101
|
Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat Commun 2014; 5:3827. [PMID: 24871041 PMCID: PMC4046108 DOI: 10.1038/ncomms4827] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022] Open
Abstract
α-synuclein (αS) is a protein involved in neurotransmitter release in presynaptic terminals, and whose aberrant aggregation is associated with Parkinson's disease. In dopaminergic neurons, αS exists in a tightly regulated equilibrium between water-soluble and membrane-associated forms. Here we use a combination of solid-state and solution NMR spectroscopy to characterize the conformations of αS bound to lipid membranes mimicking the composition and physical properties of synaptic vesicles. The study shows three αS regions possessing distinct structural and dynamical properties, including an N-terminal helical segment having a role of membrane anchor, an unstructured C-terminal region that is weakly associated with the membrane and a central region acting as a sensor of the lipid properties and determining the affinity of αS membrane binding. Taken together, our data define the nature of the interactions of αS with biological membranes and provide insights into their roles in the function of this protein and in the molecular processes leading to its aggregation.
Collapse
|
102
|
Abstract
Here we present the structure of the T1 domain derived from the voltage-dependent potassium channel K(v)1.3 of Homo sapiens sapiens at 1.2 Å resolution crystallized under near-physiological conditions. The crystals were grown without precipitant in 150 mM KP(i), pH 6.25. The crystals show I4 symmetry typical of the natural occurring tetrameric assembly of the single subunits. The obtained structural model is based on the highest resolution currently achieved for tetramerization domains of voltage-gated potassium channels. We identified an identical fold of the monomer but inside the tetramer the single monomers show a significant rotation which leads to a different orientation of the tetramer compared to other known structures. Such a rotational movement inside the tetrameric assembly might influence the gating properties of the channel. In addition we see two distinct side chain configurations for amino acids located in the top layer proximal to the membrane (Tyr109, Arg116, Ser129, Glu140, Met142, Arg146), and amino acids in the bottom layer of the T1-domain distal from the membrane (Val55, Ile56, Leu77, Arg86). The relative populations of these two states are ranging from 50:50 for Val55, Tyr109, Arg116, Ser129, Glu140, 60:40 for Met142, 65:35 for Arg86, 70:30 for Arg146, and 80:20 for Ile56 and Leu77. The data suggest that in solution these amino acids are involved in an equilibrium of conformational states that may be coupled to the functional states of the whole potassium channel.
Collapse
|
103
|
Molecular dynamics simulations of scorpion toxin recognition by the Ca(2+)-activated potassium channel KCa3.1. Biophys J 2014; 105:1829-37. [PMID: 24138859 DOI: 10.1016/j.bpj.2013.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
The Ca(2+)-activated channel of intermediate-conductance (KCa3.1) is a target for antisickling and immunosuppressant agents. Many small peptides isolated from animal venoms inhibit KCa3.1 with nanomolar affinities and are promising drug scaffolds. Although the inhibitory effect of peptide toxins on KCa3.1 has been examined extensively, the structural basis of toxin-channel recognition has not been understood in detail. Here, the binding modes of two selected scorpion toxins, charybdotoxin (ChTx) and OSK1, to human KCa3.1 are examined in atomic detail using molecular dynamics (MD) simulations. Employing a homology model of KCa3.1, we first determine conduction properties of the channel using Brownian dynamics and ascertain that the simulated results are in accord with experiment. The model structures of ChTx-KCa3.1 and OSK1-KCa3.1 complexes are then constructed using MD simulations biased with distance restraints. The ChTx-KCa3.1 complex predicted from biased MD is consistent with the crystal structure of ChTx bound to a voltage-gated K(+) channel. The dissociation constants (Kd) for the binding of both ChTx and OSK1 to KCa3.1 determined experimentally are reproduced within fivefold using potential of mean force calculations. Making use of the knowledge we gained by studying the ChTx-KCa3.1 complex, we attempt to enhance the binding affinity of the toxin by carrying out a theoretical mutagenesis. A mutant toxin, in which the positions of two amino acid residues are interchanged, exhibits a 35-fold lower Kd value for KCa3.1 than that of the wild-type. This study provides insight into the key molecular determinants for the high-affinity binding of peptide toxins to KCa3.1, and demonstrates the power of computational methods in the design of novel toxins.
Collapse
|
104
|
Wettwer E, Terlau H. Pharmacology of voltage-gated potassium channel Kv1.5--impact on cardiac excitability. Curr Opin Pharmacol 2014; 15:115-21. [PMID: 24632326 DOI: 10.1016/j.coph.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/24/2023]
Abstract
Voltage activated potassium (Kv) channels are intensely investigated targets within the pharmacological strategies to treat cardiac arrhythmia. For atrial fibrillation (AF) substances inhibiting the ultra rapid outward rectifying Kv current (IKur) and its underlying Kv1.5 channel have been developed. Here we describe potential limitations of this approach with respect to critical parameters of Kv channel pharmacology. In healthy tissue IKur/Kv1.5 inhibition can unexpectedly lead to action potential shortening with corresponding arrhythmogenic effects. In tissue with chronic AF, electrical remodeling occurs which is accompanied with changes in ion channel expression and composition. As a consequence atrial tissue exhibits a different pharmacological fingerprint. New strategies to obtain more mechanistic insight into drug target interaction are needed for better understanding the pharmacological potential of IKur/Kv1.5 inhibition for AF treatment.
