101
|
Tang M, Li S, Chen J. Ubiquitylation in DNA double-strand break repair. DNA Repair (Amst) 2021; 103:103129. [PMID: 33990032 DOI: 10.1016/j.dnarep.2021.103129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
102
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
103
|
Bernardi A, Gobelli D, Serna J, Nawrocka P, March-Rosselló G, Orduña A, Kozlowski P, Simarro M, de la Fuente MA. Novel fluorescent-based reporter cell line engineered for monitoring homologous recombination events. PLoS One 2021; 16:e0237413. [PMID: 33930025 PMCID: PMC8087102 DOI: 10.1371/journal.pone.0237413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) faithfully restores DNA double-strand breaks. Defects in this HR repair pathway are associated with cancer predisposition. In genetic engineering, HR has been used extensively to study gene function and it represents an ideal method of gene therapy for single gene disorders. Here, we present a novel assay to measure HR in living cells. The HR substrate consisted of a non-fluorescent 3’ truncated form of the eGFP gene and was integrated into the AAVS1 locus, known as a safe harbor. The donor DNA template comprised a 5’ truncated eGFP copy and was delivered via AAV particles. HR mediated repair restored full-length eGFP coding sequence, resulting in eGFP+ cells. The utility of our assay in quantifying HR events was validated by exploring the impact of the overexpression of HR promoters and the siRNA-mediated silencing of genes known to play a role in DNA repair on the frequency of HR. We conclude that this novel assay represents a useful tool to further investigate the mechanisms that control HR and test continually emerging tools for HR-mediated genome editing.
Collapse
Affiliation(s)
- Alejandra Bernardi
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Julia Serna
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Paulina Nawrocka
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Antonio Orduña
- Division of Microbiology, Hospital Clínico of Valladolid, Valladolid, Spain.,Microbiology Department, University of Valladolid, Valladolid, Spain
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - María Simarro
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain.,Department of Nursing-"Grupo de Investigación en Cuidados de Enfermería" GICE, University of Valladolid, Valladolid, Spain
| | - Miguel A de la Fuente
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain.,Department of Cell Biology, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
104
|
Kratzer K, Getz LJ, Peterlini T, Masson JY, Dellaire G. Addressing the dark matter of gene therapy: technical and ethical barriers to clinical application. Hum Genet 2021; 141:1175-1193. [PMID: 33834266 DOI: 10.1007/s00439-021-02272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Gene therapies for genetic diseases have been sought for decades, and the relatively recent development of the CRISPR/Cas9 gene-editing system has encouraged a new wave of interest in the field. There have nonetheless been significant setbacks to gene therapy, including unintended biological consequences, ethical scandals, and death. The major focus of research has been on technological problems such as delivery, potential immune responses, and both on and off-target effects in an effort to avoid negative clinical outcomes. While the field has concentrated on how we can better achieve gene therapies and gene editing techniques, there has been less focus on when and why we should use such technology. Here we combine discussion of both the technical and ethical barriers to the widespread clinical application of gene therapy and gene editing, providing a resource for gene therapy experts and novices alike. We discuss ethical problems and solutions, using cystic fibrosis and beta-thalassemia as case studies where gene therapy might be suitable, and provide examples of situations where human germline gene editing may be ethically permissible. Using such examples, we propose criteria to guide researchers and clinicians in deciding whether or not to pursue gene therapy as a treatment. Finally, we summarize how current progress in the field adheres to principles of biomedical ethics and highlight how this approach might fall short of ethical rigour using examples in the bioethics literature. Ultimately by addressing both the technical and ethical aspects of gene therapy and editing, new frameworks can be developed for the fair application of these potentially life-saving treatments.
Collapse
Affiliation(s)
- Kateryna Kratzer
- Department of Pathology, Faculty of Medicine, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Landon J Getz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Thibaut Peterlini
- Genome Stability Laboratory, Oncology Division, CHU de Québec Research Centre, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Quebec, G1R 3S3, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Oncology Division, CHU de Québec Research Centre, Quebec, Canada. .,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, 9 McMahon, Quebec, G1R 3S3, Canada.
