101
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
102
|
Skoulding NS, Chowdhary G, Deus MJ, Baker A, Reumann S, Warriner SL. Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity. J Mol Biol 2014; 427:1085-101. [PMID: 25498386 DOI: 10.1016/j.jmb.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Most peroxisomal matrix proteins possess a C-terminal targeting signal type 1 (PTS1). Accurate prediction of functional PTS1 sequences and their relative strength by computational methods is essential for determination of peroxisomal proteomes in silico but has proved challenging due to high levels of sequence variability of non-canonical targeting signals, particularly in higher plants, and low levels of availability of experimentally validated non-canonical examples. In this study, in silico predictions were compared with in vivo targeting analyses and in vitro thermodynamic binding of mutated variants within the context of one model targeting sequence. There was broad agreement between the methods for entire PTS1 domains and position-specific single amino acid residues, including residues upstream of the PTS1 tripeptide. The hierarchy Leu>Met>Ile>Val at the C-terminal position was determined for all methods but both experimental approaches suggest that Tyr is underweighted in the prediction algorithm due to the absence of this residue in the positive training dataset. A combination of methods better defines the score range that discriminates a functional PTS1. In vitro binding to the PEX5 receptor could discriminate among strong targeting signals while in vivo targeting assays were more sensitive, allowing detection of weak functional import signals that were below the limit of detection in the binding assay. Together, the data provide a comprehensive assessment of the factors driving PTS1 efficacy and provide a framework for the more quantitative assessment of the protein import pathway in higher plants.
Collapse
Affiliation(s)
- Nicola S Skoulding
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Gopal Chowdhary
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India
| | - Mara J Deus
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; Department of Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany
| | - Stuart L Warriner
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
103
|
Kalderon B, Pines O. Protein folding as a driving force for dual protein targeting in eukaryotes. Front Mol Biosci 2014; 1:23. [PMID: 25988164 PMCID: PMC4428415 DOI: 10.3389/fmolb.2014.00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 01/19/2023] Open
Abstract
It is well documented that in eukaryotic cells molecules of one protein can be located in several subcellular locations, a phenomenon termed dual targeting, dual localization, or dual distribution. The differently localized identical or nearly identical proteins are termed “echoforms.” Our conventional definition of dual targeted proteins refers to situations in which one of the echoforms is translocated through/into a membrane. Thus, dual targeted proteins are recognized by at least one organelle's receptors and translocation machineries within the lipid bilayer. In this review we attempt to evaluate mechanisms and situations in which protein folding is the major determinant of dual targeting and of the relative distribution levels of echoforms in the subcellular compartments of the eukaryotic cell. We show that the decisive folding step can occur prior, during or after translocation through the bilayer of a biological membrane. This phenomenon involves folding catalysts in the cell such as chaperones, proteases and modification enzymes, and targeting processes such as signal recognition, translocation through membranes, trapping, retrotranslocation and reverse translocation.
Collapse
Affiliation(s)
- Bella Kalderon
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel ; CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore Singapore, Singapore
| |
Collapse
|
104
|
Scazzocchio C. Fungal biology in the post-genomic era. Fungal Biol Biotechnol 2014; 1:7. [PMID: 28955449 PMCID: PMC5611559 DOI: 10.1186/s40694-014-0007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
In this review I give a personal perspective of how fungal biology has changed since I started my Ph. D. in 1963. At that time we were working in the shadow of the birth of molecular biology as an autonomous and reductionistic discipline, embodied in Crick’s central dogma. This first period was methodologically characterised by the fact that we knew what genes were, but we could not access them directly. This radically changed in the 70s-80s when gene cloning, reverse genetics and DNA sequencing become possible. The “next generation” sequencing techniques have produced a further qualitative revolutionary change. The ready access to genomes and transcriptomes of any microbial organism allows old questions to be asked in a radically different way and new questions to be approached. I provide examples chosen somewhat arbitrarily to illustrate some of these changes, from applied aspects to fundamental problems such as the origin of fungal specific genes, the evolutionary history of genes clusters and the realisation of the pervasiveness of horizontal transmission. Finally, I address how the ready availability of genomes and transcriptomes could change the status of model organisms.
