101
|
Harkess A, Leebens-Mack J. A Century of Sex Determination in Flowering Plants. J Hered 2016; 108:69-77. [PMID: 27974487 DOI: 10.1093/jhered/esw060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/07/2016] [Indexed: 11/14/2022] Open
Abstract
Plants have evolved a diverse array of strategies for sexual reproduction, particularly through the modification of male and female organs at distinct points in development. The immense variation in sexual systems across the land plants provides a unique opportunity to study the genetic, epigenetic, phylogenetic, and ecological underpinnings of sex determination. Here, we reflect on more than a century of research into flowering plant sex determination, placing a particular focus on the foundational genetic and cytogenetic observations, experiments, and hypotheses. Building on the seminal work on the genetics of plant sex, modern comparative genomic analyses now allow us to address longstanding questions about sex determination and the origins of sex chromosomes.
Collapse
Affiliation(s)
- Alex Harkess
- From the Department of Plant Biology, University of Georgia, Athens, GA 30602 (Harkess and Leebens-Mack), Alex Harkess is now at the Donald Danforth Plant Science Center, St. Louis MO 63132.
| | - Jim Leebens-Mack
- From the Department of Plant Biology, University of Georgia, Athens, GA 30602 (Harkess and Leebens-Mack), Alex Harkess is now at the Donald Danforth Plant Science Center, St. Louis MO 63132
| |
Collapse
|
102
|
|
103
|
Roy SW. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions. Mol Biol Evol 2016; 33:3088-3094. [DOI: 10.1093/molbev/msw172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
104
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
105
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
106
|
Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA. Mol Genet Genomics 2016; 291:1955-66. [DOI: 10.1007/s00438-016-1230-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
|
107
|
Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex. G3-GENES GENOMES GENETICS 2016; 6:1799-808. [PMID: 27172187 PMCID: PMC4938635 DOI: 10.1534/g3.116.027961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.
Collapse
|
108
|
Nozawa M, Fujimi M, Iwamoto C, Onizuka K, Fukuda N, Ikeo K, Gojobori T. Evolutionary Transitions of MicroRNA-Target Pairs. Genome Biol Evol 2016; 8:1621-33. [PMID: 27189995 PMCID: PMC4898806 DOI: 10.1093/gbe/evw092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How newly generated microRNA (miRNA) genes are integrated into gene regulatory networks during evolution is fundamental in understanding the molecular and evolutionary bases of robustness and plasticity in gene regulation. A recent model proposed that after the birth of a miRNA, the miRNA is generally integrated into the network by decreasing the number of target genes during evolution. However, this decreasing model remains to be carefully examined by considering in vivo conditions. In this study, we therefore compared the number of target genes among miRNAs with different ages, combining experiments with bioinformatics predictions. First, we focused on three Drosophila miRNAs with different ages. As a result, we found that an older miRNA has a greater number of target genes than a younger miRNA, suggesting the increasing number of targets for each miRNA during evolution (increasing model). To further confirm our results, we also predicted all target genes for all miRNAs in D. melanogaster, considering co-expression of miRNAs and mRNAs in vivo. The results obtained also do not support the decreasing model but are reasonably consistent with the increasing model of miRNA-target pairs. Furthermore, our large-scale analyses of currently available experimental data of miRNA-target pairs also showed a weak but the same trend in humans. These results indicate that the current decreasing model of miRNA-target pairs should be reconsidered and the increasing model may be more appropriate to explain the evolutionary transitions of miRNA-target pairs in many organisms.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan Department of Genetics, SOKENDAI, Shizuoka, Japan
| | - Mai Fujimi
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Chie Iwamoto
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kanako Onizuka
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Nana Fukuda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan Department of Genetics, SOKENDAI, Shizuoka, Japan
| | - Takashi Gojobori
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan King Abdullah University of Science and Technology, Computational Bioscience Research Center, Biological and Environmental Science and Engineering, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
109
|
Dean R, Zimmer F, Mank JE. The potential role of sexual conflict and sexual selection in shaping the genomic distribution of Mito-nuclear genes. Genome Biol Evol 2016; 6:1096-104. [PMID: 24682150 PMCID: PMC4040984 DOI: 10.1093/gbe/evu063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial interactions with the nuclear genome represent one of life's most important co-evolved mutualisms. In many organisms, mitochondria are maternally inherited, and in these cases, co-transmission between the mitochondrial and nuclear genes differs across different parts of the nuclear genome, with genes on the X chromosome having two-third probability of co-transmission, compared with one-half for genes on autosomes. These asymmetrical inheritance patterns of mitochondria and different parts of the nuclear genome have the potential to put certain gene combinations in inter-genomic co-adaptation or conflict. Previous work in mammals found strong evidence that the X chromosome has a dearth of genes that interact with the mitochondria (mito-nuclear genes), suggesting that inter-genomic conflict might drive genes off the X onto the autosomes for their male-beneficial effects. Here, we developed this idea to test coadaptation and conflict between mito-nuclear gene combinations across phylogenetically independent sex chromosomes on a far broader scale. We found that, in addition to therian mammals, only Caenorhabditis elegans showed an under-representation of mito-nuclear genes on the sex chromosomes. The remaining species studied showed no overall bias in their distribution of mito-nuclear genes. We discuss possible factors other than inter-genomic conflict that might drive the genomic distribution of mito-nuclear genes.
Collapse
Affiliation(s)
- Rebecca Dean
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | | | | |
Collapse
|
110
|
Tomaszkiewicz M, Rangavittal S, Cechova M, Campos Sanchez R, Fescemyer HW, Harris R, Ye D, O'Brien PCM, Chikhi R, Ryder OA, Ferguson-Smith MA, Medvedev P, Makova KD. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y. Genome Res 2016; 26:530-40. [PMID: 26934921 PMCID: PMC4817776 DOI: 10.1101/gr.199448.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023]
Abstract
The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.
