101
|
Vanoosthuyse V, Legros P, van der Sar SJA, Yvert G, Toda K, Le Bihan T, Watanabe Y, Hardwick K, Bernard P. CPF-associated phosphatase activity opposes condensin-mediated chromosome condensation. PLoS Genet 2014; 10:e1004415. [PMID: 24945319 PMCID: PMC4063703 DOI: 10.1371/journal.pgen.1004415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/16/2014] [Indexed: 12/03/2022] Open
Abstract
Functional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3′ end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1Dis2 with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72. Failure to properly condense chromosomes prior to their segregation in mitosis can lead to genome instability. The evolutionary-conserved condensin complex is key to the condensation process but the molecular mechanisms underlying its localization pattern on chromosomes remain unclear. Previous observations showed that the localization of condensin is intimately linked to regions of high transcription, although, somewhat paradoxically, its association with chromatin is disrupted by a processive polymerase activity. Here we identify several RNA processing factors as negative regulators of condensin in fission yeast. Two of these factors associate with PP1 phosphatase as an independent entity within the Cleavage and Polyadenylation Factor (CPF), a complex key for 3′ end RNA processing. Lack of this module induces only minor and context-dependent effects on gene expression. Our data suggest that this module helps maintaining the proper level of phosphatase activity within the CPF and thereby opposes the function of condensin in mitotic chromosome condensation.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Pénélope Legros
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | | | - Gaël Yvert
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | - Kenji Toda
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Thierry Le Bihan
- SynthSys Edinburgh, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshinori Watanabe
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kevin Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Bernard
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| |
Collapse
|
102
|
Macadangdang BR, Oberai A, Spektor T, Campos OA, Sheng F, Carey MF, Vogelauer M, Kurdistani SK. Evolution of histone 2A for chromatin compaction in eukaryotes. eLife 2014; 3:e02792. [PMID: 24939988 PMCID: PMC4098067 DOI: 10.7554/elife.02792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine-DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer.
Collapse
Affiliation(s)
- Benjamin R Macadangdang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Amit Oberai
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Tanya Spektor
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Oscar A Campos
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Fang Sheng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Michael F Carey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Maria Vogelauer
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
103
|
Kagami Y, Nihira K, Wada S, Ono M, Honda M, Yoshida K. Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis. ACTA ACUST UNITED AC 2014; 205:781-90. [PMID: 24934155 PMCID: PMC4068140 DOI: 10.1083/jcb.201308172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mps1 is necessary for proper condensin II loading onto chromatin and subsequent chromosome condensation during mitosis. During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is largely unknown. Here, we show that Mps1 regulates initial chromosome condensation during mitosis. We identify condensin II as a novel Mps1-associated protein. Mps1 phosphorylates one of the condensin II subunits, CAP-H2, at Ser492 during mitosis, and this phosphorylation event is required for the proper loading of condensin II on chromatin. Depletion of Mps1 inhibits chromosomal targeting of condensin II and accurate chromosome condensation during prophase. These findings demonstrate that Mps1 governs chromosomal organization during the early stage of mitosis to facilitate proper chromosome segregation.
Collapse
Affiliation(s)
- Yuya Kagami
- Department of Biochemistry and Department of Urology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keishi Nihira
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shota Wada
- Department of Biochemistry and Department of Urology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mariko Honda
- Department of Biochemistry and Department of Urology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, JapanDepartment of Biochemistry and Department of Urology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry and Department of Urology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
104
|
Afonso O, Matos I, Pereira AJ, Aguiar P, Lampson MA, Maiato H. Feedback control of chromosome separation by a midzone Aurora B gradient. Science 2014; 345:332-336. [PMID: 24925910 DOI: 10.1126/science.1251121] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.