Collapse
Affiliation(s)
- Erich Wettwer
- Department of Pharmacology and Toxicology, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Heinrich Terlau
- Institute of Physiology, University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany.
| |
Collapse
|
105
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-Resonance Magic-Angle Spinning NMR Spectroscopy of Deuterated Solid Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
106
|
Sinnige T, Weingarth M, Renault M, Baker L, Tommassen J, Baldus M. Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility. J Mol Biol 2014; 426:2009-21. [PMID: 24530687 DOI: 10.1016/j.jmb.2014.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 11/24/2022]
Abstract
The outer membrane protein BamA is the key player in β-barrel assembly in Gram-negative bacteria. Despite the availability of high-resolution crystal structures, the dynamic behavior of the transmembrane domain and the large periplasmic extension consisting of five POTRA (POlypeptide-TRansport-Associated) domains remains unclear. We demonstrate reconstitution of full-length BamA in proteoliposomes at low lipid-to-protein ratio, leading to high sensitivity and resolution in solid-state NMR (ssNMR) experiments. We detect POTRA domains in ssNMR experiments probing rigid protein segments in our preparations. These results suggest that the periplasmic region of BamA is firmly attached to the β-barrel and does not experience fast global motion around the angle between POTRA 2 and 3. We show that this behavior holds at lower protein concentrations and elevated temperatures. Chemical shift variations observed after reconstitution in lipids with different chain lengths and saturation levels are compatible with conformational plasticity of BamA's transmembrane domain. Electron microscopy of the ssNMR samples shows that BamA can cause local disruptions of the lipid bilayer in proteoliposomes. The observed interplay between protein-protein and protein-lipid interactions may be critical for BamA-mediated insertion of substrates into the outer membrane.
Collapse
Affiliation(s)
- Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marie Renault
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lindsay Baker
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
107
|
Parthasarathy S, Yoo B, McElheny D, Tay W, Ishii Y. Capturing a reactive state of amyloid aggregates: NMR-based characterization of copper-bound Alzheimer disease amyloid β-fibrils in a redox cycle. J Biol Chem 2014; 289:9998-10010. [PMID: 24523414 DOI: 10.1074/jbc.m113.511345] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu(+)/Cu(2+) with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu(+)/Cu(2+) and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ~60 μM hydrogen peroxide (H2O2) from a solution of 20 μM Cu(2+) ions in complex with Aβ(1-40) in fibrils ([Cu(2+)]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (~1 mM). Furthermore, SSNMR (1)H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu(2+) into diamagnetic Cu(+) occurs while the reactive Cu(+) ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu(+) bound to Aβ back to Cu(2+), which allows for continuous production of H2O2. Both (13)C and (15)N SSNMR results show that Cu(+) coordinates to Aβ(1-40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu(2+) coordination via Nε in the redox cycle. (13)C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu(+) binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu(+) centers.
Collapse
|
108
|
|
109
|
Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V. Conformational Dynamics of a Seven Transmembrane Helical Protein Anabaena Sensory Rhodopsin Probed by Solid-State NMR. J Am Chem Soc 2014; 136:2833-42. [DOI: 10.1021/ja411633w] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Jochem Struppe
- Bruker Biospin Ltd., Billerica, Massachusetts 01821, United States
| | | | - Józef R. Lewandowski
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
110
|
Sinnige T, Daniëls M, Baldus M, Weingarth M. Proton clouds to measure long-range contacts between nonexchangeable side chain protons in solid-state NMR. J Am Chem Soc 2014; 136:4452-5. [PMID: 24467345 DOI: 10.1021/ja412870m] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.
Collapse
Affiliation(s)
- Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University , 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
111
|
Morag O, Abramov G, Goldbourt A. Complete chemical shift assignment of the ssDNA in the filamentous bacteriophage fd reports on its conformation and on its interface with the capsid shell. J Am Chem Soc 2014; 136:2292-301. [PMID: 24447194 DOI: 10.1021/ja412178n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fd bacteriophage is a filamentous virus consisting of a circular single-stranded DNA (ssDNA) wrapped by thousands of copies of a major coat protein subunit (the capsid). The coat protein subunits are mostly α-helical and curved, and are arranged in the capsid in consecutive pentamers related by a translation along the main viral axis and a rotation of ~36° (C5S2 symmetry). The DNA is right-handed and helical, but information on its structure and on its interface with the capsid is incomplete. We present here an approach for assigning the DNA nucleotides and studying its interactions with the capsid by magic-angle spinning solid-state NMR. Capsid contacts with the ssDNA are obtained using a two-dimensional (13)C-(13)C correlation experiment and a proton-mediated (31)P-(13)C polarization transfer experiment, both acquired on an aromatic-unlabeled phage sample. Our results allow us to map the residues that face the interior of the capsid and to show that the ssDNA-capsid interactions are sustained mainly by electrostatic interactions between the positively charged lysine side chains and the phosphate backbone. The use of natural abundance aromatic amino acids in the growth media facilitated the complete assignment of the four nucleotides and the observation of internucleotide contacts. Using chemical shift analysis, our study shows that structural features of the deoxyribose carbons reporting on the sugar pucker are strikingly similar to those observed recently for the Pf1 phage. However, the ssDNA-protein interface is different, and chemical shift markers of base pairing are different. This experimental approach can be utilized in other filamentous and icosahedral bacteriophages, and also in other biomolecular complexes involving structurally and functionally important DNA-protein interactions.
Collapse
Affiliation(s)
- Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
112
|
Akbey Ü, Nieuwkoop AJ, Wegner S, Voreck A, Kunert B, Bandara P, Engelke F, Nielsen NC, Oschkinat H. Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins. Angew Chem Int Ed Engl 2014; 53:2438-42. [PMID: 24474388 DOI: 10.1002/anie.201308927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/03/2013] [Indexed: 11/12/2022]
Abstract
(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H excitation instead of (1)H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.
Collapse
Affiliation(s)
- Ümit Akbey
- Leibniz Institute for Molecular Pharmacology, Robert Roessle Str. 10, 13125 Berlin (Germany).