Collapse
Affiliation(s)
- Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Samarth Rangavittal
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Monika Cechova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rebeca Campos Sanchez
- Genetics Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Howard W Fescemyer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Danling Ye
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Patricia C M O'Brien
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Rayan Chikhi
- University of Lille 1/CNRS 59655 Villeneuve d'Ascq, France; Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA
| | | | - Paul Medvedev
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
111
|
Sved JA, Chen Y, Shearman D, Frommer M, Gilchrist AS, Sherwin WB. Extraordinary conservation of entire chromosomes in insects over long evolutionary periods. Evolution 2015; 70:229-34. [PMID: 26639450 DOI: 10.1111/evo.12831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/11/2015] [Indexed: 01/16/2023]
Abstract
Comparison of the genomes of different Drosophila species has shown that six different chromosomes, the so-called ''Muller elements," constitute the building blocks for all Drosophila species. Here, we confirm previous results suggesting that this conservation of the Muller elements extends far beyond Drosophila, to at least tephritid fruit flies, thought to have diverged from drosophilids 60-70 mYr ago. Less than 10 percent of genes differ in chromosome location between the two insect groups. Within chromosomes, however, the order is highly scrambled, as expected from the comparison between Drosophila species. The data also support the notion that the sex chromosomes of tephritid flies originated from an ancestor of the dot chromosome 4 of Drosophila. Overall, therefore, no new chromosome has been created for perhaps a billion generations over the two evolutionary lines. This stability at the chromosome level, which appears to extend to all Diptera including mosquitoes, is in stark contrast to other groups such as mammals, birds, fish and plants, in which chromosome numbers and organization vary enormously among species that have diverged over much fewer generations.
Collapse
Affiliation(s)
- John A Sved
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yizhou Chen
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Deborah Shearman
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marianne Frommer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - A Stuart Gilchrist
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - William B Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
112
|
Linger RJ, Belikoff EJ, Scott MJ. Dosage Compensation of X-Linked Muller Element F Genes but Not X-Linked Transgenes in the Australian Sheep Blowfly. PLoS One 2015; 10:e0141544. [PMID: 26506426 PMCID: PMC4624761 DOI: 10.1371/journal.pone.0141544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/10/2015] [Indexed: 11/25/2022] Open
Abstract
In most animals that have X and Y sex chromosomes, chromosome-wide mechanisms are used to balance X-linked gene expression in males and females. In the fly Drosophila melanogaster, the dosage compensation mechanism also generally extends to X-linked transgenes. Over 70 transgenic lines of the Australian sheep blowfly Lucilia cuprina have been made as part of an effort to develop male-only strains for a genetic control program of this major pest of sheep. All lines carry a constitutively expressed fluorescent protein marker gene. In all 12 X-linked lines, female larvae show brighter fluorescence than male larvae, suggesting the marker gene is not dosage compensated. This has been confirmed by quantitative RT-PCR for selected lines. To determine if endogenous X-linked genes are dosage compensated, we isolated 8 genes that are orthologs of genes that are on the fourth chromosome in D. melanogaster. Recent evidence suggests that the D. melanogaster fourth chromosome, or Muller element F, is the ancestral X chromosome in Diptera that has reverted to an autosome in Drosophila species. We show by quantitative PCR of male and female DNA that 6 of the 8 linkage group F genes reside on the X chromosome in L. cuprina. The other two Muller element F genes were found to be autosomal in L. cuprina, whereas two Muller element B genes were found on the same region of the X chromosome as the L. cuprina orthologs of the D. melanogaster Ephrin and gawky genes. We find that the L. cuprina X chromosome genes are equally expressed in males and females (i.e., fully dosage compensated). Thus, unlike in Drosophila, it appears that the Lucilia dosage compensation system is specific for genes endogenous to the X chromosome and cannot be co-opted by recently arrived transgenes.
Collapse
Affiliation(s)
- Rebecca J. Linger
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
| | - Esther J. Belikoff
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
| | - Maxwell J. Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695–7613, United States of America
- * E-mail:
| |
Collapse
|
113
|
Zhang Z, Presgraves DC. DrosophilaX-Linked Genes Have Lower Translation Rates than Autosomal Genes. Mol Biol Evol 2015; 33:413-28. [DOI: 10.1093/molbev/msv227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
|
114
|
Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, Liston A. Multilocus Sex Determination Revealed in Two Populations of Gynodioecious Wild Strawberry, Fragaria vesca subsp. bracteata. G3 (BETHESDA, MD.) 2015; 5:2759-73. [PMID: 26483011 PMCID: PMC4683647 DOI: 10.1534/g3.115.023358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022]
Abstract
Gynodioecy, the coexistence of females and hermaphrodites, occurs in 20% of angiosperm families and often enables transitions between hermaphroditism and dioecy. Clarifying mechanisms of sex determination in gynodioecious species can thus illuminate sexual system evolution. Genetic determination of gynodioecy, however, can be complex and is not fully characterized in any wild species. We used targeted sequence capture to genetically map a novel nuclear contributor to male sterility in a self-pollinated hermaphrodite of Fragaria vesca subsp. bracteata from the southern portion of its range. To understand its interaction with another identified locus and possibly additional loci, we performed crosses within and between two populations separated by 2000 km, phenotyped the progeny and sequenced candidate markers at both sex-determining loci. The newly mapped locus contains a high density of pentatricopeptide repeat genes, a class commonly involved in restoration of fertility caused by cytoplasmic male sterility. Examination of all crosses revealed three unlinked epistatically interacting loci that determine sexual phenotype and vary in frequency between populations. Fragaria vesca subsp. bracteata represents the first wild gynodioecious species with genomic evidence of both cytoplasmic and nuclear genes in sex determination. We propose a model for the interactions between these loci and new hypotheses for the evolution of sex determining chromosomes in the subdioecious and dioecious Fragaria.