Collapse
Affiliation(s)
- Olga Afonso
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Irina Matos
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - António J Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Paulo Aguiar
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.,Center for Mathematics, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.,Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
105
|
Tapia-Alveal C, Lin SJ, Yeoh A, Jabado OJ, O'Connell MJ. H2A.Z-dependent regulation of cohesin dynamics on chromosome arms. Mol Cell Biol 2014; 34:2092-104. [PMID: 24687850 PMCID: PMC4019066 DOI: 10.1128/mcb.00193-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 11/20/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes and DNA topoisomerases are major determinants of chromosome structure and dynamics. The cohesin complex embraces sister chromatids throughout interphase, but during mitosis most cohesin is stripped from chromosome arms by early prophase, while the remaining cohesin at kinetochores is cleaved at anaphase. This two-step removal of cohesin is required for sister chromatids to separate. The cohesin-related Smc5/6 complex has been studied mostly as a determinant of DNA repair via homologous recombination. However, chromosome segregation fails in Smc5/6 null mutants or cells treated with small interfering RNAs. This also occurs in Smc5/6 hypomorphs in the fission yeast Schizosaccharomyces pombe following genotoxic and replication stress, or topoisomerase II dysfunction, and these mitotic defects are due to the postanaphase retention of cohesin on chromosome arms. Here we show that mitotic and repair roles for Smc5/6 are genetically separable in S. pombe. Further, we identified the histone variant H2A.Z as a critical factor to modulate cohesin dynamics, and cells lacking H2A.Z suppress the mitotic defects conferred by Smc5/6 dysfunction. Together, H2A.Z and the SMC complexes ensure genome integrity through accurate chromosome segregation.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aaron Yeoh
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omar J. Jabado
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew J. O'Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
106
|
Yamagishi Y, Sakuno T, Goto Y, Watanabe Y. Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 2014; 38:185-200. [PMID: 24666101 DOI: 10.1111/1574-6976.12049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 12/16/2022] Open
Abstract
Proper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly. Kinetochores mediate spindle–microtubule attachment and control the movement of chromosomes during mitosis and meiosis. To conduct faithful chromosome segregation, kinetochore assembly and microtubule attachment are elaborately regulated. Here we review the current understanding of the composition, assembly, functions and regulation of kinetochores revealed mainly through studies on fission and budding yeasts. Moreover, because recent cumulative evidence suggests the importance of the regulation of the orientation of kinetochore–microtubule attachment, which differs distinctly between mitosis and meiosis, we focus especially on the molecular mechanisms underlying this regulation.
Collapse
|
107
|
Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat Struct Mol Biol 2014; 21:560-8. [DOI: 10.1038/nsmb.2831] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
|
108
|
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 2014; 356:467-75. [PMID: 24816984 DOI: 10.1007/s00441-014-1873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
This review focuses on the major protein moiety of chromosomes, i.e., the histone proteins, on the contribution of their posttranslational modification to structural and functional chromatin dynamics, on the acetylation and methylation of lysine residues, and on the phosphorylation of serine or threonine with respect to various steps during the cell cycle.
Collapse
Affiliation(s)
- Detlef Doenecke
- Department for Molecular Biology, Georg August University, Göttingen, Germany,
| |
Collapse
|
109
|
Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J, Oshlack A, Earnshaw WC, Kalitsis P, Hudson DF. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 2014; 4:2537. [PMID: 24088984 DOI: 10.1038/ncomms3537] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 11/09/2022] Open
Abstract
The condensin complex is essential for correct packaging and segregation of chromosomes during mitosis and meiosis in all eukaryotes. To date, the genome-wide location and the nature of condensin-binding sites have remained elusive in vertebrates. Here we report the genome-wide map of condensin I in chicken DT40 cells. Unexpectedly, we find that condensin I binds predominantly to promoter sequences in mitotic cells. We also find a striking enrichment at both centromeres and telomeres, highlighting the importance of the complex in chromosome segregation. Taken together, the results show that condensin I is largely absent from heterochromatic regions. This map of the condensin I binding sites on the chicken genome reveals that patterns of condensin distribution on chromosomes are conserved from prokaryotes, through yeasts to vertebrates. Thus in three kingdoms of life, condensin is enriched on promoters of actively transcribed genes and at loci important for chromosome segregation.
Collapse
Affiliation(s)
- Ji Hun Kim
- 1] Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Matsson L. Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:155102. [PMID: 24675365 DOI: 10.1088/0953-8984/26/15/155102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The control mechanism in mitosis and meiosis by which cells decide to inhibit or allow segregation, the so-called spindle assembly checkpoint (SAC), increases the fidelity of chromosome segregation. It acts like a clockwork mechanism which measures time in units of stable attachments of microtubules (MTs) to kinetochores (the order parameter). Stable MT-kinetochore attachments mediate poleward forces and 'unstable' attachments, acting alone or together with motor proteins on kinetochores via chromosomes, antipoleward forces. Stable and unstable attachments could be separated, and the non-equilibrium integrated MT mediated force acting on stably attached kinetochores was derived in a collective interaction (Matsson 2009 J. Phys.: Condens. Matter 21 502101), in which kinetochores were treated as rigid protein complexes. As forces and tension in that model became equally distributed in all bioriented sister chromatid (SC) pairs, segregation was inhibited without need of a 'wait-anaphase' signal. In this generalization, the kinetochore is divided into an inner chromatin proximal complex and an outer MT proximal complex, and the integrated MT mediated force is divided into an integrated poleward and an integrated antipoleward force. The model also describes the collective interaction of condensin I with chromatin, which together with the MT mediated dynamics yields the putative in vivo tension in kinetochores and centromeric and pericentromeric chromatin, as a non-linear function of the order parameter. Supported by the compaction force and an increased stiffness in chromatin towards the end of metaphase, the two opposing integrated MT mediated poleward forces, together with metaphase oscillations, induce a swift and synchronized anaphase onset by first increasing the intra-kinetochore stretch. This increase lowers the SAC energy threshold, making a cleavage by separase of all cohesin tethering SC pairs in anaphase energetically possible, thereby reducing the risk for aneuploidy and cancer. It is also shown how this risk might increase in condensin I depleted cells. Moreover, a solution is provided to the fundamental statistical physics problem with a system containing an increasing number of particles (molecular complexes) that become strongly correlated in space.