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Weingarth M, van der Cruijsen EAW, Ostmeyer J, Lievestro S, Roux B, Baldus M. Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes. J Am Chem Soc 2014; 136:2000-7. [PMID: 24410583 DOI: 10.1021/ja411450y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recovery in K(+) channels, that is, the transition from the inactivated nonconductive selectivity filter conformation toward the conductive conformation, occurs on a time scale of the order of seconds, which is astonishingly long, given that the structural differences among the filter conformations are faint (<1 Å). Computational studies and electrophysiological measurements suggested that buried water molecules bound behind the selectivity filter are at the origin of the slowness of recovery in K(+) channels. Using a combination of solid-state NMR spectroscopy (ssNMR) and long molecular dynamics simulations, we sketch a high-resolution map of the spatial and temporal distribution of water behind the selectivity filter of a membrane-embedded K(+) channel in two different gating modes. Our study demonstrates that buried water molecules with long residence times are spread all along the rear of the inactivated filter, which explains the recovery kinetics. In contrast, the same region of the structure appears to be dewetted when the selectivity filter is in the conductive state. Using proton-detected ssNMR on fully protonated channels, we demonstrate the presence of a pathway that allows for the interchange of buried and bulk water, as required for a functional influence of buried water on recovery and slow inactivation. Furthermore, we provide direct experimental evidence for the presence of additional ordered water molecules that surround the filter and that are modulated by the channel's gating mode.
Collapse
Affiliation(s)
- Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University , 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
114
|
Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol 2014; 31:546-59. [PMID: 24425781 DOI: 10.1093/molbev/msu038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scorpion K(+) channel toxins and insect defensins share a conserved three-dimensional structure and related biological activities (defense against competitors or invasive microbes by disrupting their membrane functions), which provides an ideal system to study how functional evolution occurs in a conserved structural scaffold. Using an experimental approach, we show that the deletion of a small loop of a parasitoid venom defensin possessing the "scorpion toxin signature" (STS) can remove steric hindrance of peptide-channel interactions and result in a neurotoxin selectively inhibiting K(+) channels with high affinities. This insect defensin-derived toxin adopts a hallmark scorpion toxin fold with a common cysteine-stabilized α-helical and β-sheet motif, as determined by nuclear magnetic resonance analysis. Mutations of two key residues located in STS completely diminish or significantly decrease the affinity of the toxin on the channels, demonstrating that this toxin binds to K(+) channels in the same manner as scorpion toxins. Taken together, these results provide new structural and functional evidence supporting the predictability of toxin evolution. The experimental strategy is the first employed to establish an evolutionary relationship of two distantly related protein families.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.
Collapse
|
116
|
Abstract
It has been hypothesized that transmembrane allostery is the basis for inactivation of the potassium channel KcsA: opening the intracellular gate is spontaneously followed by ion expulsion at the extracellular selectivity filter. This suggests a corollary: following ion expulsion at neutral pH, a spontaneous global conformation change of the transmembrane helices, similar to the motion involved in opening, is expected. Consequently, both the low potassium state and the low pH state of the system could provide useful models for the inactivated state. Unique NMR studies of full-length KcsA in hydrated bilayers provide strong evidence for such a mutual coupling across the bilayer: namely, upon removing ambient potassium ions, changes are seen in the NMR shifts of carboxylates E118 and E120 in the pH gate in the hinges of the inner transmembrane helix (98-103), and in the selectivity filter, all of which resemble changes seen upon acid-induced opening and inhibition and suggest that ion release can trigger channel helix opening.
Collapse
|
117
|
Nielsen AB, Jain S, Ernst M, Meier BH, Nielsen NC. Adiabatic Rotor-Echo-Short-Pulse-Irradiation mediated cross-polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:147-151. [PMID: 24220613 DOI: 10.1016/j.jmr.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/25/2013] [Accepted: 09/05/2013] [Indexed: 05/14/2023]
Abstract
We present a new dipolar recoupling method for efficient and robust heteronuclear polarization transfer in solid-state NMR under magic-angle-spinning (MAS) conditions. The method combines the recent (RESPIRATION)CP method with a modulation of the amplitude of the rotor-synchronized pulses at one of the involved rf channels through the recoupling condition. In this manner, it is possible to achieve high transfer efficiencies while maintaining robustness towards rf-field inhomogeneities and resonance offsets. The performance of the so-called adiabatic-(RESPIRATION)CP experiment is demonstrated numerically and experimentally using uniformly (13)C,(15)N-labeled samples of alanine and ubiquitin. In particular for cases with relatively high rf inhomogeneity, the scheme offers advantages over the commonly used dipolar recoupling pulse sequences.
Collapse
Affiliation(s)
- Anders B Nielsen
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Sheetal Jain
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
118
|
Characterization of the first K+ channel blockers from the venom of the Moroccan scorpion Buthus occitanus Paris. Toxicon 2013; 75:168-76. [DOI: 10.1016/j.toxicon.2013.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
|
119
|
Cross TA, Murray DT, Watts A. Helical membrane protein conformations and their environment. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:731-55. [PMID: 23996195 PMCID: PMC3818118 DOI: 10.1007/s00249-013-0925-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023]
Abstract
Evidence that membrane proteins respond conformationally and functionally to their environment is growing. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayer-embedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other nonlipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied α-helical membrane proteins, as a starting point to aid the development of possible generic principles for model refinement.