Collapse
Affiliation(s)
- Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK.,Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, 91405 France
| |
Collapse
|
105
|
Stehlik T, Sandrock B, Ast J, Freitag J. Fungal peroxisomes as biosynthetic organelles. Curr Opin Microbiol 2014; 22:8-14. [PMID: 25305532 DOI: 10.1016/j.mib.2014.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes.
Collapse
Affiliation(s)
- Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein Str., Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Julia Ast
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, LOEWE Cluster for Integrative Fungal Research, Georg-Voigt-Str. 14-16, Frankfurt am Main, Germany.
| |
Collapse
|
106
|
Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J, Bölker M. Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals. PLoS Genet 2014; 10:e1004685. [PMID: 25340584 PMCID: PMC4207609 DOI: 10.1371/journal.pgen.1004685] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022] Open
Abstract
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.
Collapse
Affiliation(s)
- Alina C. Stiebler
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF), Senckenberg Society, Frankfurt am Main, Germany
| | - Kay O. Schink
- Faculty of Medicine, Centre for Cancer Biomedicine, University of Oslo, Montebello, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
107
|
Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife 2014; 3:e03640. [PMID: 25247702 PMCID: PMC4359377 DOI: 10.7554/elife.03640] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023] Open
Abstract
Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI:http://dx.doi.org/10.7554/eLife.03640.001 Amino acids are the building blocks of proteins, and the order of the amino acids in a protein is determined by the order in which ‘codons’ appear in a messenger RNA molecule. Most codons represent a specific amino acid, but there are also three stop codons that are used to mark the end of a protein. When the cellular machinery that ‘translates’ the messenger RNA molecule into a protein encounters a stop codon, it stops and releases the completed protein. Sometimes, however, the stop codon is not interpreted as a stop signal, and the translation of the messenger RNA molecule continues until another stop codon is encountered. This process is known as readthrough. Some organisms, in particular viruses and fungi, use readthrough to produce a wider range of proteins than their genomes would otherwise allow. While readthrough also occurs in higher organisms such as mammals, it is not known if the resulting proteins perform extra functions that the original protein does not perform. A number of factors affect whether readthrough occurs when an mRNA template is being translated. For example, each of the three stop codons has a different likelihood of having its stop signal misinterpreted, and the mRNA sequence that surrounds the stop codon can also affect the likelihood of readthrough. Schueren et al. have developed a computational model that estimates how common this form of translational readthrough is in the human genome. The model was based on the identity of the stop codons themselves and the surrounding mRNA sequence. This model was then combined with another model that identifies proteins that are targeted to a structure inside a cell called the peroxisome, which is where a number of essential energy-releasing reactions take place. The combined model enabled Schueren et al. to identify proteins that both perform functions in the peroxisome and are likely to be formed by readthrough. The combined model suggested a protein that is a part of lactate dehydrogenase: an enzyme that speeds up chemical reactions that are important for the cell to produce energy. Low levels of lactate dehydrogenase had previously been found in the peroxisome, despite it apparently lacking a specific sequence of amino acids that proteins need to have to enter the peroxisome. However, Schueren et al. confirmed experimentally that readthrough does occur for the lactate dehydrogenase component identified by the model, revealing that it contains a ‘hidden’ peroxisome-targeting region. Furthermore, when more translational readthrough occurred, more lactate dehydrogenase was found in the peroxisomes. This unusual way that lactate dehydrogenase enters the peroxisome is an example of how the cell optimizes the used of the genetic information encoded in the genome and in messenger RNA. Translational readthrough always ensures that a certain proportion of lactate dehydrogenase will be brought to the peroxisome. The computational model developed here will be a valuable tool to identify other such proteins produced from genomes, including the human genome and those of other species. DOI:http://dx.doi.org/10.7554/eLife.03640.002
Collapse
Affiliation(s)
- Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rosemol George
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Corinna Dickel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
108
|
Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab Eng 2014; 25:131-9. [DOI: 10.1016/j.ymben.2014.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 11/21/2022]
|
109
|
Perez-Nadales E, Nogueira MFA, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014; 70:42-67. [PMID: 25011008 PMCID: PMC4161391 DOI: 10.1016/j.fgb.2014.06.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/05/2022]
Abstract
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain.
| | | | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sónia Castanheira
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mennat El Ghalid
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Elisabeth Grund
- Functional Genomics of Plant Pathogenic Fungi, UMR 5240 CNRS-UCB-INSA-Bayer SAS, Bayer CropScience, 69263 Lyon, France
| | - Klaus Lengeler
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Elisabetta Marchegiani
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Pankaj Vinod Mehrotra
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Marino Moretti
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Vikram Naik
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Miriam Oses-Ruiz
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Therese Oskarsson
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Katja Schäfer
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Lisa Wasserstrom
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Regine Kahmann
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Marc-Henri Lebrun
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - José Perez-Martin
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Di Pietro
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Nicholas J Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Valerie Toquin
- Biochemistry Department, Bayer SAS, Bayer CropScience, CRLD, 69263 Lyon, France
| | - Andrea Walther
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| |
Collapse
|
110
|
mRNA transport meets membrane traffic. Trends Genet 2014; 30:408-17. [DOI: 10.1016/j.tig.2014.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
111
|
Loughran G, Chou MY, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 2014; 42:8928-38. [PMID: 25013167 PMCID: PMC4132726 DOI: 10.1093/nar/gku608] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 12/04/2022] Open
Abstract
Stop codon readthrough is used extensively by viruses to expand their gene expression. Until recent discoveries in Drosophila, only a very limited number of readthrough cases in chromosomal genes had been reported. Analysis of conserved protein coding signatures that extend beyond annotated stop codons identified potential stop codon readthrough of four mammalian genes. Here we use a modified targeted bioinformatic approach to identify a further three mammalian readthrough candidates. All seven genes were tested experimentally using reporter constructs transfected into HEK-293T cells. Four displayed efficient stop codon readthrough, and these have UGA immediately followed by CUAG. Comparative genomic analysis revealed that in the four readthrough candidates containing UGA-CUAG, this motif is conserved not only in mammals but throughout vertebrates with the first six of the seven nucleotides being universally conserved. The importance of the CUAG motif was confirmed using a systematic mutagenesis approach. One gene, OPRL1, encoding an opiate receptor, displayed extremely efficient levels of readthrough (∼31%) in HEK-293T cells. Signals both 5' and 3' of the OPRL1 stop codon contribute to this high level of readthrough. The sequence UGA-CUA alone can support 1.5% readthrough, underlying its importance.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ming-Yuan Chou
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Irwin Jungreis
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Manolis Kellis
- CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Anmol M Kiran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
112
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
113
|
Freitag J, Ast J, Linne U, Stehlik T, Martorana D, Bölker M, Sandrock B. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi. Mol Microbiol 2014; 93:24-36. [DOI: 10.1111/mmi.12642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Johannes Freitag
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung; Cluster for Integrative Fungal Research; Georg-Voigt-Str. 14-16 60325 Frankfurt am Main Germany
| | - Julia Ast
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Uwe Linne
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 2 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
| | - Thorsten Stehlik
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Domenica Martorana
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Michael Bölker
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
- SYNMIKRO; Philipps-Universität Marburg; Hans-Meerwein-Str. 35032 Marburg Germany
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF); Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| | - Björn Sandrock
- Department of Biology; Philipps-Universität Marburg; Karl-von-Frisch-Str. 8 35032 Marburg Germany
| |
Collapse
|
114
|
Abstract
In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | - Scott William Roy
- Department of Biology, San Francisco State University, San Francisco, California 94132
| |
Collapse
|
115
|
Loo LH, Laksameethanasan D, Tung YL. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins. PLoS Comput Biol 2014; 10:e1003504. [PMID: 24603469 PMCID: PMC3945119 DOI: 10.1371/journal.pcbi.1003504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg. Proteins are fundamental building blocks of cells. They perform a variety of biological functions, many of which are essential to the vitality and normal functioning of cells. Proteins have to be located at the appropriate regions inside a cell to perform their functions. Therefore, when proteins change their locations, they may acquire new or different functions. However, the relationships between the locations and functions of proteins are difficult to analyze because protein locations are often represented in distinct and manually-defined categories of subcellular regions. Many proteins have complex or subtle differences in their localization patterns that can be hardly represented by these categories. Here, we present an automated analysis tool for generating quantitative signatures of protein localization patterns without requiring manual or automated assignments of proteins into distinct categories. We show that our tool can identify proteins located at the same subcellular regions more accurately than existing categorization-based methods. Our tool allows comprehensive and more accurate studies of the relationships between protein localizations and functions. By knowing where proteins are located and how their locations were changed, we may discover their functions and better understand how they acquire these functions.