Collapse
Affiliation(s)
- Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jacob A Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331
| | - Rebecca M Dalton
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | | - Matthew H Koski
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
115
|
Filatov DA. Homomorphic plant sex chromosomes are coming of age. Mol Ecol 2015; 24:3217-9. [PMID: 26113024 DOI: 10.1111/mec.13268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Sex chromosomes are a very peculiar part of the genome that have evolved independently in many groups of animals and plants (Bull ). Major research efforts have so far been focused on large heteromorphic sex chromosomes in a few animal and plant species (Chibalina & Filatov ; Zhou & Bachtrog ; Bellott et al. ; Hough et al. ; Zhou et al. ), while homomorphic (cytologically indistinguishable) sex chromosomes have largely been neglected. However, this situation is starting to change. In this issue, Geraldes et al. () describe a small (~100 kb long) sex-determining region on the homomorphic sex chromosomes of poplars (Populus trichocarpa and related species, Fig. ). All species in Populus and its sister genus Salix are dioecious, suggesting that dioecy and the sex chromosomes, if any, should be relatively old. Contrary to this expectation, Geraldes et al. () demonstrate that the sex-determining region in poplars is of very recent origin and probably evolved within the genus Populus only a few million years ago.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, UK
| |
Collapse
|
116
|
Tsoumani KT, Drosopoulou E, Bourtzis K, Gariou-Papalexiou A, Mavragani-Tsipidou P, Zacharopoulou A, Mathiopoulos KD. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution. PLoS One 2015; 10:e0137050. [PMID: 26398504 PMCID: PMC4580426 DOI: 10.1371/journal.pone.0137050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5'LTR, the 5'non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5-10 copies more than female (CI range: 18-38 and 12-33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different species of the Tephritidae family suggests an ancient origin of this element.
Collapse
Affiliation(s)
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Kostas Bourtzis
- Insect Molecular Genetics Group, IMBB, Vassilika Vouton, 71110 Heraklion, Crete, PO Box 1527, Greece
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Aggeliki Gariou-Papalexiou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Antigone Zacharopoulou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
117
|
Scacchetti PC, Utsunomia R, Pansonato-Alves JC, da Costa Silva GJ, Vicari MR, Artoni RF, Oliveira C, Foresti F. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes). PLoS One 2015; 10:e0137231. [PMID: 26372604 PMCID: PMC4570811 DOI: 10.1371/journal.pone.0137231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/14/2015] [Indexed: 11/18/2022] Open
Abstract
Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found.
Collapse
Affiliation(s)
- Priscilla Cardim Scacchetti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
- * E-mail:
| | - Ricardo Utsunomia
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - José Carlos Pansonato-Alves
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Guilherme José da Costa Silva
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Roberto Ferreira Artoni
- Universidade Estadual de Ponta Grossa (UEPG), Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Botucatu/IBB, Departamento de Morfologia, Botucatu, SP, Brazil
| |
Collapse
|
118
|
Estimating tempo and mode of Y chromosome turnover: explaining Y chromosome loss with the fragile Y hypothesis. Genetics 2015; 197:561-72. [PMID: 24939995 DOI: 10.1534/genetics.114.164269] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species' karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the "fragile Y" hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction.
Collapse
|
119
|
Blackmon H, Demuth JP. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. Bioessays 2015. [DOI: 10.1002/bies.201500040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Heath Blackmon
- Department of Biology; University of Texas at Arlington; Arlington TX USA
| | - Jeffery P. Demuth
- Department of Biology; University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
120
|
Meisel RP, Scott JG, Clark AG. Transcriptome Differences between Alternative Sex Determining Genotypes in the House Fly, Musca domestica. Genome Biol Evol 2015; 7:2051-61. [PMID: 26142430 PMCID: PMC4524491 DOI: 10.1093/gbe/evv128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sex determination evolves rapidly, often because of turnover of the genes at the top of the pathway. The house fly, Musca domestica, has a multifactorial sex determination system, allowing us to identify the selective forces responsible for the evolutionary turnover of sex determination in action. There is a male determining factor, M, on the Y chromosome (YM), which is probably the ancestral state. An M factor on the third chromosome (IIIM) has reached high frequencies in multiple populations across the world, but the evolutionary forces responsible for the invasion of IIIM are not resolved. To test whether the IIIM chromosome invaded because of sex-specific selection pressures, we used mRNA sequencing to determine whether isogenic males that differ only in the presence of the YM or IIIM chromosome have different gene expression profiles. We find that more genes are differentially expressed between YM and IIIM males in testis than head, and that genes with male-biased expression are most likely to be differentially expressed between YM and IIIM males. We additionally find that IIIM males have a “masculinized” gene expression profile, suggesting that the IIIM chromosome has accumulated an excess of male-beneficial alleles because of its male-limited transmission. These results are consistent with the hypothesis that sex-specific selection acts on alleles linked to the male-determining locus driving evolutionary turnover in the sex determination pathway.
