inducer of DNA lesions in switch and variable regions. However, most of these CSR deficiencies remain molecularly undefined. Their characterization would lead to a better understanding of the complex machinery involved in CSR.
Collapse
|
133
|
Basu U, Franklin A, Alt FW. Post-translational regulation of activation-induced cytidine deaminase. Philos Trans R Soc Lond B Biol Sci 2009; 364:667-73. [PMID: 19010772 DOI: 10.1098/rstb.2008.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The assembled immunoglobulin genes in the B cells of mice and humans are altered by distinct processes known as class switch recombination (CSR) and somatic hypermutation, leading to diversification of the antibody repertoire. These two DNA modification processes are initiated by the B cell-specific protein factor activation-induced cytidine deaminase (AID). AID is post-translationally modified by phosphorylation at multiple sites, although functional significance during CSR has been implicated only for phosphorylation at serine-38 (S38). Although multiple laboratories have demonstrated that AID function is regulated via phosphorylation at S38, the precise biological role of S38 phosphorylation has been a topic of debate. Here, we discuss our interpretation of the significance of AID regulation via phosphorylation and also discuss how this form of AID regulation may have evolved in higher organisms.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
134
|
Vuong BQ, Lee M, Kabir S, Irimia C, Macchiarulo S, McKnight GS, Chaudhuri J. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat Immunol 2009; 10:420-6. [PMID: 19234474 DOI: 10.1038/ni.1708] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/09/2022]
Abstract
Immunoglobulin class-switch recombination (CSR) requires activation-induced cytidine deaminase (AID). Deamination of DNA by AID in transcribed switch (S) regions leads to double-stranded breaks in DNA that serve as obligatory CSR intermediates. Here we demonstrate that the catalytic and regulatory subunits of protein kinase A (PKA) were specifically recruited to S regions to promote the localized phosphorylation of AID, which led to binding of replication protein A and subsequent propagation of the CSR cascade. Accordingly, inactivation of PKA resulted in considerable disruption of CSR because of decreased AID phosphorylation and recruitment of replication protein A to S regions. We propose that PKA nucleates the formation of active AID complexes specifically on S regions to generate the high density of DNA lesions required for CSR.
Collapse
Affiliation(s)
- Bao Q Vuong
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci U S A 2009; 106:2717-22. [PMID: 19196992 DOI: 10.1073/pnas.0812304106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA-specific cytidine deaminase that initiates Ig heavy chain (IgH) class switch recombination (CSR) and Ig somatic hypermutation (SHM) by deaminating cytidines within, respectively, IgH switch (S) regions and Ig variable region (V) exons. AID that is phosphorylated on serine residue 38 interacts with replication protein A (RPA), a ssDNA binding protein, to promote deamination of transcribed double-stranded DNA in vitro, which, along with other evidence, suggests that AID may similarly gain access to transcribed S regions and V exons in vivo. However, the physiological role of AID phosphorylation at serine residue 38 (S38), and even the requirement for the S38 residue, with respect to CSR or SHM has been debated. To address this issue, we used gene targeting to generate an endogenous mouse AID locus that produces AID in which S38 is substituted with alanine (AID(S38A)), a mutant form of AID that retains similar catalytic activity on ssDNA as WT AID (AID(WT)). B cells homozygous for the AID(S38A) mutation show substantially impaired CSR and SHM, correlating with inability of AID(S38A) to interact with endogenous RPA. Moreover, mice haploinsufficient for AID(S38A) have even more severely impaired CSR when compared with mice haploinsufficient for AID(WT), with CSR levels reduced to nearly background levels. These results unequivocally demonstrate that integrity of the AID S38 phosphorylation site is required for normal CSR and SHM in mice and strongly support a role for AID phosphorylation at S38 and RPA interaction in regulating CSR and SHM.
Collapse
|
136
|
MacDuff DA, Demorest ZL, Harris RS. AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res 2009; 37:1854-67. [PMID: 19188259 PMCID: PMC2665220 DOI: 10.1093/nar/gkp030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrotransposons make up over 40% of the mammalian genome. Some copies are still capable of mobilizing and new insertions promote genetic variation. Several members of the APOBEC3 family of DNA cytosine deaminases function to limit the replication of a variety of retroelements, such as the long-terminal repeat (LTR)-containing MusD and Ty1 elements, and that of the non-LTR retrotransposons, L1 and Alu. However, the APOBEC3 genes are limited to mammalian lineages, whereas retrotransposons are far more widespread. This raises the question of what cellular factors control retroelement transposition in species that lack APOBEC3 genes. A strong phylogenetic case can be made that an ancestral activation-induced deaminase (AID)-like gene duplicated and diverged to root the APOBEC3 lineage in mammals. Therefore, we tested the hypothesis that present-day AID proteins possess anti-retroelement activity. We found that AID can inhibit the retrotransposition of L1 through a DNA deamination-independent mechanism. This mechanism may manifest in the cytoplasmic compartment co- or posttranslationally. Together with evidence for AID expression in the ovary, our data combined to suggest that AID has innate immune functions in addition to its integral roles in creating antibody diversity.