Collapse
Affiliation(s)
- Leif Matsson
- Department of Physics, University of Gothenburg, Göteborg, SE-412 96, Sweden
| |
Collapse
|
111
|
Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CAM, Doxey DK, Mathieson T, Hancock BA, Baptiste D, Atale R, Hickenbotham M, Zhu J, Glasscock J, Storniolo AMV, Zheng F, Doerge RW, Liu Y, Badve S, Radovich M, Clare SE. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014; 16:R26. [PMID: 24636070 PMCID: PMC4053088 DOI: 10.1186/bcr3627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
Collapse
|
112
|
Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, Kislinger T, Roguev A, Ryan CJ, Xu J, Jahari H, Hardwick KG, Greenblatt JF, Krogan NJ, Fillingham JS, Strahl BD, Bouhassira EE, Edelmann W, Keogh MC. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 2014; 6:892-905. [PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 11/26/2022] Open
Abstract
Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Scott B Rothbart
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrea C Silva
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Ernest Radovani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Colm J Ryan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; School of Medicine & Medical Science, University College, Dublin 4, Ireland
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Harlizawati Jahari
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; Malaysian Institute of Pharmaceuticals and Nutraceuticals, 11800 USM Penang, Malaysia
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Jack F Greenblatt
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey S Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | | |
Collapse
|
113
|
Abstract
Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes suggest a conserved link between condensin occupancy and high transcription rates. To gain insight into the mechanisms of condensin binding and mitotic chromosome condensation, we searched for factors that collaborate with condensin through a synthetic lethal genetic screen in the fission yeast Schizosaccharomyces pombe. We isolated novel mutations affecting condensin, as well as mutations in four genes not previously implicated in mitotic chromosome condensation in fission yeast. These mutations cause chromosome segregation defects similar to those provoked by defects in condensation. We also identified a suppressor of the cut3-477 condensin mutation, which largely rescued chromosome segregation during anaphase. Remarkably, of the five genes identified in this study, four encode transcription co-factors. Our results therefore provide strong additional evidence for a functional connection between chromosome condensation and transcription.
Collapse
|
114
|
Verzijlbergen KF, Nerusheva OO, Kelly D, Kerr A, Clift D, de Lima Alves F, Rappsilber J, Marston AL. Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. eLife 2014; 3:e01374. [PMID: 24497542 PMCID: PMC3910079 DOI: 10.7554/elife.01374] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To protect against aneuploidy, chromosomes must attach to microtubules from opposite poles (‘biorientation’) prior to their segregation during mitosis. Biorientation relies on the correction of erroneous attachments by the aurora B kinase, which destabilizes kinetochore-microtubule attachments that lack tension. Incorrect attachments are also avoided because sister kinetochores are intrinsically biased towards capture by microtubules from opposite poles. Here, we show that shugoshin acts as a pericentromeric adaptor that plays dual roles in biorientation in budding yeast. Shugoshin maintains the aurora B kinase at kinetochores that lack tension, thereby engaging the error correction machinery. Shugoshin also recruits the chromosome-organizing complex, condensin, to the pericentromere. Pericentromeric condensin biases sister kinetochores towards capture by microtubules from opposite poles. Our findings uncover the molecular basis of the bias to sister kinetochore capture and expose shugoshin as a pericentromeric hub controlling chromosome biorientation. DOI:http://dx.doi.org/10.7554/eLife.01374.001 When a cell divides to create two new daughter cells, it must produce a copy of each of its chromosomes. It is important that each daughter cell gets just one copy of each chromosome. If an error occurs and one cell gets two copies of a single chromosome, it can lead to cancer or birth defects. Fortunately, there are multiple checks to ensure that this does not happen. During cell division the chromosomes line up in a way that increases the likelihood that each daughter cell will have one copy of each chromosome. After this process—which is called biorientation—is completed, microtubules pull the chromosomes to opposite ends of the cell, which then divides. Proteins called shugoshin proteins are known to be involved in biorientation in many organisms. These proteins are found in a region called the pericentromere, which surrounds the area on the chromosomes that the microtubules attach to, but the details of their involvement in biorientation are not fully understood. Now Verzijlbergen et al. have exploited sophisticated genetic techniques in yeast to explore how shugoshin proteins work. These experiments showed that the shugoshin protein helps to recruit condensin—a protein that keeps the DNA organized within the chromosome—to the pericentromere to assist with biorientation. It also keeps aurora B kinase—one of the enzymes that helps to correct errors during cell division—in the pericentromere when a microtubule attaches to the wrong chromosome. These results help us understand how a ‘hub’ in the pericentromere ensures biorientation. The next challenge will be to understand how this hub is disassembled after biorientation to allow error-free cell division to proceed. As shugoshins have been found to be damaged in some cancers, understanding the workings of this hub could also shed new light on how they contribute to disease. DOI:http://dx.doi.org/10.7554/eLife.01374.002