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
105
|
Fang H, Bygrave AM, Roth RH, Johnson RC, Huganir RL. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. eLife 2021; 10:65202. [PMID: 33689678 PMCID: PMC7946428 DOI: 10.7554/elife.65202] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
The efficient knock-in of large DNA fragments to label endogenous proteins remains especially challenging in non-dividing cells such as neurons. We developed Targeted Knock-In with Two (TKIT) guides as a novel CRISPR/Cas9 based approach for efficient, and precise, genomic knock-in. Through targeting non-coding regions TKIT is resistant to INDEL mutations. We demonstrate TKIT labeling of endogenous synaptic proteins with various tags, with efficiencies up to 42% in mouse primary cultured neurons. Utilizing in utero electroporation or viral injections in mice TKIT can label AMPAR subunits with Super Ecliptic pHluorin, enabling visualization of endogenous AMPARs in vivo using two-photon microscopy. We further use TKIT to assess the mobility of endogenous AMPARs using fluorescence recovery after photobleaching. Finally, we show that TKIT can be used to tag AMPARs in rat neurons, demonstrating precise genome editing in another model organism and highlighting the broad potential of TKIT as a method to visualize endogenous proteins.
Collapse
Affiliation(s)
- Huaqiang Fang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States.,PKU-Nanjing Institute of Translational Medicine, Nanjing, China.,Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard H Roth
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
106
|
Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 2021; 40:1706-1720. [PMID: 33531626 DOI: 10.1038/s41388-021-01660-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) plays a key role in cancer progression and is tightly regulated by the proteasome pathway. E3 ligases that mediate NRF2 ubiquitination have been widely reported, but the mechanism of NRF2 deubiquitination remains largely unclear. Here, we identified ubiquitin-specific-processing protease 11 (USP11) in NRF2 complexes and confirmed an interaction between these two proteins. We further found that USP11 deubiquitinates NRF2; this modification stabilizes NRF2. Functionally, USP11 depletion contributes to the suppression of cell proliferation and induction of ferroptotic cell death due to ROS-mediated stress, which can be largely abrogated by overexpression of NRF2. Finally, immunohistochemical staining of USP11 and NRF2 was performed using a lung tissue microarray, which revealed that USP11 is highly expressed in patients with NSCLC and positively correlated with NRF2 expression. Together, USP11 stabilizes NRF2 and is thus an important player in cell proliferation and ferroptosis.
Collapse
Affiliation(s)
- Chunjie Meng
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Delin Chen
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology, and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jianyuan Luo
- Department of Medical Genetics, Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Center for Medical Genetics, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
107
|
Perry M, Biegert M, Kollala SS, Mallard H, Su G, Kodavati M, Kreiling N, Holbrook A, Ghosal G. USP11 mediates repair of DNA-protein cross-links by deubiquitinating SPRTN metalloprotease. J Biol Chem 2021; 296:100396. [PMID: 33567341 PMCID: PMC7960550 DOI: 10.1016/j.jbc.2021.100396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
DNA-protein cross-links (DPCs) are toxic DNA lesions that interfere with DNA metabolic processes such as replication, transcription, and recombination. USP11 deubiquitinase participates in DNA repair, but the role of USP11 in DPC repair is not known. SPRTN is a replication-coupled DNA-dependent metalloprotease that cleaves proteins cross-linked to DNA to promote DPC repair. SPRTN function is tightly regulated by a monoubiquitin switch that controls SPRTN auto-proteolysis and chromatin accessibility during DPC repair. Previously, VCPIP1 and USP7 deubiquitinases have been shown to regulate SPRTN. Here, we identify USP11 as an SPRTN deubiquitinase. USP11 interacts with SPRTN and cleaves monoubiquitinated SPRTN in cells and in vitro. USP11 depletion impairs SPRTN deubiquitination and promotes SPRTN auto-proteolysis in response to formaldehyde-induced DPCs. Loss of USP11 causes an accumulation of unrepaired DPCs and cellular hypersensitivity to treatment with DPC-inducing agents. Our findings show that USP11 regulates SPRTN auto-proteolysis and SPRTN-mediated DPC repair to maintain genome stability.