Collapse
Affiliation(s)
- Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Dylan T. Murray
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Anthony Watts
- Biomembrane structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
120
|
Shen M, Liu Q, Trébosc J, Lafon O, Masuda Y, Takegoshi K, Amoureux JP, Hu B, Chen Q. Exploring various modulation-sideband recoupling conditions of SHA+ sequence at fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:42-47. [PMID: 23953427 DOI: 10.1016/j.ssnmr.2013.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/08/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
We explore modulation-sideband recoupling conditions of the (13)C-(13)C Second-order Hamiltonian among Analogous nuclei plus pulse sequence (SHA+), and found that this sequence can be used in two different recoupling regimes. The first regime, νR>Δνiso(max), is recommended for broad-band recoupling to avoid any rotational resonance broadening. In this regime, the spinning speed should be only slightly larger than Δνiso(max), to obtain the best transfer efficiency. The second regime, νR<Δνiso(max), can be used to observe long-range constraints with lower spinning speed, which increases the transfer efficiency, and may allow using bigger rotors to increase the S/N ratio.
Collapse
Affiliation(s)
- Ming Shen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China; UCCS, Lille North of France University, Villeneuve d'Ascq 59652, France
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
122
|
Loquet A, Habenstein B, Lange A. Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 2013; 46:2070-9. [PMID: 23496894 DOI: 10.1021/ar300320p] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Essential biological processes such as cell motion, signaling,protein synthesis, and pathogen-host interactions rely on multifunctional molecular machines containing supramolecular assemblies, that is, noncovalently assembled protein subunits. Scientists would like to acquire a detailed atomic view of the complete molecular machine to understand its assembly process and functions. Structural biologists have used various approaches to obtain structural information such as X-ray crystallography, solution NMR, and electron microscopy. The inherent insolubility and large size of these multicomponent assemblies restrict the use of solution NMR, and their noncrystallinity and elongated shapes present obstacles to X-ray crystallography studies. Not limited by molecular weight or crystallinity, solid-state NMR (ssNMR) allows for structural investigations of supramolecular assemblies such as helical filaments, cross-β fibrils, or membrane-embedded oligomeric proteins. In this Account, we describe recent progress in the application of ssNMR to the elucidation of atomic structures of supramolecular assemblies. We highlight ssNMR methods to determine the subunit interfaces in symmetric arrangements. Our use of [1-(13)C]- or [2-(13)C]-glucose as a carbon source during bacterial protein expression results in significant (13)C spin dilution that drastically improves the spectral quality and enables us to detect meaningful structural restraints. Moreover, we can unequivocally determine intermolecular restraints using mixed [(1:1)1-(13)C/2-(13)C]-glucose labeled assemblies. We recently illustrated the power of this methodology with the structure determination of the type III secretion system (T3SS) needle. One crucial aspect in elucidating the atomic structure of these large multicomponent complexes is to determine the subunit-subunit interfaces. Notably, we could probe the needle subunit interfaces by collecting (13)C-(13)C intermolecular restraints. In contrast, these interfaces are not accessible via high-resolution cryo-EM. This approach is readily applicable to other supramolecular assemblies containing symmetrically repeating protein subunits, and could be combined with other techniques to get a more complete picture of multicomponent structures. To determine near-atomic structures of assemblies of biological interest, researchers could combine ssNMR data collected at the subunit interfaces with the envelope obtained from cryo-EM and potentially with monomeric subunit crystal structures.
Collapse
Affiliation(s)
- Antoine Loquet
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
123
|
Ullrich SJ, Glaubitz C. Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res 2013; 46:2164-71. [PMID: 23745719 DOI: 10.1021/ar4000289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low temperatures, can help with the analysis of thermally trapped catalytic intermediates, while methods to improve signal-to-noise per time unit enable the real-time measurement of kinetics of conformational changes during the catalytic cycle.
Collapse
Affiliation(s)
- Sandra J. Ullrich
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
124
|
Weingarth M, Baldus M. Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 2013; 46:2037-46. [PMID: 23586937 DOI: 10.1021/ar300316e] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Supramolecular chemistry provides structural and conformational information about complexes formed from multiple molecules. While the molecule is held together by strong intramolecular contacts like covalent bonds, supramolecular structures can be further stabilized by weaker or transient intermolecular interactions. These interactions can confer a great diversity and sensitivity to exogenous factors like temperature, pressure, or ionic strength to multimolecular arrangements. Solid-state nuclear magnetic resonance (ssNMR) can provide atomic-scale structural and dynamical information in highly disordered or heterogeneous biological systems, even in complex environments such as cellular membranes or whole cells. In these systems, the molecule of interest no longer exists as a separate unit, but it entangles with its surroundings in a dynamic interplay. Researchers have long accounted for the complexity of these intermolecular arrangements through a rather phenomenological description. But now the focus is shifting toward a detailed understanding of supramolecular structure at atomic resolution, constantly expanding our understanding of the stunning influence of the environment. In this Account, we discuss how ssNMR can help to dissect the remarkable interplay between intra- and intermolecular interactions. We describe biochemical and spectroscopic strategies that tailor ssNMR spectroscopic methods to the challenge of supramolecular structure investigation. In particular, we consider protein-protein interactions or the protein-membrane topology, and we review recent applications of these techniques. Furthermore, we summarize methods for integrating ssNMR information with other experimental techniques or computational methods, and we offer perspectives on how this overall information allows us to target increasingly large and intricate supramolecular structures of biomolecules. Advancements in ssNMR methodology and instrumentation, including the incorporation of signal enhancement methods such as dynamic nuclear polarization will further increase the potential of ssNMR spectroscopy, and together with additional developments in the field of NMR-hybrid strategies, ssNMR may become an ideal tool to study the heterogeneous, dynamic, and often transient nature of molecular interactions in complex biological systems.