Collapse
Affiliation(s)
- Kitty F Verzijlbergen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
116
|
Stephens AD, Snider CE, Haase J, Haggerty RA, Vasquez PA, Forest MG, Bloom K. Individual pericentromeres display coordinated motion and stretching in the yeast spindle. J Cell Biol 2013; 203:407-16. [PMID: 24189271 PMCID: PMC3824013 DOI: 10.1083/jcb.201307104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/22/2013] [Indexed: 12/12/2022] Open
Abstract
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chloe E. Snider
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Julian Haase
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel A. Haggerty
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula A. Vasquez
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Gregory Forest
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
117
|
Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 2013; 123:25-42. [PMID: 24091645 PMCID: PMC3967068 DOI: 10.1007/s00412-013-0437-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022]
Abstract
The ultimate goal of cell division is equal transmission of the duplicated genome to two new daughter cells. Multiple surveillance systems exist that monitor proper execution of the cell division program and as such ensure stability of our genome. One widely studied protein complex essential for proper chromosome segregation and execution of cytoplasmic division (cytokinesis) is the chromosomal passenger complex (CPC). This highly conserved complex consists of Borealin, Survivin, INCENP, and Aurora B kinase, and has a dynamic localization pattern during mitosis and cytokinesis. Not surprisingly, it also performs various functions during these phases of the cell cycle. In this review, we will give an overview of the latest insights into the regulation of CPC localization and discuss if and how specific localization impacts its diverse functions in the dividing cell.
Collapse
|
118
|
Comparative transcriptome profiling of an SV40-transformed human fibroblast (MRC5CVI) and its untransformed counterpart (MRC-5) in response to UVB irradiation. PLoS One 2013; 8:e73311. [PMID: 24019915 PMCID: PMC3760899 DOI: 10.1371/journal.pone.0073311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations.
Collapse
|
119
|
Burrack LS, Applen Clancey SE, Chacón JM, Gardner MK, Berman J. Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences. Mol Biol Cell 2013; 24:2807-19. [PMID: 23885115 PMCID: PMC3771944 DOI: 10.1091/mbc.e13-05-0229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Higher-order structure of chromatin is essential for chromosome segregation and repetitive DNA stability. Monopolin recruits condensin to organize centromere DNA irrespective of the number of kinetochore–microtubule attachments. In addition, the role of monopolin in stabilizing repeat tracts observed in budding yeast is conserved in Candida albicans. The establishment and maintenance of higher-order structure at centromeres is essential for accurate chromosome segregation. The monopolin complex is thought to cross-link multiple kinetochore complexes to prevent merotelic attachments that result in chromosome missegregation. This model is based on structural analysis and the requirement that monopolin execute mitotic and meiotic chromosome segregation in Schizosaccharomyces pombe, which has more than one kinetochore–microtubule attachment/centromere, and co-orient sister chromatids in meiosis I in Saccharomyces cerevisiae. Recent data from S. pombe suggest an alternative possibility: that the recruitment of condensin is the primary function of monopolin. Here we test these models using the yeast Candida albicans. C. albicans cells lacking monopolin exhibit defects in chromosome segregation, increased distance between centromeres, and decreased stability of several types of repeat DNA. Of note, changing kinetochore–microtubule copy number from one to more than one kinetochore–microtubule/centromere does not alter the requirement for monopolin. Furthermore, monopolin recruits condensin to C. albicans centromeres, and overexpression of condensin suppresses chromosome segregation defects in strains lacking monopolin. We propose that the key function of monopolin is to recruit condensin in order to promote the assembly of higher-order structure at centromere and repetitive DNA.
Collapse
Affiliation(s)
- Laura S Burrack
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
120
|
Sarkar S, Shenoy RT, Dalgaard JZ, Newnham L, Hoffmann E, Millar JBA, Arumugam P. Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I. PLoS Genet 2013; 9:e1003610. [PMID: 23861669 PMCID: PMC3701701 DOI: 10.1371/journal.pgen.1003610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.