Collapse
Affiliation(s)
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| |
Collapse
|
121
|
Zhou Q, Bachtrog D. Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in Drosophila. PLoS Genet 2015; 11:e1005331. [PMID: 26114585 PMCID: PMC4482674 DOI: 10.1371/journal.pgen.1005331] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/02/2015] [Indexed: 12/30/2022] Open
Abstract
Sex chromosomes evolve distinctive types of chromatin from a pair of ancestral autosomes that are usually euchromatic. In Drosophila, the dosage-compensated X becomes enriched for hyperactive chromatin in males (mediated by H4K16ac), while the Y chromosome acquires silencing heterochromatin (enriched for H3K9me2/3). Drosophila autosomes are typically mostly euchromatic but the small dot chromosome has evolved a heterochromatin-like milieu (enriched for H3K9me2/3) that permits the normal expression of dot-linked genes, but which is different from typical pericentric heterochromatin. In Drosophila busckii, the dot chromosomes have fused to the ancestral sex chromosomes, creating a pair of 'neo-sex' chromosomes. Here we collect genomic, transcriptomic and epigenomic data from D. busckii, to investigate the evolutionary trajectory of sex chromosomes from a largely heterochromatic ancestor. We show that the neo-sex chromosomes formed <1 million years ago, but nearly 60% of neo-Y linked genes have already become non-functional. Expression levels are generally lower for the neo-Y alleles relative to their neo-X homologs, and the silencing heterochromatin mark H3K9me2, but not H3K9me3, is significantly enriched on silenced neo-Y genes. Despite rampant neo-Y degeneration, we find that the neo-X is deficient for the canonical histone modification mark of dosage compensation (H4K16ac), relative to autosomes or the compensated ancestral X chromosome, possibly reflecting constraints imposed on evolving hyperactive chromatin in an originally heterochromatic environment. Yet, neo-X genes are transcriptionally more active in males, relative to females, suggesting the evolution of incipient dosage compensation on the neo-X. Our data show that Y degeneration proceeds quickly after sex chromosomes become established through genomic and epigenetic changes, and are consistent with the idea that the evolution of sex-linked chromatin is influenced by its ancestral configuration.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
122
|
Paudel Y, Madsen O, Megens HJ, Frantz LAF, Bosse M, Crooijmans RPMA, Groenen MAM. Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genomics 2015; 16:330. [PMID: 25896665 PMCID: PMC4413995 DOI: 10.1186/s12864-015-1449-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/09/2015] [Indexed: 12/02/2022] Open
Abstract
Background Unraveling the genetic mechanisms associated with reduced gene flow between genetically differentiated populations is key to understand speciation. Different types of structural variations (SVs) have been found as a source of genetic diversity in a wide range of species. Previous studies provided detailed knowledge on the potential evolutionary role of SVs, especially copy number variations (CNVs), between well diverged species of e.g. primates. However, our understanding of their significance during ongoing speciation processes is limited due to the lack of CNV data from closely related species. The genus Sus (pig and its close relatives) which started to diverge ~4 Mya presents an excellent model for studying the role of CNVs during ongoing speciation. Results In this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These CNVRs encompass 624 genes and were found to evolve ~2.5 times faster than single nucleotide polymorphisms (SNPs). The majority of these copy number variable genes are olfactory receptors (ORs) known to play a prominent role in food foraging and mate recognition in Sus. Phylogenetic analyses, including novel Bayesian analysis, based on CNVRs that overlap ORs retain the well-accepted topology of the genus Sus whereas CNVRs overlapping genes other than ORs show evidence for random drift and/or admixture. Conclusion We hypothesize that inter-specific variation in copy number of ORs provided the means for rapid adaptation to different environments during the diversification of the genus Sus in the Pliocene. Furthermore, these regions might have acted as barriers preventing massive gene flow between these species during the multiple hybridization events that took place later in the Pleistocene suggesting a possible prominent role of ORs in the ongoing Sus speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1449-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands. .,Current address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland.
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Laurent A F Frantz
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Mirte Bosse
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
123
|
Abstract
A new study reveals multiple dramatic changes in sex chromosome structure and identity in flies; such transitions are accompanied by a series of genomic events that affect chromosome biology, gene regulation, and sex determination. See the accompanying Research Article.
Collapse
|
124
|
Vicoso B, Bachtrog D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol 2015; 13:e1002078. [PMID: 25879221 PMCID: PMC4400102 DOI: 10.1371/journal.pbio.1002078] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/13/2015] [Indexed: 11/24/2022] Open
Abstract
Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa. Analysis of the genomes of 37 fly species from 22 families of Diptera shows that superficially similar karyotypes conceal the true extent of sex chromosome variation and that sex chromosome transitions are, in fact, frequent in flies. A mind-blowing diversity of sex-determining mechanisms exists among eukaryotes, but highly differentiated sex chromosomes—a degenerate, gene-poor Y chromosome, and an often dosage-compensated X—appear to represent an evolutionary dead-end. In our manuscript, we systematically study the genomic composition of sex chromosomes across dipteran insects (flies and mosquitoes), which are generally considered to show stable XY sex chromosomes. Our whole-genome analysis of 37 fly species from 22 families of Diptera uncovers tremendous hidden variation in sex chromosomes. Some species have newly gained or secondarily lost their sex chromosomes; in others, a different chromosome has replaced the original sex chromosome or multiple chromosomal elements have become incorporated into the sex chromosomes; still other species have female heterogametic sex chromosomes. We perform a comparative transcriptome analysis to show that dosage compensation has evolved multiple times, consistently through up-regulation of the single X chromosome in males. These species provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
125
|
X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads. G3-GENES GENOMES GENETICS 2015; 5:1057-63. [PMID: 25850426 PMCID: PMC4478536 DOI: 10.1534/g3.115.017632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change.
Collapse
|
126
|
Oppenheim SJ, Baker RH, Simon S, DeSalle R. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects. INSECT MOLECULAR BIOLOGY 2015; 24:139-54. [PMID: 25524309 PMCID: PMC4383654 DOI: 10.1111/imb.12154] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile.