Collapse
Affiliation(s)
- Megan Perry
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meghan Biegert
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sai Sundeep Kollala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Halle Mallard
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Grace Su
- Department of Biology, Doane University, Crete, Nebraska, USA
| | - Manohar Kodavati
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alexander Holbrook
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred and Pamela Buffett Cancer Center, Omaha Nebraska, USA.
| |
Collapse
|
108
|
Goshayeshi L, Yousefi Taemeh S, Dehdilani N, Nasiri M, Ghahramani Seno MM, Dehghani H. CRISPR/dCas9-mediated transposition with specificity and efficiency of site-directed genomic insertions. FASEB J 2021; 35:e21359. [PMID: 33496003 DOI: 10.1096/fj.202001830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
The ability and efficiency of targeted nucleases to perform sequence replacements or insertions into the genome are limited. This limited efficiency for sequence replacements or insertions can be explained by the dependency on DNA repair pathways, the possibility of cellular toxicity, and unwanted activation of proto-oncogenes. The piggyBac (PB) transposase uses a very efficient enzymatic mechanism to integrate DNA fragments into the genome in a random manner. In this study, we fused an RNA-guided catalytically inactive Cas9 (dCas9) to the PB transposase and used dual sgRNAs to localize this molecule to specific genomic targets. We designed and used a promoter/reporter complementation assay to register and recover cells harboring-specific integrations, where only by complementation upon correct genomic integration, the reporter can be activated. Using an RNA-guided piggyBac transposase and dual sgRNAs, we were able to achieve site-directed integrations in the human ROSA26 safe harbor region in 0.32% of cells. These findings show that the methodology used in this study can be used for targeting genomic regions. An application for this finding could be in cancer cells to insert sequences into specific target regions that are intended to be destroyed, or to place promoter cargos behind the tumor suppressor genes to activate them.
Collapse
Affiliation(s)
- Lena Goshayeshi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nima Dehdilani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
109
|
Li Y, Yuan J. Role of deubiquitinating enzymes in DNA double-strand break repair. J Zhejiang Univ Sci B 2021; 22:63-72. [PMID: 33448188 DOI: 10.1631/jzus.b2000309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yunhui Li
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- The Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China. .,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
110
|
Liu PF, Zhuo ZL, Xie F, Wang S, Zhao XT. Four novel BRCA variants found in Chinese hereditary breast cancer patients by next-generation sequencing. Clin Chim Acta 2021; 516:55-63. [PMID: 33476590 DOI: 10.1016/j.cca.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequent cancer among women worldwide. Patients carrying mutations in breast cancer susceptibility genes like BRCA1 and BRCA2 (BRCA1/2) account for 5-10% of all breast cancer patients. Therefore, screening for susceptibility genes may reduce the incidence of breast cancer and improve prognosis. To provide evidence for mutation interpretation and targeted drug use in breast cancer patients, gene mutations were screened in 78 women diagnosed with sporadic breast cancer using a next-generation sequencing panel, confirmed by Sanger sequencing. Then the pathogenicity of the identified novel variants was explored using in vitro experiments including western blotting, co-immunoprecipitation and cell-migration assays. Four novel variants (BRCA2 L1390W, BRCA2 Glu432fs, BRCA1 P706L, and BRCA1 Cys882fs) were identified. BRCA2 Glu432fs decreased the expression of BRCA2 protein, enhanced cell migration and invasion ability, and prevented the protein from interacting with RAD51, resulting in a defect in the homologous recombination pathway. The identification of these novel BRCA variants and the confirmation of their pathogenicity have enriched the genetic database of breast cancer, especially in the Chinese population. Moreover, the variants are the genetic risk factors for hereditary breast cancer. Therefore, BRCA variant detection and genetic counseling for breast cancer patients are meaningful and important.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Zhong-Ling Zhuo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Fei Xie
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Xiao-Tao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
111
|
Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters. Mol Cell 2021; 81:830-844.e13. [PMID: 33453168 DOI: 10.1016/j.molcel.2020.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.
Collapse
|
112
|
Kelly JJ, Saee-Marand M, Nyström NN, Evans MM, Chen Y, Martinez FM, Hamilton AM, Ronald JA. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. SCIENCE ADVANCES 2021; 7:eabc3791. [PMID: 33523917 PMCID: PMC7817109 DOI: 10.1126/sciadv.abc3791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Imaging reporter genes provides longitudinal information on the biodistribution, growth, and survival of engineered cells in vivo. A translational bottleneck to using reporter genes is the necessity to engineer cells with randomly integrating vectors. Here, we built homology-independent targeted integration (HITI) CRISPR-Cas9 minicircle donors for precise safe harbor-targeted knock-in of fluorescence, bioluminescence, and MRI (Oatp1a1) reporter genes. Our results showed greater knock-in efficiency using HITI vectors compared to homology-directed repair vectors. HITI clones demonstrated functional fluorescence and bioluminescence reporter activity as well as significant Oatp1a1-mediated uptake of the clinically approved MRI agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid. Contrast-enhanced MRI improved the conspicuity of both subcutaneous and metastatic Oatp1a1-expressing tumors before they became palpable or even readily visible on precontrast images. Our work demonstrates the first CRISPR-Cas9 HITI system for knock-in of large DNA donor constructs at a safe harbor locus, enabling multimodal longitudinal in vivo imaging of cells.