Collapse
Affiliation(s)
| | | | | | - Louise Newnham
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | | |
Collapse
|
121
|
Histone variant H2A.Z functions in sister chromatid cohesion in Saccharomyces cerevisiae. Mol Cell Biol 2013; 33:3473-81. [PMID: 23816883 DOI: 10.1128/mcb.00162-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H2A.Z is a highly conserved variant of histone H2A with well-characterized roles in transcriptional regulation. We previously reported that H2A.Z and Mcd1, a subunit of the cohesin complex, regulate the establishment of transcriptional silencing at telomeres in Saccharomyces cerevisiae and that H2A.Z broadly dissociated from chromatin during the anaphase-to-telophase transition, coincident with the dissociation of Mcd1 from chromosomes and dissolution of cohesion. In this study, we show that depletion of H2A.Z causes precocious loss of sister chromatid cohesion in yeast without loss of Mcd1 from chromosomes. H2A.Z is deposited into chromatin by the SWR1 complex and is subject to acetylation of its four N-terminal tail lysine residues by the NuA4 and SAGA histone acetyltransferase complexes. We found that cells compromised for function of the SWR1 complex were defective in cohesion, as were cells expressing a form of H2A.Z not subject to acetylation. Finally, inactivation of H2A.Z in metaphase-blocked cells led immediately to cohesion defects, suggesting a direct role for H2A.Z in the maintenance of sister chromatid cohesion.
Collapse
|
122
|
Akai Y, Kurokawa Y, Nakazawa N, Tonami-Murakami Y, Suzuki Y, Yoshimura SH, Iwasaki H, Shiroiwa Y, Nakamura T, Shibata E, Yanagida M. Opposing role of condensin hinge against replication protein A in mitosis and interphase through promoting DNA annealing. Open Biol 2013; 1:110023. [PMID: 22645654 PMCID: PMC3352087 DOI: 10.1098/rsob.110023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/25/2011] [Indexed: 12/18/2022] Open
Abstract
Condensin is required for chromosome dynamics and diverse DNA metabolism. How condensin works, however, is not well understood. Condensin contains two structural maintenance of chromosomes (SMC) subunits with the terminal globular domains connected to coiled-coil that is interrupted by the central hinge. Heterotrimeric non-SMC subunits regulate SMC. We identified a novel fission yeast SMC hinge mutant, cut14-Y1, which displayed defects in DNA damage repair and chromosome segregation. It contains an amino acid substitution at a conserved hinge residue of Cut14/SMC2, resulting in diminished DNA binding and annealing. A replication protein A mutant, ssb1-418, greatly alleviated the repair and mitotic defects of cut14-Y1. Ssb1 protein formed nucleolar foci in cut14-Y1 cells, but the number of foci was diminished in cut14-Y1 ssb1-418 double mutants. Consistent with the above results, Ssb1 protein bound to single-strand DNA was removed by condensin or the SMC dimer through DNA reannealing in vitro. Similarly, RNA hybridized to DNA may be removed by the SMC dimer. Thus, condensin may wind up DNA strands to unload chromosomal components after DNA repair and prior to mitosis. We show that 16 suppressor mutations of cut14-Y1 were all mapped within the hinge domain, which surrounded the original L543 mutation site.
Collapse
Affiliation(s)
- Yuko Akai
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Herzog S, Nagarkar Jaiswal S, Urban E, Riemer A, Fischer S, Heidmann SK. Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I. PLoS Genet 2013; 9:e1003463. [PMID: 23637630 PMCID: PMC3630105 DOI: 10.1371/journal.pgen.1003463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non-SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II-specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II-specific subunits, while it can be readily detected in complexes with condensin I-specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II-specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II-specific homolog Cap-D3. As condensin II-specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.
Collapse
Affiliation(s)
- Sabine Herzog
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | | | - Evelin Urban
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Anna Riemer
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Sina Fischer
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- Lehrstuhl für Pflanzenphysiologie, University of Bayreuth, Bayreuth, Germany
| | - Stefan K. Heidmann
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- * E-mail:
| |
Collapse
|
124
|
Piazza I, Haering CH, Rutkowska A. Condensin: crafting the chromosome landscape. Chromosoma 2013; 122:175-90. [DOI: 10.1007/s00412-013-0405-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
|
125
|
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. A chemical biology strategy to analyze rheostat-like protein kinase-dependent regulation. CHEMISTRY & BIOLOGY 2013; 20:262-71. [PMID: 23438755 PMCID: PMC3626098 DOI: 10.1016/j.chembiol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/04/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
Protein kinases may function more like variable rheostats rather than two-state switches. However, we lack approaches to properly analyze this aspect of kinase-dependent regulation. To address this, we develop a strategy in which a kinase inhibitor is identified using genetics-based screens, kinase mutations that confer resistance are characterized, and dose-dependent responses of isogenic drug-sensitive and resistant cells to inhibitor treatments are compared. This approach has the advantage that function of wild-type kinase, rather than mutants, is examined. To develop this approach, we focus on Ark1, the fission yeast member of the conserved Aurora kinase family. Applying this approach reveals that proper chromosome compaction in fission yeast needs high Ark1 activity, while other processes depend on significantly lower activity levels. Our strategy is general and can be used to examine the functions of other molecular rheostats.