Collapse
Affiliation(s)
- Markus Weingarth
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
125
|
Bjerring M, Jain S, Paaske B, Vinther JM, Nielsen NC. Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and RF pulse irradiation. Acc Chem Res 2013; 46:2098-107. [PMID: 23557787 DOI: 10.1021/ar300329g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.
Collapse
Affiliation(s)
- Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Sheetal Jain
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Joachim M. Vinther
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
126
|
Murray DT, Das N, Cross TA. Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 2013; 46:2172-81. [PMID: 23470103 DOI: 10.1021/ar3003442] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the structural results. By combining the distance, torsional, and orientational restraints, we can characterize high resolution membrane protein structure in native-like lipid bilayer environments.
Collapse
Affiliation(s)
- Dylan T. Murray
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Nabanita Das
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Timothy A. Cross
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
127
|
Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 2013; 10:1007-12. [DOI: 10.1038/nmeth.2635] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
|
128
|
Orts DJB, Moran Y, Cologna CT, Peigneur S, Madio B, Praher D, Quinton L, De Pauw E, Bicudo JEPW, Tytgat J, de Freitas JC. BcsTx3 is a founder of a novel sea anemone toxin family of potassium channel blocker. FEBS J 2013; 280:4839-52. [PMID: 23895459 DOI: 10.1111/febs.12456] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022]
Abstract
Sea anemone venoms have become a rich source of peptide toxins which are invaluable tools for studying the structure and functions of ion channels. In this work, BcsTx3, a toxin found in the venom of a Bunodosoma caissarum (population captured at the Saint Peter and Saint Paul Archipelago, Brazil) was purified and biochemically and pharmacologically characterized. The pharmacological effects were studied on 12 different subtypes of voltage-gated potassium channels (K(V)1.1-K(V)1.6; K(V)2.1; K(V)3.1; K(V)4.2; K(V)4.3; hERG and Shaker IR) and three cloned voltage-gated sodium channel isoforms (Na(V)1.2, Na(V)1.4 and BgNa(V)1.1) expressed in Xenopus laevis oocytes. BcsTx3 shows a high affinity for Drosophila Shaker IR channels over rKv1.2, hKv1.3 and rKv1.6, and is not active on NaV channels. Biochemical characterization reveals that BcsTx3 is a 50 amino acid peptide crosslinked by four disulfide bridges, and sequence comparison allowed BcsTx3 to be classified as a novel type of sea anemone toxin acting on K(V) channels. Moreover, putative toxins homologous to BcsTx3 from two additional actiniarian species suggest an ancient origin of this newly discovered toxin family.
Collapse
Affiliation(s)
- Diego J B Orts
- Department of Physiology, Institute of Biosciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Cukkemane A, Baldus M. Characterization of a cyclic nucleotide-activated K(+) channel and its lipid environment by using solid-state NMR spectroscopy. Chembiochem 2013; 14:1789-98. [PMID: 23956185 DOI: 10.1002/cbic.201300182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 01/31/2023]
Abstract
Voltage-gated ion channels are large tetrameric multidomain membrane proteins that play crucial roles in various cellular transduction pathways. Because of their large size and domain-related mobility, structural characterization has proved challenging. We analyzed high-resolution solid-state NMR data on different isotope-labeled protein constructs of a bacterial cyclic nucleotide-activated K(+) channel (MlCNG) in lipid bilayers. We could identify the different subdomains of the 4×355 residue protein, such as the voltage-sensing domain and the cyclic nucleotide binding domain. Comparison to ssNMR data obtained on isotope-labeled cell membranes suggests a tight association of negatively charged lipids to the channel. We detected spectroscopic polymorphism that extends beyond the ligand binding site, and the corresponding protein segments have been associated with mutant channel types in eukaryotic systems. These findings illustrate the potential of ssNMR for structural investigations on large membrane-embedded proteins, even in the presence of local disorder.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht (The Netherlands)
| | | |
Collapse
|
130
|
Ali SA, Alam M, Abbasi A, Kalbacher H, Schaechinger TJ, Hu Y, Zhijian C, Li W, Voelter W. Structure–Activity Relationship of a Highly Selective Peptidyl Inhibitor of Kv1.3 Voltage-Gated K+-Channel from Scorpion (B. sindicus) Venom. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
131
|
Importance of lipid-pore loop interface for potassium channel structure and function. Proc Natl Acad Sci U S A 2013; 110:13008-13. [PMID: 23882077 DOI: 10.1073/pnas.1305563110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potassium (i.e., K(+)) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K(+) channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K(+) channel inactivation and exhibits a remarkable structural plasticity that correlates to K(+) channel inactivation. The transmembrane helix 1 unwinds when the K(+) channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K(+) ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K(+) channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K(+) channel pore.