Collapse
Affiliation(s)
- Donna A MacDuff
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
137
|
Maul RW, Gearhart PJ. Women, autoimmunity, and cancer: a dangerous liaison between estrogen and activation-induced deaminase? ACTA ACUST UNITED AC 2009; 206:11-3. [PMID: 19139165 PMCID: PMC2626682 DOI: 10.1084/jem.20080086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Why women are more susceptible to autoimmune diseases is not completely clear, but new data suggest that the hormone estrogen may play an important role. A new study now shows that estrogen activates the expression of activation-induced deaminase (AID), a protein that drives antibody diversification by deaminating cytosine in DNA to uracil. If estrogen increases the level of AID, increased mutations could transform benign antibodies into anti-self pariahs. AID might also contribute to cancer--particularly in breast tissue, which is highly responsive to estrogen--by introducing mutations and strand breaks into the genome.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
138
|
Basu U, Wang Y, Alt FW. Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. Mol Cell 2008; 32:285-91. [PMID: 18951095 PMCID: PMC2597080 DOI: 10.1016/j.molcel.2008.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/15/2008] [Accepted: 08/20/2008] [Indexed: 01/23/2023]
Abstract
Interaction of activation-induced cytidine deaminase (AID) with replication protein A (RPA) has been proposed to promote AID access to transcribed double-stranded (ds) DNA during immunoglobulin light chain and heavy chain class switch recombination (CSR). Mouse AID (mAID) interaction with RPA and transcription-dependent dsDNA deamination in vitro requires protein kinase A (PKA) phosphorylation at serine 38 (S38), and normal mAID CSR activity depends on S38. However, zebrafish AID (zAID) catalyzes robust CSR in mouse cells despite lacking an S38-equivalent PKA site. Here, we show that aspartate 44 (D44) in zAID provides similar in vitro and in vivo functionality as mAID S38 phosphorylation. Moreover, introduction of a PKA site into a zAID D44 mutant made it PKA dependent for in vitro activities and restored normal CSR activity. Based on these findings, we generated mAID mutants that similarly function independently of S38 phosphorylation. Comparison of bony fish versus amphibian and mammalian AIDs suggests evolutionary divergence from constitutive to PKA-regulated RPA/AID interaction.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Harvard Medical School, and the Immune Disease Institute, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
139
|
Wang Y, Chen G, Yang Y, Hu Z, Chen X. A systems biology analysis of protein-protein interactions in the APOBEC family. Life Sci 2008; 83:521-30. [PMID: 18793652 DOI: 10.1016/j.lfs.2008.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
AIMS The APOBEC (apolipoprotein B mRNA-editing catalytic polypeptide) family of cytidine deaminases inhibits the mobility of diverse retroviruses, retrotransposons and other viruses. This group of apolipoproteins is widely distributed in living organisms and plays a central role in diverse enzymatic pathways. Nevertheless, the interplay between APOBECs and innate immune proteins, as well as the role of APOBECs in protecting the host cell from viral infection are poorly understood. To elucidate the association between human APOBECs and immune system, a systems biology study was performed to identify various proteins involved in the function of APOBEC proteins. MAIN METHODS This identification utilized an integrated database and literature network of protein-protein interactions combined with nine microarray experiments. KEY FINDINGS Considering our systems biology data, we can infer some modes of action of APOBECs through interactions with proteins associated with the immune system. SIGNIFICANCE This study presents a comprehensive analysis of the APOBEC network, highlighting those proteins that have a higher probability of playing an important role with APOBECs in the innate immune system.
Collapse
Affiliation(s)
- Yi Wang
- College of Bioengineering, Chongqing University, Shapingba, Chongqing 400044, China
| | | | | | | | | |
Collapse
|
140
|
McBride KM, Gazumyan A, Woo EM, Schwickert TA, Chait BT, Nussenzweig MC. Regulation of class switch recombination and somatic mutation by AID phosphorylation. ACTA ACUST UNITED AC 2008; 205:2585-94. [PMID: 18838546 PMCID: PMC2571933 DOI: 10.1084/jem.20081319] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.