Collapse
Affiliation(s)
- John J Kelly
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Moe Saee-Marand
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Melissa M Evans
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Yuanxin Chen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Francisco M Martinez
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
113
|
Sakamoto Y, Kokuta T, Teshigahara A, Iijima K, Kitao H, Takata M, Tauchi H. Mitotic cells can repair DNA double-strand breaks via a homology-directed pathway. JOURNAL OF RADIATION RESEARCH 2021; 62:25-33. [PMID: 33009557 PMCID: PMC7779344 DOI: 10.1093/jrr/rraa095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Indexed: 05/04/2023]
Abstract
The choice of repair pathways of DNA double-strand breaks (DSBs) is dependent upon the cell cycle phases. While homologous recombination repair (HRR) is active between the S and G2 phases, its involvement in mitotic DSB repair has not been examined in detail. In the present study, we developed a new reporter assay system to detect homology-directed repair (HDR), a major pathway used for HRR, in combination with an inducible DSB-generation system. As expected, the maximal HDR activity was observed in the late S phase, along with minimal activity in the G1 phase and at the G1/S boundary. Surprisingly, significant HDR activity was observed in M phase, and the repair efficiency was similar to that observed in late S phase. HDR was also confirmed in metaphase cells collected with continuous colcemid exposure. ChIP assays revealed the recruitment of RAD51 to the vicinity of DSBs in M phase. In addition, the ChIP assay for gamma-H2AX and phosphorylated DNA-PKcs indicated that a part of M-phase cells with DSBs could proceed into the next G1 phase. These results provide evidence showing that a portion of mitotic cell DSBs are undoubtedly repaired through action of the HDR repair pathway.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Tetsuya Kokuta
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Ai Teshigahara
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kenta Iijima
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Minoru Takata
- Radiation Biology Center, Kyoto University, Yoshida-Konoe Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Tauchi
- Corresponding author. Department of Biological Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan. Tel: +81-29-228-8383; Fax: +81-29-228-8403;
| |
Collapse
|
114
|
Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev 2021; 168:147-157. [PMID: 32092381 DOI: 10.1016/j.addr.2020.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
During the past decade, developments in genome editing technology have fundamentally transformed biomedical research. In particular, the CRISPR/Cas9 system has been extensively applied because of its simplicity and ability to alter genomic sequences within living organisms, and an ever increasing number of CRISPR/Cas9-based molecular tools are being developed for a wide variety of applications. While genome editing tools have been used for many aspects of biological research, they also have enormous potential to be used for genome editing therapy to treat a broad range of diseases. For some hematopoietic diseases, clinical trials of therapeutic genome editing with CRISPR/Cas9 are already starting phase I. In the cardiovascular field, genome editing tools have been utilized to understand the mechanisms of diseases such as cardiomyopathy, arrythmia, and lipid metabolism, which now open the door to therapeutic genome editing. Currently, therapeutic genome editing in the cardiovascular field is centered on liver-targeting strategies to reduce cardiovascular risks. Targeting the heart is more challenging. In this review, we discuss the potential applications, recent advances, and current limitations of therapeutic genome editing in the cardiovascular field.
Collapse
|
115
|
Danner E, Lebedin M, de la Rosa K, Kühn R. A homology independent sequence replacement strategy in human cells using a CRISPR nuclease. Open Biol 2021; 11:200283. [PMID: 33499763 PMCID: PMC7881171 DOI: 10.1098/rsob.200283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Precision genomic alterations largely rely on homology directed repair (HDR), but targeting without homology using the non-homologous end-joining (NHEJ) pathway has gained attention as a promising alternative. Previous studies demonstrated precise insertions formed by the ligation of donor DNA into a targeted genomic double-strand break in both dividing and non-dividing cells. Here, we demonstrate the use of NHEJ repair to replace genomic segments with donor sequences; we name this method 'Replace' editing (Rational end-joining protocol delivering a targeted sequence exchange). Using CRISPR/Cas9, we create two genomic breaks and ligate a donor sequence in-between. This exchange of a genomic for a donor sequence uses neither microhomology nor homology arms. We target four loci in cell lines and show successful exchange of exons in 16-54% of human cells. Using linear amplification methods and deep sequencing, we quantify the diversity of outcomes following Replace editing and profile the ligated interfaces. The ability to replace exons or other genomic sequences in cells not efficiently modified by HDR holds promise for both basic research and medicine.