Collapse
|
132
|
Banerjee A, Lee A, Campbell E, Mackinnon R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K(+) channel. eLife 2013; 2:e00594. [PMID: 23705070 PMCID: PMC3660741 DOI: 10.7554/elife.00594] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Abstract
Pore-blocking toxins inhibit voltage-dependent K+ channels (Kv channels) by plugging the ion-conduction pathway. We have solved the crystal structure of paddle chimera, a Kv channel in complex with charybdotoxin (CTX), a pore-blocking toxin. The toxin binds to the extracellular pore entryway without producing discernable alteration of the selectivity filter structure and is oriented to project its Lys27 into the pore. The most extracellular K+ binding site (S1) is devoid of K+ electron-density when wild-type CTX is bound, but K+ density is present to some extent in a Lys27Met mutant. In crystals with Cs+ replacing K+, S1 electron-density is present even in the presence of Lys27, a finding compatible with the differential effects of Cs+ vs K+ on CTX affinity for the channel. Together, these results show that CTX binds to a K+ channel in a lock and key manner and interacts directly with conducting ions inside the selectivity filter. DOI:http://dx.doi.org/10.7554/eLife.00594.001 The deadly toxins produced by many creatures, including spiders, snakes, and scorpions, work by blocking the ion channels that are essential for the normal operation of many different types of cells. Ion channels are proteins and, as their name suggests, they allow ions—usually sodium, potassium, or calcium ions—to move in and out of cells. They are especially important for cells that generate or respond to electrical signals, such as neurons and the cells in heart muscle. Ion channels are located in the lipid membranes that surround all cells, and the ions enter or leave the cell via a pore that runs through the channel protein. They can be opened and closed (or ‘gated’) in different ways: some ion channels open and close in response to voltages, whereas others are gated by biomolecules, such as neurotransmitters, that bind to them. Now, Banerjee et al. have used x-ray crystallography to study the structure of the complex that is formed when charybdotoxin (CTX), a toxin that is found in scorpion venom, blocks a voltage-gated potassium channel. Previous studies have shown that CTX binds to the channel on the extracellular side of the pore. Banerjee et al. show that the toxin fits into the entrance to the channel like a key into a lock, which means the toxin is preformed to fit the shape of the channel. The potassium ion channel is made up of four subunits, and the pore contains four ion-binding sites that form a ‘selectivity filter’: it is this filter that ensures that only potassium ions can pass through the channel when it is open. When CTX binds to the channel, a lysine residue poised at a critical position on the toxin is so close to the outermost ion-binding site that it prevents potassium ions binding to the site. The structure determined by Banerjee et al. explains many previous findings, including the fact that ions entering the pore from inside the cell can disrupt the binding between the toxin and the ion channel protein. It remains to be seen if the toxins that target the pore of other types of ion channels work in the same way. DOI:http://dx.doi.org/10.7554/eLife.00594.002
Collapse
Affiliation(s)
- Anirban Banerjee
- Laboratory of Molecular Neurobiology and Biophysics , Rockefeller University , New York , United States ; Howard Hughes Medical Institute, Rockefeller University , New York , United States
| | | | | | | |
Collapse
|
133
|
Gordon D, Chen R, Chung SH. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev 2013; 93:767-802. [PMID: 23589832 PMCID: PMC3768100 DOI: 10.1152/physrev.00035.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field.
Collapse
Affiliation(s)
- Dan Gordon
- Research School of Biology, The Australian National University, Acton, ACT 0200, Australia.
| | | | | |
Collapse
|
134
|
Feng J, Hu Y, Yi H, Yin S, Han S, Hu J, Chen Z, Yang W, Cao Z, De Waard M, Sabatier JM, Li W, Wu Y. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins. J Biol Chem 2013; 288:12544-53. [PMID: 23511633 DOI: 10.1074/jbc.m112.433888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca(2+)-activated K(+) (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the "new" blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Weingarth M, Prokofyev A, van der Cruijsen EAW, Nand D, Bonvin AMJJ, Pongs O, Baldus M. Structural determinants of specific lipid binding to potassium channels. J Am Chem Soc 2013; 135:3983-8. [PMID: 23425320 DOI: 10.1021/ja3119114] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsA-Kv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while KcsA activity is critically modulated by the specific and cooperative binding of anionic nonannular lipids close to the channel's selectivity filter, the influence of nonannular lipid binding on KcsA-Kv1.3 is much reduced. The diminished impact of specific lipid binding on KcsA-Kv1.3 results from a point-mutation at the corresponding nonannular lipid binding site leading to a salt-bridge between adjacent KcsA-Kv1.3 subunits, which is conserved in many voltage-gated potassium channels and prevents strong nonannular lipid binding to the pore domain. Our findings elucidate how protein-lipid and protein-protein interactions modulate K(+) channel activity. The combination of MD, NMR, and functional studies as shown here may help to dissect the structural and dynamical processes that are critical for the functioning of larger membrane proteins, including Kv channels in a membrane setting.
Collapse
Affiliation(s)
- Markus Weingarth
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
136
|
Lv G, Faßhuber HK, Loquet A, Demers JP, Vijayan V, Giller K, Becker S, Lange A. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 228:45-49. [PMID: 23354009 DOI: 10.1016/j.jmr.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-(13)C]Glucose ([2-(13)C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-(13)C]pyruvate produced mainly by glycolysis and [3-(13)C]/[1,3-(13)C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs (13)Cβ-(13)Cγ2 and (13)Cα-(13)Cγ1 in Val, and (13)Cγ-(13)Cδ2 and (13)Cβ-(13)Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.
Collapse
Affiliation(s)
- Guohua Lv
- Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
138
|
Maffie JK, Dvoretskova E, Bougis PE, Martin-Eauclaire MF, Rudy B. Dipeptidyl-peptidase-like-proteins confer high sensitivity to the scorpion toxin AmmTX3 to Kv4-mediated A-type K+ channels. J Physiol 2013; 591:2419-27. [PMID: 23440961 DOI: 10.1113/jphysiol.2012.248831] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
K+ channels containing Kv4.2 and Kv4.3 pore-forming subunits mediate most of the subthreshold-operating somatodendritic A-type K+ current in CNS neurons. These channels are believed to be important in regulating the frequency of repetitive firing, the backpropagation of action potential into dendrites, and dendritic integration and plasticity. Moreover, they have been implicated in several diseases from pain to epilepsy and autism spectrum disorders. The lack of toxins that specifically and efficiently block these channels has hampered studies aimed at confirming their functional role and their involvement in disease. AmmTX3 and other related members of the α-KTX15 family of scorpion toxins have been shown to block the A-type K+ current in cultured neurons, but their specificity has been questioned because the toxins do not efficiently block the currents mediated by Kv4.2 or Kv4.3 subunits expressed in heterologous cells. Here we show that the high-affinity blockade of Kv4.2 and Kv4.3 channels by AmmTX3 depends on the presence of the auxiliary subunits DPP6 and DPP10. These proteins are thought to be components of the Kv4 channel complex in neurons and to be important for channel expression in dendrites. These studies validate the use of AmmTX3 as a blocker of the Kv4-mediated A-type K+ current in neurons.