Collapse
Affiliation(s)
- Lit-Hsin Loo
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| | - Danai Laksameethanasan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Ling Tung
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
116
|
Abstract
Peroxisomes are often dismissed as the cellular hoi polloi, relegated to cleaning up reactive oxygen chemical debris discarded by other organelles. However, their functions extend far beyond hydrogen peroxide metabolism. Peroxisomes are intimately associated with lipid droplets and mitochondria, and their ability to carry out fatty acid oxidation and lipid synthesis, especially the production of ether lipids, may be critical for generating cellular signals required for normal physiology. Here, we review the biology of peroxisomes and their potential relevance to human disorders including cancer, obesity-related diabetes, and degenerative neurologic disease.
Collapse
|
117
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
118
|
Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 2013; 14:847. [PMID: 24299161 PMCID: PMC4046813 DOI: 10.1186/1471-2164-14-847] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus nidulans has been a tractable model organism for cell biology and genetics for over 60 years. It is among a large number of Aspergilli whose genomes have been sequenced since 2005, including medically and industrially important species. In order to advance our knowledge of its biology and increase its utility as a genetic model by improving gene annotation we sequenced the transcriptome of A. nidulans with a focus on 5' end analysis. RESULTS Strand-specific whole transcriptome sequencing showed that 80-95% of annotated genes appear to be expressed across the conditions tested. We estimate that the total gene number should be increased by approximately 1000, to 11,800. With respect to splicing 8.3% of genes had multiple alternative transcripts, but alternative splicing by exon-skipping was very rare. 75% of annotated genes showed some level of antisense transcription and for one gene, meaB, we demonstrated the antisense transcript has a regulatory role. Specific sequencing of the 5' ends of transcripts was used for genome wide mapping of transcription start sites, allowing us to interrogate over 7000 promoters and 5' untranslated regions. CONCLUSIONS Our data has revealed the complexity of the A. nidulans transcriptome and contributed to improved genome annotation. The data can be viewed on the AspGD genome browser.
Collapse
Affiliation(s)
- Christopher Sibthorp
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Huihai Wu
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Gwendolyn Cowley
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Prudence W H Wong
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Paulius Palaima
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Igor Y Morozov
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
- />Department of Biomolecular and Sports Sciences, Faculty of Health and Life Sciences, Coventry University, James Starley Building, Coventry, CV1 5FB UK
| | - Gareth D Weedall
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Mark X Caddick
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
119
|
Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2013; 2:e01179. [PMID: 24302569 PMCID: PMC3840789 DOI: 10.7554/elife.01179] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001.
Collapse
Affiliation(s)
- Joshua G Dunn
- California Institute of Quantitative Biosciences, San Francisco, United States
| | | | | | | | | |
Collapse
|
120
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
121
|
Ast J, Stiebler AC, Freitag J, Bölker M. Dual targeting of peroxisomal proteins. Front Physiol 2013; 4:297. [PMID: 24151469 PMCID: PMC3798809 DOI: 10.3389/fphys.2013.00297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/28/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular compartmentalization into organelles serves to separate biological processes within the environment of a single cell. While some metabolic reactions are specific to a single organelle, others occur in more than one cellular compartment. Specific targeting of proteins to compartments inside of eukaryotic cells is mediated by defined sequence motifs. To achieve multiple targeting to different compartments cells use a variety of strategies. Here, we focus on mechanisms leading to dual targeting of peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct intracellular localization are encoded by separate genes. But also single genes can give rise to differentially localized proteins. Different isoforms can be generated by use of alternative transcriptional start sites, by differential splicing or ribosomal read-through of stop codons. In all these cases different peptide variants are produced, of which only one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain additional signals that compete for intracellular targeting. Dual localization of proteins residing in both the cytoplasm and in peroxisomes may also result from use of inefficient targeting signals. The recent observation that some bona fide cytoplasmic enzymes were also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm and the peroxisome might be more widespread. Although current knowledge of proteins exhibiting only partial peroxisomal targeting is far from being complete, we speculate that the metabolic capacity of peroxisomes might be larger than previously assumed.