Collapse
Affiliation(s)
- Eric Danner
- Max Delbrück Center for Molecular Medicine of the Helmholtz Association, Berlin, Germany
| | | | | | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine of the Helmholtz Association, Berlin, Germany
| |
Collapse
|
116
|
Anglada T, Genescà A, Martín M. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY) 2020; 12:24872-24893. [PMID: 33361520 PMCID: PMC7803562 DOI: 10.18632/aging.202419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
DNA repair mechanisms play a crucial role in maintaining genome integrity. However, the increased frequency of DNA double-strand breaks (DSBs) and genome rearrangements in aged individuals suggests an age-associated DNA repair deficiency. Previous work from our group revealed a delayed firing of the DNA damage response in human mammary epithelial cells (HMECs) from aged donors. We now report a decreased activity of the main DSB repair pathways, the canonical non-homologous end-joining (c-NHEJ) and the homologous recombination (HR) in these HMECs from older individuals. We describe here a deficient recruitment of 53BP1 to DSB sites in G1 cells, probably influenced by an altered epigenetic regulation. 53BP1 absence at some DSBs is responsible for the age-associated DNA repair defect, as it permits the ectopic formation of BRCA1 foci while still in the G1 phase. CtIP and RPA foci are also formed in G1 cells from aged donors, but RAD51 is not recruited, thus indicating that extensive DNA-end resection occurs in these breaks although HR is not triggered. These results suggest an age-associated switch of DSB repair from canonical to highly mutagenic alternative mechanisms that promote the formation of genome rearrangements, a source of genome instability that might contribute to the aging process.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
117
|
Han J, Yu M, Bai Y, Yu J, Jin F, Li C, Zeng R, Peng J, Li A, Song X, Li H, Wu D, Li L. Elevated CXorf67 Expression in PFA Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell 2020; 38:844-856.e7. [PMID: 33186520 PMCID: PMC8455074 DOI: 10.1016/j.ccell.2020.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/12/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
Ependymoma is the third most common pediatric tumor with posterior fossa group A (PFA) being its most aggressive subtype. Ependymomas are generally refractory to chemotherapies and thus lack any effective treatment. Here, we report that elevated expression of CXorf67 (chromosome X open reading frame 67), which frequently occurs in PFA ependymomas, suppresses homologous recombination (HR)-mediated DNA repair. Mechanistically, CXorf67 interacts with PALB2 and inhibits PALB2-BRCA2 interaction, thereby inhibiting HR repair. Concordantly, tumor cells with high CXorf67 expression levels show increased sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with radiotherapy. Thus, our findings have revealed a role of CXorf67 in HR repair and suggest that combination of PARP inhibitors with radiotherapy could be an effective treatment option for PFA ependymomas.
Collapse
Affiliation(s)
- Jichang Han
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Yu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiqin Bai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianzhong Yu
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Fei Jin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghong Peng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ao Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 208089, USA
| | - Xiaomin Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 208089, USA.
| | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
118
|
Bungsy M, Palmer MCL, Jeusset LM, Neudorf NM, Lichtensztejn Z, Nachtigal MW, McManus KJ. Reduced RBX1 expression induces chromosome instability and promotes cellular transformation in high-grade serous ovarian cancer precursor cells. Cancer Lett 2020; 500:194-207. [PMID: 33290867 DOI: 10.1016/j.canlet.2020.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Despite high-grade serous ovarian cancer (HGSOC) being the most common and lethal gynecological cancer in women, the early etiological events driving disease development remain largely unknown. Emerging evidence now suggests that chromosome instability (CIN; ongoing changes in chromosome numbers) may play a central role in the development and progression of HGSOC. Importantly, genomic amplification of the Cyclin E1 gene (CCNE1) contributes to HGSOC pathogenesis in ~20% of patients, while Cyclin E1 overexpression induces CIN in model systems. Cyclin E1 levels are normally regulated by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes RBX1 as a core component. Interestingly, RBX1 is heterozygously lost in ~80% of HGSOC cases and reduced expression corresponds with worse outcomes, suggesting it may be a pathogenic event. Using both short (siRNA) and long (CRISPR/Cas9) term approaches, we show that reduced RBX1 expression corresponds with significant increases in CIN phenotypes in fallopian tube secretory epithelial cells, a cellular precursor of HGSOC. Moreover, reduced RBX1 expression corresponds with increased Cyclin E1 levels and anchorage-independent growth. Collectively, these data identify RBX1 as a novel CIN gene with pathogenic implications for HGSOC.