Collapse
Affiliation(s)
- Jon K Maffie
- Smilow Neuroscience Program, NYU School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
139
|
How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol Biol 2013; 914:65-86. [PMID: 22976023 DOI: 10.1007/978-1-62703-023-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Solid-state NMR is an established method for biophysical studies of membrane proteins within the lipid bilayers and an emerging technique for structural biology in general. In particular magic angle sample spinning has been found to be very useful for the investigation of large membrane proteins and their interaction with small molecules within the lipid bilayer. Using a number of examples, we illustrate and discuss in this chapter, which information can be gained and which experimental parameters need to be considered when planning such experiments. We focus especially on the interaction of diffusive ligands with membrane proteins.
Collapse
|
140
|
Huang CJ, Schild L, Moczydlowski EG. Use-dependent block of the voltage-gated Na(+) channel by tetrodotoxin and saxitoxin: effect of pore mutations that change ionic selectivity. ACTA ACUST UNITED AC 2013; 140:435-54. [PMID: 23008436 PMCID: PMC3457692 DOI: 10.1085/jgp.201210853] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.
Collapse
|
141
|
Ladjel-Mendil A, Martin-Eauclaire MF, Laraba-Djebari F. Neuropathophysiological effect and immuno-inflammatory response induced by kaliotoxin of androctonus scorpion venom. Neuroimmunomodulation 2013; 20:99-106. [PMID: 23295619 DOI: 10.1159/000345706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Kaliotoxin (KTX) is a neurotoxin purified from Androctonus scorpion venom. Purification and pharmacological and immunological characterization of this neurotoxin has been extensively studied, but its biological effects have not. The ability of KTX to induce neuropathophysiological and immuno-inflammatory effects was investigated. METHODS NMRI mice were injected with a sublethal dose of KTX (20 ng/20 g of body weight) or saline solution via the intra-cerebro-ventricular route. Tissue damage and immunological biomarkers such as eosinophil peroxidase (EPO), myeloperoxidase (MPO), and nitric oxide (NO) were analyzed in serum, brain, lung, and heart tissue. Protein levels, LDH, and CPK activities were also determined in serum 24 h after injection. RESULTS In this study, KTX injection induced severe alterations in the cerebral cortex, myocardium, and pulmonary parenchyma. Tissue damage was correlated with seric increase in creatine kinase and lactate dehydrogenase activities. KTX also induced an immuno-inflammatory response distinguished by cell infiltration characterized by a significant increase in EPO and MPO activities in the brain, heart, and lungs. This infiltration was also associated with an increase in albumin, α-, β-, and γ-globulin fractions, and NO release. CONCLUSION KTX binding to its targets in CNS (Kv1.1 and Kv1.3 channels) may induce severe modifications in the structure and function of various organs associated with the activation of immuno-inflammatory reactions.
Collapse
Affiliation(s)
- Amina Ladjel-Mendil
- USTHB, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | | | | |
Collapse
|
142
|
Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PLoS One 2012; 7:e52965. [PMID: 23300835 PMCID: PMC3530466 DOI: 10.1371/journal.pone.0052965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/26/2012] [Indexed: 02/03/2023] Open
Abstract
The K(v)1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v)1.3 blockers have potential for treatment of autoimmune diseases. Several K(v)1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v)1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v)1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V)1.3 (IC(50) values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V)1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering K(v)1.3 blockers with therapeutic potential.
Collapse
Affiliation(s)
- Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (RA); (GK)
| | - Shyny Koshy
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (RA); (GK)
| |
Collapse
|
143
|
Herbert-Pucheta JE, Chan-Huot M, Duma L, Abergel D, Bodenhausen G, Assairi L, Blouquit Y, Charbonnier JB, Tekely P. Probing Structural and Motional Features of the C-Terminal Part of the Human Centrin 2/P17-XPC Microcrystalline Complex by Solid-State NMR Spectroscopy. J Phys Chem B 2012. [DOI: 10.1021/jp3099472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose-Enrique Herbert-Pucheta
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Monique Chan-Huot
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Luminita Duma
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Daniel Abergel
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Geoffrey Bodenhausen
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| | - Liliane Assairi
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Yves Blouquit
- Institut Curie - Centre de Recherche, 91405 Orsay, France
- INSERM U759, 91405 Orsay, France
| | - Jean-Baptiste Charbonnier
- UMR 8221,
Laboratoire de Biologie Structurale
et Radiobiologie, iBiTec-S, CEA, 91191
Gif-sur-Yvette, France
| | - Piotr Tekely
- Ecole Normale Supérieure, Département
de Chimie, 24 rue Lhomond, 75231 Paris, France
- Université Pierre-et-Marie Curie, Paris, France
- UMR 7203, Laboratoire des Biomolécules, CNRS/UPMC/ENS, Paris, France
| |
Collapse
|
144
|
Gradmann S, Ader C, Heinrich I, Nand D, Dittmann M, Cukkemane A, van Dijk M, Bonvin AMJJ, Engelhard M, Baldus M. Rapid prediction of multi-dimensional NMR data sets. JOURNAL OF BIOMOLECULAR NMR 2012; 54:377-387. [PMID: 23143278 DOI: 10.1007/s10858-012-9681-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such "in silico" data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR ( http://www.wenmr.eu/services/FANDAS ).