Collapse
Affiliation(s)
- Julia Ast
- Department of Biology, Philipps University Marburg Marburg, Germany
| | | | | | | |
Collapse
|
122
|
Affiliation(s)
- Vera Göhre
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Carl Haag
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Michael Feldbrügge
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
123
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
124
|
Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes. PLoS One 2013; 8:e73772. [PMID: 24069231 PMCID: PMC3777964 DOI: 10.1371/journal.pone.0073772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.
Collapse
|
125
|
Peraza-Reyes L, Berteaux-Lecellier V. Peroxisomes and sexual development in fungi. Front Physiol 2013; 4:244. [PMID: 24046747 PMCID: PMC3764329 DOI: 10.3389/fphys.2013.00244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- CNRS, Institut de Génétique et Microbiologie, University Paris-Sud, UMR8621 Orsay, France
| | | |
Collapse
|
126
|
Peroxisomes: offshoots of the ER. Curr Opin Cell Biol 2013; 25:449-54. [DOI: 10.1016/j.ceb.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 11/21/2022]
|
127
|
Maruyama JI, Kitamoto K. Expanding functional repertoires of fungal peroxisomes: contribution to growth and survival processes. Front Physiol 2013; 4:177. [PMID: 23882222 PMCID: PMC3713238 DOI: 10.3389/fphys.2013.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 11/14/2022] Open
Abstract
It has long been regarded that the primary function of fungal peroxisomes is limited to the β-oxidation of fatty acids, as mutants lacking peroxisomal function fail to grow in minimal medium containing fatty acids as the sole carbon source. However, studies in filamentous fungi have revealed that peroxisomes have diverse functional repertoires. This review describes the essential roles of peroxisomes in the growth and survival processes of filamentous fungi. One such survival mechanism involves the Woronin body, a Pezizomycotina-specific organelle that plugs the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss. A number of reports have demonstrated that Woronin bodies are derived from peroxisomes. Specifically, the Woronin body protein Hex1 is targeted to peroxisomes by peroxisomal targeting sequence 1 (PTS1) and forms a self-assembled structure that buds from peroxisomes to form the Woronin body. Peroxisomal deficiency reduces the ability of filamentous fungi to prevent excessive cytoplasmic loss upon hyphal lysis, indicating that peroxisomes contribute to the survival of these multicellular organisms. Peroxisomes were also recently found to play a vital role in the biosynthesis of biotin, which is an essential cofactor for various carboxylation and decarboxylation reactions. In biotin-prototrophic fungi, peroxisome-deficient mutants exhibit growth defects when grown on glucose as a carbon source due to biotin auxotrophy. The biotin biosynthetic enzyme BioF (7-keto-8-aminopelargonic acid synthase) contains a PTS1 motif that is required for both peroxisomal targeting and biotin biosynthesis. In plants, the BioF protein contains a conserved PTS1 motif and is also localized in peroxisomes. These findings indicate that the involvement of peroxisomes in biotin biosynthesis is evolutionarily conserved between fungi and plants, and that peroxisomes play a key role in fungal growth.
Collapse
|
128
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
129
|
Gründlinger M, Yasmin S, Lechner BE, Geley S, Schrettl M, Hynes M, Haas H. Fungal siderophore biosynthesis is partially localized in peroxisomes. Mol Microbiol 2013; 88:862-75. [PMID: 23617799 PMCID: PMC3709128 DOI: 10.1111/mmi.12225] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 11/28/2022]
Abstract
Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein-tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl-CoA ligase), SidH (mevalonyl-CoA hydratase) and SidF (anhydromevalonyl-CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH-targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen-type siderophore-producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.