Collapse
Affiliation(s)
- Sara J Oppenheim
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Richard H Baker
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
| | - Sabrina Simon
- Biosystematics Group, Wageningen UniversityWageningen, The Netherlands
| | - Rob DeSalle
- Department of Entomology, Division of Invertebrates, Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew York, NY, USA
- Correspondence: Dr. Robert DeSalle, Sackler Institute for Comparative Genomics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA. Tel.: 212-769-5670; e-mail:
| |
Collapse
|
127
|
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. Restriction Site-Associated DNA Sequencing (RAD-seq) Reveals an Extraordinary Number of Transitions among Gecko Sex-Determining Systems. Mol Biol Evol 2015; 32:1296-309. [DOI: 10.1093/molbev/msv023] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
128
|
Blackmon H, Demuth JP. Genomic origins of insect sex chromosomes. CURRENT OPINION IN INSECT SCIENCE 2015; 7:45-50. [PMID: 32846676 DOI: 10.1016/j.cois.2014.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 06/11/2023]
Abstract
Recent efforts to catalog the diversity of sex chromosome systems coupled with genome sequencing projects are adding a new level of resolution to our understanding of insect sex chromosome origins. Y-chromosome degeneration makes sequencing difficult and may erase homology so rapidly that their origins will often remain enigmatic. X-chromosome origins are better understood, but thus far prove to be remarkably labile, often lacking homology even among close relatives. Furthermore, evidence now suggests that differentiated X or Y-chromosomes may both revert to autosomal inheritance. Data for ZW systems is scarcer, but W and Y-chromosomes seem to share many characteristics. Limited evidence suggests that Z-chromosome homology is more conserved than X counterparts, but broader sampling of both sex chromosome systems is needed.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA.
| |
Collapse
|
129
|
Mahajan S, Bachtrog D. Partial dosage compensation in Strepsiptera, a sister group of beetles. Genome Biol Evol 2015; 7:591-600. [PMID: 25601100 PMCID: PMC4350179 DOI: 10.1093/gbe/evv008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sex chromosomes have evolved independently in many different taxa, and so have mechanisms to compensate for expression differences on sex chromosomes in males and females. Different clades have evolved vastly different ways to achieve dosage compensation, including hypertranscription of the single X in male Drosophila, downregulation of both X's in XX Caenorhabditis, or inactivation of one X in female mammals. In the flour beetle Tribolium, the X appears hyperexpressed in both sexes, which might represent the first of two steps to evolve dosage compensation along the paths mammals may have taken (i.e., upregulation of X in both sexes, followed by inactivation of one X in females). Here we test for dosage compensation in Strepsiptera, a sister taxon to beetles. We identify sex-linked chromosomes in Xenos vesparum based on genomic analysis of males and females, and show that its sex chromosome consists of two chromosomal arms in Tribolium: The X chromosome that is shared between Tribolium and Strepsiptera, and another chromosome that is autosomal in Tribolium and another distantly related Strepsiptera species, but sex-linked in X. vesparum. We use RNA-seq (RNA sequencing) to show that dosage compensation along the X of X. vesparum is partial and heterogeneous. In particular, genes that are X-linked in both beetles and Strepsiptera appear fully dosage compensated probably through downregulation in both sexes, whereas genes on the more recently added X segment have evolved only partial dosage compensation. In addition, reanalysis of published RNA-seq data suggests that Tribolium has evolved dosage compensation, without hypertranscribing the X in females. Our results demonstrate that patterns of dosage compensation are highly variable across sex-determination systems and even within species.
Collapse
Affiliation(s)
- Shivani Mahajan
- Department of Integrative Biology, University of California Berkeley
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley
| |
Collapse
|
130
|
Abstract
In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans.
Collapse
Affiliation(s)
- Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
131
|
Hamm RL, Meisel RP, Scott JG. The evolving puzzle of autosomal versus Y-linked male determination in Musca domestica. G3 (BETHESDA, MD.) 2014; 5:371-84. [PMID: 25552607 PMCID: PMC4349091 DOI: 10.1534/g3.114.014795] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/27/2014] [Indexed: 11/18/2022]
Abstract
Sex determination is one of the most rapidly evolving developmental pathways, but the factors responsible for this fast evolution are not well resolved. The house fly, Musca domestica, is an ideal model for studying sex determination because house fly sex determination is polygenic and varies considerably between populations. Male house flies possess a male-determining locus, the M factor, which can be located on the Y or X chromosome or any of the five autosomes. There can be a single M or multiple M factors present in an individual male, in heterozygous or homozygous condition. Males with multiple copies of M skew the sex ratio toward the production of males. Potentially in response to these male-biased sex ratios, an allele of the gene transformer, Md-tra(D), promotes female development in the presence of one or multiple M factors. There have been many studies to determine the linkage and frequency of these male determining factors and the frequency of Md-tra(D) chromosomes in populations from around the world. This review provides a summary of the information available to date regarding the patterns of distribution of autosomal, X-linked and Y-linked M factors, the relative frequencies of the linkage of M, the changes in frequencies found in field populations, and the fitness of males with autosomal M factors vs. Y-linked M. We evaluate this natural variation in the house fly sex determination pathway in light of models of the evolution of sex determination.