Collapse
Affiliation(s)
- Manisha Bungsy
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Michaela C L Palmer
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Lucile M Jeusset
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Nicole M Neudorf
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Mark W Nachtigal
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Obstetrics, Gynecology & Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J McManus
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada.
| |
Collapse
|
119
|
Inhibitors of DNA double-strand break repair at the crossroads of cancer therapy and genome editing. Biochem Pharmacol 2020; 182:114195. [DOI: 10.1016/j.bcp.2020.114195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
120
|
Torres-Garcia S, Di Pompeo L, Eivers L, Gaborieau B, White SA, Pidoux AL, Kanigowska P, Yaseen I, Cai Y, Allshire RC. SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast. Wellcome Open Res 2020; 5:274. [PMID: 33313420 PMCID: PMC7721064 DOI: 10.12688/wellcomeopenres.16405.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
The CRISPR/Cas9 system allows scarless, marker-free genome editing. Current CRISPR/Cas9 systems for the fission yeast Schizosaccharomyces pombe rely on tedious and time-consuming cloning procedures to introduce a specific sgRNA target sequence into a Cas9-expressing plasmid. In addition, Cas9 endonuclease has been reported to be toxic to fission yeast when constitutively overexpressed from the strong adh1 promoter. To overcome these problems we have developed an improved system, SpEDIT, that uses a synthesised Cas9 sequence codon-optimised for S. pombe expressed from the medium strength adh15 promoter. The SpEDIT system exhibits a flexible modular design where the sgRNA is fused to the 3' end of the self-cleaving hepatitis delta virus (HDV) ribozyme, allowing expression of the sgRNA cassette to be driven by RNA polymerase III from a tRNA gene sequence. Lastly, the inclusion of sites for the BsaI type IIS restriction enzyme flanking a GFP placeholder enables one-step Golden Gate mediated replacement of GFP with synthesized sgRNAs for expression. The SpEDIT system allowed a 100% mutagenesis efficiency to be achieved when generating targeted point mutants in the ade6 + or ura4 + genes by transformation of cells from asynchronous cultures. SpEDIT also permitted insertion, tagging and deletion events to be obtained with minimal effort. Simultaneous editing of two independent non-homologous loci was also readily achieved. Importantly the SpEDIT system displayed reduced toxicity compared to currently available S. pombe editing systems. Thus, SpEDIT provides an effective and user-friendly CRISPR/Cas9 procedure that significantly improves the genome editing toolbox for fission yeast.
Collapse
Affiliation(s)
- Sito Torres-Garcia
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Lorenza Di Pompeo
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Luke Eivers
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Baptiste Gaborieau
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Sharon A. White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Paulina Kanigowska
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Imtiyaz Yaseen
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK,Present address: Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF, UK,
| |
Collapse
|
121
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
122
|
Bashir S, Dang T, Rossius J, Wolf J, Kühn R. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. BMC Biotechnol 2020; 20:57. [PMID: 33097066 PMCID: PMC7585302 DOI: 10.1186/s12896-020-00650-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Precise genetic modifications are preferred products of CRISPR-Cas9 mediated gene editing in mammalian cells but require the repair of induced double-strand breaks (DSB) through homology directed repair (HDR). Since HDR competes with the prevailing non-homologous end joining (NHEJ) pathway and depends on the presence of repair templates its efficiency is often limited and demands optimized methodology. RESULTS For the enhancement of HDR we redirect the DSB repair pathway choice by targeting the Ubiquitin mark for damaged chromatin at Histone H2A-K15. We used fusions of the Ubiquitin binding domain (UBD) of Rad18 or RNF169 with BRCA1 to promote HDR initiation and UBD fusions with DNA binding domains to attract donor templates and facilitate HDR processing. Using a traffic light reporter system in human HEK293 cells we found that the coexpression of both types of UBD fusion proteins promotes HDR, reduces NHEJ and shifts the HDR/NHEJ balance up to 6-fold. The HDR enhancing effect of UBD fusion proteins was confirmed at multiple endogenous loci. CONCLUSIONS Our findings provide a novel efficient approach to promote precise gene editing in human cells.