Collapse
Affiliation(s)
| | - Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
126
|
Abstract
The maintenance of genome integrity is essential for organism survival and for the inheritance of traits to offspring. Genomic instability is caused by DNA damage, aberrant DNA replication or uncoordinated cell division, which can lead to chromosomal aberrations and gene mutations. Recently, chromatin regulators that shape the epigenetic landscape have emerged as potential gatekeepers and signalling coordinators for the maintenance of genome integrity. Here, we review chromatin functions during the two major pathways that control genome integrity: namely, repair of DNA damage and DNA replication. We also discuss recent evidence that suggests a novel role for chromatin-remodelling factors in chromosome segregation and in the prevention of aneuploidy.
Collapse
|
127
|
Abstract
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.
Collapse
|
128
|
Wang F, Higgins JMG. Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol 2012; 23:175-84. [PMID: 23246430 DOI: 10.1016/j.tcb.2012.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022]
Abstract
The roles of post-translational histone modifications in regulating transcription and DNA damage have been widely studied and discussed. Although mitotic histone marks, particularly phosphorylation, were discovered four decades ago, their roles in mitosis have been outlined only in the past few years. Here we aim to provide an integrated view of how histone modifications act as 'countermarks', 'landmarks', and 'bookmarks' to displace, recruit, and 'remember' the location of regulatory proteins during and shortly after mitosis. These capabilities allow histone marks to help downregulate interphase functions such as transcription during mitosis, to facilitate chromatin events required to accomplish chromosome segregation, and to contribute to the maintenance of epigenetic states through mitosis.
Collapse
Affiliation(s)
- Fangwei Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | |
Collapse
|
129
|
Abstract
The processes underlying the large-scale reorganisation of chromatin in mitosis that form compact mitotic chromosomes and ensure the fidelity of chromosome segregation during cell division still remain obscure. The chromosomal condensin complex is a major molecular effector of chromosome condensation and segregation in diverse organisms ranging from bacteria to humans. Condensin is a large, evolutionarily conserved, multisubunit protein assembly composed of dimers of the structural maintenance of chromosomes (SMC) family of ATPases, clasped into topologically closed rings by accessory subunits. Condensin binds to DNA dynamically, in a poorly understood cycle of ATP-modulated conformational changes, and exhibits the ability to positively supercoil DNA. During mitosis, condensin is phosphorylated by the cyclin-dependent kinase (CDK), Polo and Aurora B kinases in a manner that correlates with changes in its localisation, dynamics and supercoiling activity. Here we review the reported architecture, biochemical activities and regulators of condensin. We compare models of bacterial and eukaryotic condensins in order to uncover conserved mechanistic principles of condensin action and to propose a model for mitotic chromosome condensation.
Collapse
Affiliation(s)
- Rahul Thadani
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
130
|
|
131
|
Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 2012; 13:789-803. [PMID: 23175282 PMCID: PMC3729939 DOI: 10.1038/nrm3474] [Citation(s) in RCA: 630] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal and membrane trafficking events. These processes are regulated by the competing actions of protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In conjunction with inner centromere protein (INCENP), borealin (also known as Dasra) and survivin it forms the chromosomal passenger complex (CPC). This complex targets to different locations at differing times during mitosis, where it regulates key mitotic events: correction of chromosome-microtubule attachment errors; activation of the spindle assembly checkpoint; and construction and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of the CPC has seen it develop from a mere passenger riding on the chromosomes to one of the main controllers of mitosis.
Collapse
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, ICB Michael Swann Building, King's Buildings Mayfield Road, Edinburgh EH9 3JR Scotland, UK.
| | | | | | | |
Collapse
|
132
|
Affiliation(s)
- Dannel McCollum
- Department of Microbiology and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
133
|
Abstract
Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
134
|
Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA damage through histone H3 lysine 56 acetylation. Mol Cell 2012; 48:532-46. [PMID: 23084836 DOI: 10.1016/j.molcel.2012.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/12/2012] [Accepted: 09/07/2012] [Indexed: 12/29/2022]
Abstract
Complex genome organizations participate in various nuclear processes including transcription, DNA replication, and repair. However, the mechanisms that generate and regulate these functional genome structures remain largely unknown. Here, we describe how the Ku heterodimer complex, which functions in nonhomologous end joining, mediates clustering of long terminal repeat retrotransposons at centromeres in fission yeast. We demonstrate that the CENP-B subunit, Abp1, functions as a recruiter of the Ku complex, which in turn loads the genome-organizing machinery condensin to retrotransposons. Intriguingly, histone H3 lysine 56 (H3K56) acetylation, which functions in DNA replication and repair, interferes with Ku localization at retrotransposons without disrupting Abp1 localization and, as a consequence, dissociates condensin from retrotransposons. This dissociation releases condensin-mediated genomic associations during S phase and upon DNA damage. ATR (ATM- and Rad3-related) kinase mediates the DNA damage response of condensin-mediated genome organization. Our study describes a function of H3K56 acetylation that neutralizes condensin-mediated genome organization.