Collapse
Affiliation(s)
- Sabine Gradmann
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
146
|
Sun S, Yan S, Guo C, Li M, Hoch JC, Williams JC, Polenova T. A time-saving strategy for MAS NMR spectroscopy by combining nonuniform sampling and paramagnetic relaxation assisted condensed data collection. J Phys Chem B 2012; 116:13585-96. [PMID: 23094591 DOI: 10.1021/jp3005794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a time-saving strategy for acquiring 3D magic angle spinning NMR spectra for chemical shift assignments in proteins and protein assemblies in the solid state. By simultaneous application of nonuniform sampling (NUS) and paramagnetic-relaxation-assisted condensed data collection (PACC), we can attain 16-fold time reduction in the 3D experiments without sacrificing the signal-to-noise ratio or the resolution. We demonstrate that with appropriate concentration of paramagnetic dopant introduced into the sample the overwhelming majority of chemical shifts are not perturbed, with the exception of a limited number of shifts corresponding to residues located at the surface of the protein, which exhibit small perturbations. This approach enables multidimensional MAS spectroscopy in samples of intrinsically low sensitivity and/or high spectral congestion where traditional experiments fail, and is especially beneficial for structural and dynamics studies of large proteins and protein assemblies.
Collapse
Affiliation(s)
- Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Loquet A, Habenstein B, Demers JP, Becker S, Lange A. Structure d’une nanomachine bactérienne. Med Sci (Paris) 2012; 28:926-8. [DOI: 10.1051/medsci/20122811008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
148
|
Diego-García E, Peigneur S, Debaveye S, Gheldof E, Tytgat J, Caliskan F. Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon 2012; 61:72-82. [PMID: 23142506 DOI: 10.1016/j.toxicon.2012.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022]
Abstract
In the present study, we report for the first time, the molecular, biochemical and electrophysiological characterization of the components present in the soluble venom from Mesobuthus gibbosus (Brullé, 1832). According to the epidemiological and clinical situation of scorpion envenomation cases M. gibbosus scorpion is one of the most important health-threatening species of Turkey. Despite the medical importance reported for M. gibbosus, there is no additional information on toxin peptides and venom components to clarify the toxic effect of the M. gibbosus sting. Biochemical characterization of the venom was performed using different protocols and techniques following a bioassay-guided strategy (HPLC, mass spectrometry and Edman degradation sequencing). Venom fractions were tested in electrophysiological assays on a panel of six K(+) channels (K(v)1.1-1.6) by using the two-electrode voltage clamp technique. Three new α-KTx peptides were found and called MegKTx1, MegKTx2 and MegKTx3 (M. gibbosus, K(+) channel toxin number 1-3). A cDNA library from the telson was constructed and specific screening of transcripts was performed. Biochemical and molecular characterization of MegKTx peptides and transcripts shows a relation with toxins of three different α-KTx subfamilies (α-KTx3.x, α-KTx9.x and α-KTx16.x).
Collapse
Affiliation(s)
- Elia Diego-García
- Laboratory of Toxicology, University of Leuven (KULeuven), Campus Gasthuisberg, O&N 2, PO Box 922, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
149
|
Santos JS, Asmar-Rovira GA, Han GW, Liu W, Syeda R, Cherezov V, Baker KA, Stevens RC, Montal M. Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes. J Biol Chem 2012; 287:43063-70. [PMID: 23095758 DOI: 10.1074/jbc.m112.415091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated K(+) channels underlie the electrical excitability of cells. Each subunit of the functional tetramer consists of the tandem fusion of two modules, an N-terminal voltage-sensor and a C-terminal pore. To investigate how sensor coupling to the pore generates voltage-dependent channel opening, we solved the crystal structure and characterized the function of a voltage-gated K(+) channel pore in a lipid membrane. The structure of a functional channel in a membrane environment at 3.1 Å resolution establishes an unprecedented connection between channel structure and function. The structure is unique in delineating an ion-occupied ready to conduct selectivity filter, a confined aqueous cavity, and a closed activation gate, embodying a dynamic entity trapped in an unstable closed state.
Collapse
Affiliation(s)
- Jose S Santos
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Chen R, Chung SH. Structural basis of the selective block of Kv1.2 by maurotoxin from computer simulations. PLoS One 2012; 7:e47253. [PMID: 23071772 PMCID: PMC3468451 DOI: 10.1371/journal.pone.0047253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022] Open
Abstract
The 34-residue polypeptide maurotoxin (MTx) isolated from scorpion venoms selectively inhibits the current of the voltage-gated potassium channel Kv1.2 by occluding the ion conduction pathway. Here using molecular dynamics simulation as a docking method, the binding modes of MTx to three closely related channels (Kv1.1, Kv1.2 and Kv1.3) are examined. We show that MTx forms more favorable electrostatic interactions with the outer vestibule of Kv1.2 compared to Kv1.1 and Kv1.3, consistent with the selectivity of MTx for Kv1.2 over Kv1.1 and Kv1.3 observed experimentally. One salt bridge in the bound complex of MTx-Kv1.2 forms and breaks in a simulation period of 20ns, suggesting the dynamic nature of toxin-channel interactions. The toxin selectivity likely arises from the differences in the shape of the channel outer vestibule, giving rise to distinct orientations of MTx on block. Potential of mean force calculations show that MTx blocks Kv1.1, Kv1.2 and Kv1.3 with an IC50 value of 6 µM, 0.6nM and 18 µM, respectively.
Collapse
Affiliation(s)
- Rong Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (RC); (S-HC)
| | - Shin-Ho Chung
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (RC); (S-HC)
| |
Collapse
|