Collapse
Affiliation(s)
- Sanum Bashir
- Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Germany
- Present Address: BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Tu Dang
- Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Germany
| | - Jana Rossius
- Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Germany
| | - Johanna Wolf
- Present Address: Glycotope GmbH, 13125, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Centrum für Molekulare Medizin, 13125, Berlin, Germany.
| |
Collapse
|
123
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
124
|
Dwane L, O'Connor AE, Das S, Moran B, Mulrane L, Pinto-Fernandez A, Ward E, Blümel AM, Cavanagh BL, Mooney B, Dirac AM, Jirström K, Kessler BM, Ní Chonghaile T, Bernards R, Gallagher WM, O'Connor DP. A Functional Genomic Screen Identifies the Deubiquitinase USP11 as a Novel Transcriptional Regulator of ERα in Breast Cancer. Cancer Res 2020; 80:5076-5088. [PMID: 33004351 DOI: 10.1158/0008-5472.can-20-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023]
Abstract
Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities. Here, we investigated the role of deubiquitinases (DUB) in regulating ERα in breast cancer. An RNAi loss-of-function screen in breast cancer cells targeting all DUBs identified USP11 as a regulator of ERα transcriptional activity, which was further validated by assessment of direct transcriptional targets of ERα. USP11 expression was induced by estradiol, an effect that was blocked by tamoxifen and not observed in ERα-negative cells. Mass spectrometry revealed a significant change to the proteome and ubiquitinome in USP11-knockdown (KD) cells in the presence of estradiol. RNA sequencing in LCC1 USP11-KD cells revealed significant suppression of cell-cycle-associated and ERα target genes, phenotypes that were not observed in LCC9 USP11-KD, antiendocrine-resistant cells. In a breast cancer patient cohort coupled with in silico analysis of publicly available cohorts, high expression of USP11 was significantly associated with poor survival in ERα-positive (ERα+) patients. Overall, this study highlights a novel role for USP11 in the regulation of ERα activity, where USP11 may represent a prognostic marker in ERα+ breast cancer. SIGNIFICANCE: A newly identified role for USP11 in ERα transcriptional activity represents a novel mechanism of ERα regulation and a pathway to be exploited for the management of ER-positive breast cancer.
Collapse
Affiliation(s)
- Lisa Dwane
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Aisling E O'Connor
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Sudipto Das
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Laoighse Mulrane
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Elspeth Ward
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Anna M Blümel
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brian Mooney
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Annette M Dirac
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karin Jirström
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Darran P O'Connor
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, Dublin, Ireland.
| |
Collapse
|
125
|
Britton S, Chanut P, Delteil C, Barboule N, Frit P, Calsou P. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res 2020; 48:9710-9723. [PMID: 32890395 PMCID: PMC7515714 DOI: 10.1093/nar/gkaa723] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Two DNA repair pathways operate at DNA double strand breaks (DSBs): non-homologous end-joining (NHEJ), that requires two adjacent DNA ends for ligation, and homologous recombination (HR), that resects one DNA strand for invasion of a homologous duplex. Faithful repair of replicative single-ended DSBs (seDSBs) is mediated by HR, due to the lack of a second DNA end for end-joining. ATM stimulates resection at such breaks through multiple mechanisms including CtIP phosphorylation, which also promotes removal of the DNA-ends sensor and NHEJ protein Ku. Here, using a new method for imaging the recruitment of the Ku partner DNA-PKcs at DSBs, we uncover an unanticipated role of ATM in removing DNA-PKcs from seDSBs in human cells. Phosphorylation of DNA-PKcs on the ABCDE cluster is necessary not only for DNA-PKcs clearance but also for the subsequent MRE11/CtIP-dependent release of Ku from these breaks. We propose that at seDSBs, ATM activity is necessary for the release of both Ku and DNA-PKcs components of the NHEJ apparatus, and thereby prevents subsequent aberrant interactions between seDSBs accompanied by DNA-PKcs autophosphorylation and detrimental commitment to Lig4-dependent end-joining.