Collapse
|
135
|
Alipour E, Marko JF. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 2012; 40:11202-12. [PMID: 23074191 PMCID: PMC3526278 DOI: 10.1093/nar/gks925] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The long chromosomal DNAs of cells are organized into loop domains much larger in size than individual DNA-binding enzymes, presenting the question of how formation of such structures is controlled. We present a model for generation of defined chromosomal loops, based on molecular machines consisting of two coupled and oppositely directed motile elements which extrude loops from the double helix along which they translocate, while excluding one another sterically. If these machines do not dissociate from DNA (infinite processivity), a disordered, exponential steady-state distribution of small loops is obtained. However, if dissociation and rebinding of the machines occurs at a finite rate (finite processivity), the steady state qualitatively changes to a highly ordered ‘stacked’ configuration with suppressed fluctuations, organizing a single large, stable loop domain anchored by several machines. The size of the resulting domain can be simply regulated by boundary elements, which halt the progress of the extrusion machines. Possible realizations of these types of molecular machines are discussed, with a major focus on structural maintenance of chromosome complexes and also with discussion of type I restriction enzymes. This mechanism could explain the geometrically uniform folding of eukaryote mitotic chromosomes, through extrusion of pre-programmed loops and concomitant chromosome compaction.
Collapse
Affiliation(s)
- Elnaz Alipour
- Center for Cell Analysis and Modeling, University of Connecticut Health Sciences Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
136
|
Petronczki M, Uhlmann F. Cell biology. ESCRTing DNA at the cleavage site during cytokinesis. Science 2012; 336:166-7. [PMID: 22499931 DOI: 10.1126/science.1221832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, UK.
| | | |
Collapse
|
137
|
Dong Q, Han F. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:800-9. [PMID: 22519817 DOI: 10.1111/j.1365-313x.2012.05029.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.
Collapse
Affiliation(s)
- Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
138
|
Kerr GW, Sarkar S, Arumugam P. How to halve ploidy: lessons from budding yeast meiosis. Cell Mol Life Sci 2012; 69:3037-51. [PMID: 22481439 PMCID: PMC11114884 DOI: 10.1007/s00018-012-0974-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.
Collapse
Affiliation(s)
- Gary William Kerr
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
139
|
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci 2012; 70:387-406. [PMID: 22729156 DOI: 10.1007/s00018-012-1048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 01/19/2023]
Abstract
The centromere is the chromosomal region that directs kinetochore assembly during mitosis in order to facilitate the faithful segregation of sister chromatids. The location of the human centromere is epigenetically specified. The presence of nucleosomes that contain the histone H3 variant, CENP-A, are thought to be the epigenetic mark that indicates active centromeres. Maintenance of centromeric identity requires the deposition of new CENP-A nucleosomes with each cell cycle. During S-phase, existing CENP-A nucleosomes are divided among the daughter chromosomes, while new CENP-A nucleosomes are deposited during early G1. The specific assembly of CENP-A nucleosomes at centromeres requires the Mis18 complex, which recruits the CENP-A assembly factor, HJURP. We will review the unique features of centromeric chromatin as well as the mechanism of CENP-A nucleosome deposition. We will also highlight a few recent discoveries that begin to elucidate the factors that temporally and spatially control CENP-A deposition.
Collapse
Affiliation(s)
- Madison E Stellfox
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, PO Box 800733, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
140
|
Corbett KD, Harrison SC. Molecular architecture of the yeast monopolin complex. Cell Rep 2012; 1:583-9. [PMID: 22813733 PMCID: PMC3494995 DOI: 10.1016/j.celrep.2012.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/25/2012] [Accepted: 05/16/2012] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae monopolin complex directs proper chromosome segregation in meiosis I by mediating co-orientation of sister kinetochores on the meiosis I spindle. The monopolin subunits Csm1 and Lrs4 form a V-shaped complex that may directly crosslink sister kinetochores. We report here biochemical characterization of the monopolin complex subunits Mam1 and Hrr25 and of the complete four-protein monopolin complex. By purifying monopolin subcomplexes with different subunit combinations, we have determined the stoichiometry and overall architecture of the full monopolin complex. We have determined the crystal structure of Csm1 bound to a Mam1 fragment, showing how Mam1 wraps around the Csm1 dimer and alters the stoichiometry of kinetochore-protein binding by Csm1. We further show that the kinase activity of Hrr25 is altered by Mam1 binding, and we identify Hrr25 phosphorylation sites on Mam1 that may affect monopolin complex stability and/or kinetochore binding in meiosis.