Collapse
Affiliation(s)
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853
| |
Collapse
|
132
|
Figueiredo MLA, Kim M, Philip P, Allgardsson A, Stenberg P, Larsson J. Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions. PLoS Genet 2014; 10:e1004865. [PMID: 25501352 PMCID: PMC4263465 DOI: 10.1371/journal.pgen.1004865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs contribute to dosage compensation in both mammals and Drosophila by inducing changes in the chromatin structure of the X-chromosome. In Drosophila melanogaster, roX1 and roX2 are long non-coding RNAs that together with proteins form the male-specific lethal (MSL) complex, which coats the entire male X-chromosome and mediates dosage compensation by increasing its transcriptional output. Studies on polytene chromosomes have demonstrated that when both roX1 and roX2 are absent, the MSL-complex becomes less abundant on the male X-chromosome and is relocated to the chromocenter and the 4th chromosome. Here we address the role of roX RNAs in MSL-complex targeting and the evolution of dosage compensation in Drosophila. We performed ChIP-seq experiments which showed that MSL-complex recruitment to high affinity sites (HAS) on the X-chromosome is independent of roX and that the HAS sequence motif is conserved in D. simulans. Additionally, a complete and enzymatically active MSL-complex is recruited to six specific genes on the 4th chromosome. Interestingly, our sequence analysis showed that in the absence of roX RNAs, the MSL-complex has an affinity for regions enriched in Hoppel transposable elements and repeats in general. We hypothesize that roX mutants reveal the ancient targeting of the MSL-complex and propose that the role of roX RNAs is to prevent the binding of the MSL-complex to heterochromatin. In both fruit flies and humans, males and females have different sets of sex chromosomes. This generates differences in gene dosage that must be compensated for by adjusting the transcriptional output of most genes located on the X-chromosome. The specific recognition and targeting of the X-chromosome is essential for such dosage compensation. In fruit flies, dosage compensation is mediated by the male-specific lethal (MSL) complex, which upregulates gene transcription on the male X-chromosome. The MSL-complex consists of five proteins and two non-coding RNAs, roX1 and roX2. While non-coding RNAs are known to be critical for dosage compensation in both flies and mammals, their precise functions remain elusive. Here we present a study on the targeting and function of the MSL-complex in the absence of roX RNAs. The results obtained suggest that the dosage compensating MSL-complex has an intrinsic tendency to target repeat-rich regions and that the function of roX RNAs is to prevent its binding to such targets. Our findings reveal an ancient targeting and regulatory function of the MSL-complex that has been adapted for use in dosage compensation and modified by the rapidly evolving noncoding roX RNAs.
Collapse
Affiliation(s)
| | - Maria Kim
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Philge Philip
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | | | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
133
|
Salvemini M, Arunkumar KP, Nagaraju J, Sanges R, Petrella V, Tomar A, Zhang H, Zheng W, Saccone G. De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos. PLoS One 2014; 9:e114191. [PMID: 25474564 PMCID: PMC4256415 DOI: 10.1371/journal.pone.0114191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023] Open
Abstract
The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8–10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Remo Sanges
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Archana Tomar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
134
|
Male-specific phosphorylated SR proteins in adult flies of the Mediterranean fruitfly Ceratitis capitata. BMC Genet 2014; 15 Suppl 2:S6. [PMID: 25472723 PMCID: PMC4255826 DOI: 10.1186/1471-2156-15-s2-s6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing is a widely used mechanism of gene regulation in sex determination pathways of Insects. In species from orders as distant as Diptera, Hymenoptera and Coleoptera, female differentiation relies on the activities of conserved splicing regulators, TRA and TRA-2, promoting female-specific expression of the global effector doublesex (dsx). Less understood is to what extent post-translational modifications of splicing regulators plays a role in this pathway. In Drosophila melanogaster phosphorylation of TRA, TRA-2 and the general RBP1 factor by the LAMMER kinase doa (darkener of apricot) is required for proper female sex determination. To explore whether this is a general feature of the pathway we examined sex-specific differences in phosphorylation levels of SR splicing factors in the dipteran species D. melanogaster, Ceratitis capitata (Medfly) and Musca domestica (Housefly). We found a distinct and reproducible pattern of male-specific phosphorylation on protein extracts enriched for SR proteins in C. capitata suggesting that differential phosphorylation may also contribute to the regulation of sex-specific splicing in the Medfly.
Collapse
|
135
|
Pokorná MJ, Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev Camb Philos Soc 2014; 91:1-12. [DOI: 10.1111/brv.12156] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Martina Johnson Pokorná
- Department of Ecology; Faculty of Science, Charles University in Prague; Viničná 7 Praha 2 Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic; Rumburská 89 Liběchov Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology; Faculty of Science, Charles University in Prague; Viničná 7 Praha 2 Czech Republic
| |
Collapse
|
136
|
Mank JE, Hosken DJ, Wedell N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb Perspect Biol 2014; 6:a017715. [PMID: 25280765 DOI: 10.1101/cshperspect.a017715] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
137
|
DNA replication in nurse cell polytene chromosomes of Drosophila melanogaster otu mutants. Chromosoma 2014; 124:95-106. [PMID: 25256561 DOI: 10.1007/s00412-014-0487-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Drosophila cell lines are used extensively to study replication timing, yet data about DNA replication in larval and adult tissues are extremely limited. To address this gap, we traced DNA replication in polytene chromosomes from nurse cells of Drosophila melanogaster otu mutants using bromodeoxyuridine incorporation. Importantly, nurse cells are of female germline origin, unlike the classical larval salivary glands, that are somatic. In contrast to salivary gland polytene chromosomes, where replication begins simultaneously across all puffs and interbands, replication in nurse cells is first observed at several specific chromosomal regions. For instance, in the chromosome 2L, these include the regions 31B-E and 37E and proximal parts of 34B and 35B, with the rest of the decondensed chromosomal regions joining replication process a little later. We observed that replication timing of pericentric heterochromatin in nurse cells was shifted from late S phase to early and mid stages. Curiously, chromosome 4 may represent a special domain of the genome, as it replicates on its own schedule which is uncoupled from the rest of the chromosomes. Finally, we report that SUUR protein, an established marker of late replication in salivary gland polytene chromosomes, does not always colocalize with late-replicating regions in nurse cells.