Collapse
Affiliation(s)
- Kevin M McBride
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
141
|
Shirakawa K, Takaori-Kondo A, Yokoyama M, Izumi T, Matsui M, Io K, Sato T, Sato H, Uchiyama T. Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nat Struct Mol Biol 2008; 15:1184-91. [DOI: 10.1038/nsmb.1497] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/05/2008] [Indexed: 12/24/2022]
|
142
|
Conticello SG, Ganesh K, Xue K, Lu M, Rada C, Neuberger MS. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol Cell 2008; 31:474-484. [PMID: 18722174 DOI: 10.1016/j.molcel.2008.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 06/16/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Activation-induced deaminase (AID) deaminates deoxycytidine residues in immunoglobulin genes, triggering antibody diversification. Here, by use of two-hybrid and coimmunoprecipitation assays, we identify CTNNBL1 (also known as NAP) as an AID-specific interactor. Mutants of AID that interfere with CTNNBL1 interaction yield severely diminished hypermutation and class switching. Targeted inactivation of CTNNBL1 in DT40 B cells also considerably diminishes IgV diversification. CTNNBL1 is a widely expressed nuclear protein that associates with the Prp19 complex of the spliceosome, interacting with its CDC5L component. The results, therefore, identify residues in AID involved in its in vivo targeting and suggest they might act through interaction with CTNNBL1, giving possible insight into the linkage between AID recruitment and target-gene transcription.
Collapse
Affiliation(s)
- Silvestro G Conticello
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | - Karuna Ganesh
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kanmin Xue
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Mason Lu
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Michael S Neuberger
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
143
|
Pham P, Zhang K, Goodman MF. Hypermutation at A/T sites during G.U mismatch repair in vitro by human B-cell lysates. J Biol Chem 2008; 283:31754-62. [PMID: 18786917 DOI: 10.1074/jbc.m805524200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Somatic hypermutation in the variable regions of immunoglobulin genes is required to produce high affinity antibody molecules. Somatic hypermutation results by processing G.U mismatches generated when activation-induced cytidine deaminase (AID) deaminates C to U. Mutations at C/G sites are targeted mainly at deamination sites, whereas mutations at A/T sites entail error-prone DNA gap repair. We used B-cell lysates to analyze salient features of somatic hypermutation with in vitro mutational assays. Tonsil and hypermutating Ramos B-cells convert C-->U in accord with AID motif specificities, whereas HeLa cells do not. Using tonsil cell lysates to repair a G.U mismatch, A/T and G/C targeted mutations occur about equally, whereas Ramos cell lysates make fewer mutations at A/T sites (approximately 24%) compared with G/C sites (approximately 76%). In contrast, mutations in HeLa cell lysates occur almost exclusively at G/C sites (> 95%). By recapitulating two basic features of B-cell-specific somatic hypermutation, G/C mutations targeted to AID hot spot motifs and elevated A/T mutations dependent on error-prone processing of G.U mispairs, these cell free assays provide a practical method to reconstitute error-prone mismatch repair using purified B-cell proteins.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | |
Collapse
|
144
|
Abstract
The AID/APOBECs, a group of cytidine deaminases, represent a somewhat unusual protein family that can insert mutations in DNA and RNA as a result of their ability to deaminate cytidine to uridine. The ancestral AID/APOBECs originated from a branch of the zinc-dependent deaminase superfamily at the beginning of the vertebrate radiation. Other members of the family have arisen in mammals and present a history of complex gene duplications and positive selection. All AID/APOBECs have a characteristic zinc-coordination motif, which forms the core of the catalytic site. The crystal structure of human APOBEC2 shows remarkable similarities to that of the bacterial tRNA-editing enzyme TadA, which suggests a conserved mechanism by which polynucleotides are recognized and deaminated. The AID/APOBECs seem to have diverse roles. AID and the APOBEC3s are DNA mutators, acting in antigen-driven antibody diversification processes and in an innate defense system against retroviruses, respectively. APOBEC1 edits the mRNA for apolipoprotein B, a protein involved in lipid transport. A detailed understanding of the biological roles of the family is still some way off, however, and the functions of some members of the family are completely unknown. Given their ability to mutate DNA, a role for the AID/APOBECs in the onset of cancer has been proposed.
Collapse
Affiliation(s)
- Silvestro G Conticello
- Core Research Laboratory, Istituto Toscano Tumori, Florence, Via Cosimo il Vecchio 2, 50139 Firenze, Italy.
| |
Collapse
|
145
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012, USA.
| | | | | |
Collapse
|
146
|
Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD. The biochemistry of somatic hypermutation. Annu Rev Immunol 2008; 26:481-511. [PMID: 18304001 DOI: 10.1146/annurev.immunol.26.021607.090236] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Affinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.