Collapse
Affiliation(s)
- Kevin D Corbett
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0660, USA.
| | | |
Collapse
|
141
|
Watanabe Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 2012; 13:370-82. [PMID: 22588367 DOI: 10.1038/nrm3349] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
142
|
Koch A, Rode HB, Richters A, Rauh D, Hauf S. A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase. ACS Chem Biol 2012; 7:723-31. [PMID: 22264160 DOI: 10.1021/cb200465c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The perturbation of protein kinases with small organic molecules is a powerful approach to dissect kinase function in complex biological systems. Covalent kinase inhibitors that target thiols in the ATP binding pocket of the kinase domain proved to be ideal reagents for the investigation of highly dynamic cellular processes. However, due to the covalent inhibitors' possible off-target reactivities, it is required that the overall shape of the inhibitor as well as the intrinsic reactivity of the electrophile are precisely tuned to favor the reaction with only the desired cysteine. Here we report on the design and biological characterization of covalent anilinoquinazolines as potent inhibitors of genetically engineered Aurora kinase in fission yeast.
Collapse
Affiliation(s)
- André Koch
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse
39, D-72076 Tübingen, Germany
| | - Haridas B. Rode
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
- Council of Scientific and Industrial Research (CSIR) Headquarters, 2, Rafi
Marg, New Delhi-110001, India
| | - André Richters
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse
15, D-44227 Dortmund, Germany
- Fakultät Chemie, Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Silke Hauf
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse
39, D-72076 Tübingen, Germany
| |
Collapse
|
143
|
Wyrick JJ, Kyriss MNM, Davis WB. Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:892-901. [PMID: 22521324 DOI: 10.1016/j.bbagrm.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/23/2022]
Abstract
Research over the past decade has greatly expanded our understanding of the nucleosome's role as a dynamic hub that is specifically recognized by many regulatory proteins involved in transcription, silencing, replication, repair, and chromosome segregation. While many of these nucleosome interactions are mediated by post-translational modifications in the disordered histone tails, it is becoming increasingly apparent that structured regions of the nucleosome, including the histone fold domains, are also recognized by numerous regulatory proteins. This review will focus on the recognition of structured domains in the histone H2A-H2B dimer, including the acidic patch, the H2A docking domain, the H2B α3-αC helices, and the HAR/HBR domains, and will survey the known biological functions of histone residues within these domains. Novel post-translational modifications and trans-histone regulatory pathways involving structured regions of the H2A-H2B dimer will be highlighted, along with the role of intrinsic disorder in the recognition of structured nucleosome regions.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
144
|
van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318:1407-20. [PMID: 22472345 DOI: 10.1016/j.yexcr.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.
Collapse
Affiliation(s)
- Maike S van der Waal
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
145
|
Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13:189-203. [PMID: 22269907 DOI: 10.1038/nrg3123] [Citation(s) in RCA: 611] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic instability, which includes both numerical and structural chromosomal abnormalities, is a hallmark of cancer. Whereas the structural chromosome rearrangements have received substantial attention, the role of whole-chromosome aneuploidy in cancer is much less well-understood. Here we review recent progress in understanding the roles of whole-chromosome aneuploidy in cancer, including the mechanistic causes of aneuploidy, the cellular responses to chromosome gains or losses and how cells might adapt to tolerate these usually detrimental alterations. We also explore the role of aneuploidy in cellular transformation and discuss the possibility of developing aneuploidy-specific therapies.
Collapse
Affiliation(s)
- David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
146
|
Ogiyama Y, Ishii K. The smooth and stable operation of centromeres. Genes Genet Syst 2012; 87:63-73. [DOI: 10.1266/ggs.87.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuki Ogiyama
- Laboratory of Chromosome Function and Regulation, Graduate School of Frontier Biosciences, Osaka University
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
147
|
Petrova B, Haering CH. Condensin engages chromatin. Chembiochem 2011; 12:2399-401. [PMID: 21953888 DOI: 10.1002/cbic.201100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
148
|
Abstract
To segregate chromosomes properly, the cell must prevent merotely, an error that occurs when a single kinetochore is attached to microtubules emanating from both spindle poles. Recent evidence suggests that cooperation between Pcs1/Mde4 and condensin complexes plays an important role in preventing merotely.
Collapse
|
149
|
Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic Substrates of the Kinase Aurora with Roles in Chromatin Regulation Identified Through Quantitative Phosphoproteomics of Fission Yeast. Sci Signal 2011; 4:rs6. [DOI: 10.1126/scisignal.2001588] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|