Collapse
|
138
|
Matsubara K, Gamble T, Matsuda Y, Zarkower D, Sarre SD, Georges A, Graves JAM, Ezaz T. Non-homologous sex chromosomes in two geckos (Gekkonidae: Gekkota) with female heterogamety. Cytogenet Genome Res 2014; 143:251-8. [PMID: 25227445 DOI: 10.1159/000366172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Evaluating homology between the sex chromosomes of different species is an important first step in deducing the origins and evolution of sex-determining mechanisms in a clade. Here, we describe the preparation of Z and W chromosome paints via chromosome microdissection from the Australian marbled gecko (Christinus marmoratus) and their subsequent use in evaluating sex chromosome homology with the ZW chromosomes of the Kwangsi gecko (Gekko hokouensis) from eastern Asia. We show that the ZW sex chromosomes of C. marmoratus and G. hokouensis are not homologous and represent independent origins of female heterogamety within the Gekkonidae. We also show that the C. marmoratus Z and W chromosomes are genetically similar to each other as revealed by C-banding, comparative genomic hybridization, and the reciprocal painting of Z and W chromosome probes. This implies that sex chromosomes in C. marmoratus are at an early stage of differentiation, suggesting a recent origin.
Collapse
Affiliation(s)
- Kazumi Matsubara
- Institute for Applied Ecology, University of Canberra, Canberra, A.C.T., Australia
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
We use three allopatric populations of the stalk-eyed fly Teleopsis dalmanni from Southeast Asia to test two predictions made by the sex chromosome drive hypothesis for Haldane's rule. The first is that modifiers that suppress or enhance drive should evolve rapidly and independently in isolated populations. The second is that drive loci or modifiers should also cause sterility in hybrid males. We tested these predictions by assaying the fertility of 2066 males derived from backcross experiments involving two pairs of populations and found that the proportion of mated males that fail to produce any offspring ranged from 38 to 60% among crosses with some males producing strongly female-biased or male-biased sex ratios. After genotyping each male at 25-28 genetic markers we found quantitative trait loci (QTL) that jointly influence male sterility, sperm length, and biased progeny sex ratios in each pair of populations, but almost no shared QTL between population crosses. We also discovered that the extant X(SR) chromosome has no effect on sex ratio or sterility in these backcross males. Whether shared QTL are caused by linkage or pleiotropy requires additional study. Nevertheless, these results indicate the presence of a "cryptic" drive system that is currently masked by suppressing elements that are associated with sterility and sperm length within but not between populations and, therefore, must have evolved since the populations became isolated, i.e., in <100,000 years. We discuss how genes that influence sperm length may contribute to hybrid sterility.
Collapse
|
140
|
Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res 2014; 22:441-52. [PMID: 25056523 DOI: 10.1007/s10577-014-9430-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 01/09/2023]
Abstract
Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.
Collapse
|
141
|
Sander van Doorn G. Patterns and mechanisms of evolutionary transitions between genetic sex-determining systems. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a017681. [PMID: 24993578 DOI: 10.1101/cshperspect.a017681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population-genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes.
Collapse
Affiliation(s)
- G Sander van Doorn
- Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
142
|
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC. Sex determination: why so many ways of doing it? PLoS Biol 2014; 12:e1001899. [PMID: 24983465 PMCID: PMC4077654 DOI: 10.1371/journal.pbio.1001899] [Citation(s) in RCA: 744] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Doris Bachtrog
- University of California, Berkeley, Department of Integrative Biology, Berkeley, California, United States of America
| | - Judith E. Mank
- University College London, Department of Genetics, Evolution and Environment, London, United Kingdom
| | - Catherine L. Peichel
- Fred Hutchinson Cancer Research Center, Divisions of Human Biology and Basic Sciences, Seattle, Washington, United States of America
| | - Mark Kirkpatrick
- University of Texas, Department of Integrative Biology, Austin, Texas, United States of America
| | - Sarah P. Otto
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| | - Tia-Lynn Ashman
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Matthew W. Hahn
- Indiana University, Department of Biology, Bloomington Indiana, United States of America
| | - Jun Kitano
- National Institute of Genetics, Ecological Genetics Laboratory, Mishima, Shizuoka, Japan
| | - Itay Mayrose
- Tel Aviv University, Department of Molecular Biology and Ecology of Plants, Tel Aviv, Israel
| | - Ray Ming
- University of Illinois, Department of Plant Biology, Urbana-Champaign, Illinois, United States of America
| | - Nicolas Perrin
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Laura Ross
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| | - Nicole Valenzuela
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa, United States of America
| | - Jana C. Vamosi
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada
| | | |
Collapse
|
143
|
Singh ND, Koerich LB, Carvalho AB, Clark AG. Positive and purifying selection on the Drosophila Y chromosome. Mol Biol Evol 2014; 31:2612-23. [PMID: 24974375 DOI: 10.1093/molbev/msu203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes, with their reduced effective population size, lack of recombination, and male-limited transmission, present a unique collection of constraints for the operation of natural selection. Male-limited transmission may greatly increase the efficacy of selection for male-beneficial mutations, but the reduced effective size also inflates the role of random genetic drift. Together, these defining features of the Y chromosome are expected to influence rates and patterns of molecular evolution on the Y as compared with X-linked or autosomal loci. Here, we use sequence data from 11 genes in 9 Drosophila species to gain insight into the efficacy of natural selection on the Drosophila Y relative to the rest of the genome. Drosophila is an ideal system for assessing the consequences of Y-linkage for molecular evolution in part because the gene content of Drosophila Y chromosomes is highly dynamic, with orthologous genes being Y-linked in some species whereas autosomal in others. Our results confirm the expectation that the efficacy of natural selection at weakly selected sites is reduced on the Y chromosome. In contrast, purifying selection on the Y chromosome for strongly deleterious mutations does not appear to be compromised. Finally, we find evidence of recurrent positive selection for 4 of the 11 genes studied here. Our results thus highlight the variable nature of the mode and impact of natural selection on the Drosophila Y chromosome.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, North Carolina State University
| | - Leonardo B Koerich
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| |
Collapse
|
144
|
Abstract
Heteromorphic sex chromosomes are thought to represent a terminal evolutionary endpoint due to their specialized gene content and chromosome-specific regulation. New findings, however, show that an ancient X chromosome reverted to an autosome in the lineage leading to Drosophila.