Collapse
Affiliation(s)
- Mario Gründlinger
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
130
|
Kempken F. Alternative splicing in ascomycetes. Appl Microbiol Biotechnol 2013; 97:4235-41. [DOI: 10.1007/s00253-013-4841-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/08/2023]
|
131
|
Alternative splicing and subfunctionalization generates functional diversity in fungal proteomes. PLoS Genet 2013; 9:e1003376. [PMID: 23516382 PMCID: PMC3597508 DOI: 10.1371/journal.pgen.1003376] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is commonly used by the Metazoa to generate more than one protein from a gene. However, such diversification of the proteome by alternative splicing is much rarer in fungi. We describe here an ancient fungal alternative splicing event in which these two proteins are generated from a single alternatively spliced ancestral SKI7/HBS1 gene retained in many species in both the Ascomycota and Basidiomycota. While the ability to express two proteins from a single SKI7/HBS1 gene is conserved in many fungi, the exact mechanism by which they achieve this varies. The alternative splicing was lost in Saccharomyces cerevisiae following the whole-genome duplication event as these two genes subfunctionalized into the present functionally distinct HBS1 and SKI7 genes. When expressed in yeast, the single gene from Lachancea kluyveri generates two functionally distinct proteins. Expression of one of these proteins complements hbs1, but not ski7 mutations, while the other protein complements ski7, but not hbs1. This is the first known case of subfunctionalization by loss of alternative splicing in yeast. By coincidence, the ancestral alternatively spliced gene was also duplicated in Schizosaccharomyces pombe with subsequent subfunctionalization and loss of splicing. Similar subfunctionalization by loss of alternative splicing in fungi also explains the presence of two PTC7 genes in the budding yeast Tetrapisispora blattae, suggesting that this is a common mechanism to preserve duplicate alternatively spliced genes. The role of duplicated genes in originating new functions is an important question in evolution. Almost all species have duplicated genes that carry out similar but not identical functions. Similar proteins that perform different functions can also be generated when one gene generates multiple mRNAs by alternative splicing that are translated into multiple similar proteins. This alternative splicing is prevalent in animal cells, but much rarer in fungi. Here we show that most fungi use alternative splicing to make a Ski7 protein and a Hbs1 protein from the same gene. Two fungi, budding yeast and fission yeast, have been much better characterized than other fungi, and co-incidentally they both have duplicated this alternatively spliced gene, resulting in two similar genes that are no longer alternatively spliced. Finally, we describe another example where two duplicate genes replace one alternatively spliced gene, suggesting that this is a common mechanism to divide functions among duplicate genes.
Collapse
|
132
|
Abstract
Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid β-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungal peroxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.
Collapse
Affiliation(s)
- Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 11103, 9700CC, Groningen, The Netherlands,
| | | |
Collapse
|
133
|
Abstract
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
Collapse
|
134
|
Beach A, Burstein MT, Richard VR, Leonov A, Levy S, Titorenko VI. Integration of peroxisomes into an endomembrane system that governs cellular aging. Front Physiol 2012; 3:283. [PMID: 22936916 PMCID: PMC3424522 DOI: 10.3389/fphys.2012.00283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/28/2012] [Indexed: 01/01/2023] Open
Abstract
The peroxisome is an organelle that has long been known for its essential roles in oxidation of fatty acids, maintenance of reactive oxygen species (ROS) homeostasis and anaplerotic replenishment of tricarboxylic acid (TCA) cycle intermediates destined for mitochondria. Growing evidence supports the view that these peroxisome-confined metabolic processes play an essential role in defining the replicative and chronological age of a eukaryotic cell. Much progress has recently been made in defining molecular mechanisms that link cellular aging to fatty acid oxidation, ROS turnover, and anaplerotic metabolism in peroxisomes. Emergent studies have revealed that these organelles not only house longevity-defining metabolic reactions but can also regulate cellular aging via their dynamic communication with other cellular compartments. Peroxisomes communicate with other organelles by establishing extensive physical contact with lipid bodies, maintaining an endoplasmic reticulum (ER) to peroxisome connectivity system, exchanging certain metabolites, and being involved in the bidirectional flow of some of their protein and lipid constituents. The scope of this review is to summarize the evidence that peroxisomes are dynamically integrated into an endomembrane system that governs cellular aging. We discuss recent progress in understanding how communications between peroxisomes and other cellular compartments within this system influence the development of a pro- or anti-aging cellular pattern. We also propose a model for the integration of peroxisomes into the endomembrane system governing cellular aging and critically evaluate several molecular mechanisms underlying such integration.
Collapse
Affiliation(s)
- Adam Beach
- Department of Biology, Concordia University, Montreal PQ, Canada
| | | | | | | | | | | |
Collapse
|