Collapse
Affiliation(s)
- Jonathan U Peled
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
The immunoglobulin (Ig) repertoire achieves functional diversification through several somatic alterations of the Ig locus. One of these processes, somatic hypermutation (SHM), deposits point mutations into the variable region of the Ig gene to generate higher-affinity variants. Activation-induced cytidine deaminase (AID) converts cytidine to uridine to initiate the hypermutation process. Error-prone versions of DNA repair are believed to then process these lesions into a diverse spectrum of point mutations. We review the current understanding of the molecular mechanisms and regulation of SHM, and also discuss emerging ideas which merit further exploration.
Collapse
Affiliation(s)
- Grace Teng
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
148
|
Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, Reynaud CA. Proteasomal degradation restricts the nuclear lifespan of AID. ACTA ACUST UNITED AC 2008; 205:1357-68. [PMID: 18474627 PMCID: PMC2413033 DOI: 10.1084/jem.20070950] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates all postrearrangement processes that diversify the immunoglobulin repertoire by specific deamination of cytidines at the immunoglobulin (Ig) locus. As uncontrolled expression of AID is potentially mutagenic, different types of regulation, particularly nucleocytoplasmic shuttling, restrict the likelihood of AID–deoxyribonucleic acid encounters. We studied additional mechanisms of regulation affecting the stability of the AID protein. No modulation of protein accumulation according to the cell cycle was observed in a Burkitt's lymphoma cell line. In contrast, the half-life of AID was markedly reduced in the nucleus, and this destabilization was accompanied by a polyubiquitination that was revealed in the presence of proteasome inhibitors. The same compartment-specific degradation was observed in activated mouse B cells, and also in a non–B cell line. No specific lysine residues could be linked to this degradation, so it remains unclear whether polyubiquitination proceeds through several alternatives sites or through the protein N terminus. The nuclear-restricted form of AID displayed enhanced mutagenicity at both Ig and non-Ig loci, most notably at TP53, suggesting that modulation of nuclear AID content through proteasomal degradation may represent another level of control of AID activity.
Collapse
Affiliation(s)
- Said Aoufouchi
- Institut National de la Santé et de la Recherche Médicale U783, Développement du Système Immunitaire, and Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
149
|
Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, Eisenreich T, Rajewsky K, Nussenzweig MC. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 2008; 28:630-8. [PMID: 18455451 DOI: 10.1016/j.immuni.2008.04.002] [Citation(s) in RCA: 360] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate vast networks of genes that share miRNA target sequences. To examine the physiologic effects of an individual miRNA-mRNA interaction in vivo, we generated mice that carry a mutation in the putative microRNA-155 (miR-155) binding site in the 3'-untranslated region of activation-induced cytidine deaminase (AID), designated Aicda(155) mice. AID is required for immunoglobulin gene diversification in B lymphocytes, but it also promotes chromosomal translocations. Aicda(155) caused an increase in steady-state Aicda mRNA and protein amounts by increasing the half-life of the mRNA, resulting in a high degree of Myc-Igh translocations. A similar but more pronounced translocation phenotype was also found in miR-155-deficient mice. Our experiments indicate that miR-155 can act as a tumor suppressor by reducing potentially oncogenic translocations generated by AID.
Collapse
Affiliation(s)
- Yair Dorsett
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28:621-9. [PMID: 18450484 DOI: 10.1016/j.immuni.2008.03.015] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 02/06/2008] [Accepted: 03/04/2008] [Indexed: 12/18/2022]
Abstract
B lymphocytes perform somatic hypermutation and class-switch recombination (CSR) of the immunoglobulin locus to generate an antibody repertoire diverse in both affinity and function. These somatic diversification processes are catalyzed by activation-induced cytidine deaminase (AID), a potent DNA mutator whose expression and function are highly regulated. Here we show that AID was regulated posttranscriptionally by a lymphocyte-specific microRNA, miR-155. We found that miR-155 was upregulated in murine B lymphocytes undergoing CSR and that it targeted a conserved site in the 3'-untranslated region of the mRNA encoding AID. Disruption of this target site in vivo resulted in quantitative and temporal deregulation of AID expression, along with functional consequences for CSR and affinity maturation. Thus, miR-155, which has recently been shown to play important roles in regulating the germinal-center reaction, does so in part by directly downmodulating AID expression.
Collapse
Affiliation(s)
- Grace Teng
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|