Collapse
|
145
|
Yazdi HP, Ellegren H. Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites. Mol Biol Evol 2014; 31:1444-1453. [DOI: 10.1093/molbev/msu101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
146
|
Abstract
In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model.
Collapse
Affiliation(s)
- Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil 05508
| |
Collapse
|
147
|
Brown EJ, Bachtrog D. The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes. Genome Res 2014; 24:1125-37. [PMID: 24840603 PMCID: PMC4079968 DOI: 10.1101/gr.172155.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chromatin landscape is key for gene regulation, but little is known about how it differs between sexes or between species. Here, we study the sex-specific chromatin landscape of Drosophila miranda, a species with young sex chromosomes, and compare it with Drosophila melanogaster. We analyze six histone modifications in male and female larvae of D. miranda (H3K4me1, H3K4me3, H3K36me3, H4K16ac, H3K27me3, and H3K9me2), and define seven biologically meaningful chromatin states that show different enrichments for transcribed and silent genes, repetitive elements, housekeeping, and tissue-specific genes. The genome-wide distribution of both active and repressive chromatin states differs between males and females. In males, active chromatin is enriched on the X, relative to females, due to dosage compensation of the hemizygous X. Furthermore, a smaller fraction of the euchromatic portion of the genome is in a repressive chromatin state in males relative to females. However, sex-specific chromatin states appear not to explain sex-biased expression of genes. Overall, conservation of chromatin states between male and female D. miranda is comparable to conservation between D. miranda and D. melanogaster, which diverged >30 MY ago. Active chromatin states are more highly conserved across species, while heterochromatin shows very low levels of conservation. Divergence in chromatin profiles contributes to expression divergence between species, with ∼26% of genes in different chromatin states in the two species showing species-specific or species-biased expression, an enrichment of approximately threefold over null expectation. Our data suggest that heteromorphic sex chromosomes in males (that is, a hypertranscribed X and an inactivated Y) may contribute to global redistribution of active and repressive chromatin marks between chromosomes and sexes.
Collapse
Affiliation(s)
- Emily J Brown
- Department of Integrative Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
148
|
How to become a parasite without sex chromosomes: a hypothesis for the evolution of Strongyloides spp. and related nematodes. Parasitology 2014; 141:1244-54. [PMID: 24829037 DOI: 10.1017/s003118201400064x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasitic lifestyles evolved many times independently. Just within the phylum Nematoda animal parasitism must have arisen at least four times. Switching to a parasitic lifestyle is expected to lead to changes in various life history traits including reproductive strategies. Parasitic nematode worms of the genus Strongyloides represent an interesting example to study these processes because they are still capable of forming facultative free-living generations in between parasitic ones. The parasitic generation consists of females only, which reproduce parthenogenetically. The sex in the progeny of the parasitic worms is determined by environmental cues, which control a, presumably ancestral, XX/XO chromosomal sex determining system. In some species the X chromosome is fused with an autosome and one copy of the X-derived sequences is removed by sex-specific chromatin diminution in males. Here I propose a hypothesis for how today's Strongyloides sp. might have evolved from a sexual free-living ancestor through dauer larvae forming free-living and facultative parasitic intermediate stages.
Collapse
|
149
|
Milán M, Clemente-Ruiz M, Dekanty A, Muzzopappa M. Aneuploidy and tumorigenesis in Drosophila. Semin Cell Dev Biol 2014; 28:110-5. [DOI: 10.1016/j.semcdb.2014.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
|
150
|
Kaiser VB, Bachtrog D. De novo transcriptome assembly reveals sex-specific selection acting on evolving neo-sex chromosomes in Drosophila miranda. BMC Genomics 2014; 15:241. [PMID: 24673816 PMCID: PMC3986819 DOI: 10.1186/1471-2164-15-241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Drosophila miranda neo-sex chromosome system is a useful resource for studying recently evolved sex chromosomes. However, the neo-Y genomic assembly is fragmented due to the accumulation of repetitive sequence. Furthermore, the separate assembly of the neo-X and neo-Y chromosomes into genomic scaffolds has proven to be difficult, due to their low level of sequence divergence, which in coding regions is about 1.5%. Here, we de novo assemble the transcriptome of D. miranda using RNA-seq data from several male and female tissues, and develop a bioinformatic pipeline to separately reconstruct neo-X and neo-Y transcripts. RESULTS We obtain 2,141 transcripts from the neo-X and 1,863 from the neo-Y. Neo-Y transcripts are generally shorter than their homologous neo-X transcripts (N50 of 2,048-bp vs. 2,775-bp) and expressed at lower levels. We find that 24% of expressed neo-Y transcripts harbor nonsense mutation within their open reading frames, yet most non-functional neo-Y genes are expressed throughout all of their length. We find evidence of gene loss of male-specific genes on the neo-X chromosome, and transcriptional silencing of testis-specific genes from the neo-X. CONCLUSIONS Nonsense mediated decay (NMD) has been implicated to degrade transcripts containing pre-mature termination codons (PTC) in Drosophila, but rampant description of neo-Y genes with pre-mature stop codons suggests that it does not play a major role in down-regulating transcripts from the neo-Y. Loss or transcriptional down-regulation of genes from the neo-X with male-biased function provides evidence for beginning demasculinization of the neo-X. Thus, evolving sex chromosomes can rapidly shift their gene content or patterns of gene expression in response to their sex-biased transmission, supporting the idea that sex-specific or sexually antagonistic selection plays a major role in the evolution of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
| | - Doris Bachtrog
- Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|