Collapse
Affiliation(s)
- Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Pauline Chanut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Christine Delteil
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Philippe Frit
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
126
|
Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020; 7:169. [PMID: 33195396 PMCID: PMC7525363 DOI: 10.3389/fmolb.2020.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years it has become clear that pathogenic variants in PALB2 are associated with a high risk for breast, ovarian and pancreatic cancer. However, the clinical relevance of variants of uncertain significance (VUS) in PALB2, which are increasingly identified through clinical genetic testing, is unclear. Here we review recent advances in the functional characterization of VUS in PALB2. A combination of assays has been used to assess the impact of PALB2 VUS on its function in DNA repair by homologous recombination, cell cycle regulation and the control of cellular levels of reactive oxygen species (ROS). We discuss the outcome of this comprehensive analysis of PALB2 VUS, which showed that VUS in PALB2’s Coiled-Coil (CC) domain can impair the interaction with BRCA1, whereas VUS in its WD40 domain affect PALB2 protein stability. Accordingly, the CC and WD40 domains of PALB2 represent hotspots for variants that impair PALB2 protein function. We also provide a future perspective on the high-throughput analysis of VUS in PALB2, as well as the functional characterization of variants that affect PALB2 RNA splicing. Finally, we discuss how results from these functional assays can be valuable for predicting cancer risk and responsiveness to cancer therapy, such as treatment with PARP inhibitor- or platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
127
|
Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 2020; 39:6393-6405. [PMID: 32884115 DOI: 10.1038/s41388-020-01445-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
In the present day, it is possible to incorporate targeted mutations or replace a gene using genome editing techniques such as customisable CRISPR/Cas9 system. Although induction of DNA double-strand breaks (DSBs) by genome editing tools can be repaired by both non-homologous end joining (NHEJ) and homologous recombination (HR), the skewness of the former pathway in human and other mammals normally result in imprecise repair. Scientists working at the crossroads of DNA repair and genome editing have devised new strategies for using a specific pathway to their advantage. Refinement in the efficiency of precise gene editing was witnessed upon downregulation of NHEJ by knockdown or using small molecule inhibitors on one hand, and upregulation of HR proteins and addition of HR stimulators, other hand. The exploitation of cell cycle phase differences together with appropriate donor DNA length/sequence and small molecules has provided further improvement in precise genome editing. The present article reviews the mechanisms of improving the efficiency of precise genome editing in several model organisms and in clinics.
Collapse
|
128
|
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, Dewitt MA, Vu JT, Kim WT, Hockemeyer D, Manz MG, Corn JE. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep 2020; 32:108093. [PMID: 32877675 PMCID: PMC7487781 DOI: 10.1016/j.celrep.2020.108093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
Collapse
Affiliation(s)
- Jiyung J Shin
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas L Bray
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark A Dewitt
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Won-Tae Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
129
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
130
|
Howard SM, Ceppi I, Anand R, Geiger R, Cejka P. The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Res 2020; 48:5485-5498. [PMID: 32347940 PMCID: PMC7261161 DOI: 10.1093/nar/gkaa273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks are repaired by end-joining or homologous recombination. A key-committing step of recombination is DNA end resection. In resection, phosphorylated CtIP first promotes the endonuclease of MRE11-RAD50-NBS1 (MRN). Subsequently, CtIP also stimulates the WRN/BLM-DNA2 pathway, coordinating thus both short and long-range resection. The structure of CtIP differs from its orthologues in yeast, as it contains a large internal unstructured region. Here, we conducted a domain analysis of CtIP to define the function of the internal region in DNA end resection. We found that residues 350-600 were entirely dispensable for resection in vitro. A mutant lacking these residues was unexpectedly more efficient than full-length CtIP in DNA end resection and homologous recombination in vivo, and consequently conferred resistance to lesions induced by the topoisomerase poison camptothecin, which require high MRN-CtIP-dependent resection activity for repair. This suggested that the internal CtIP region, further mapped to residues 550-600, may mediate a negative regulatory function to prevent over resection in vivo. The CtIP internal deletion mutant exhibited sensitivity to other DNA-damaging drugs, showing that upregulated resection may be instead toxic under different conditions. These experiments together identify a region within the central CtIP domain that negatively regulates DNA end resection.
Collapse
Affiliation(s)
- Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| |
Collapse
|
131
|
PRMT1-dependent methylation of BRCA1 contributes to the epigenetic defense of breast cancer cells against ionizing radiation. Sci Rep 2020; 10:13275. [PMID: 32764667 PMCID: PMC7413540 DOI: 10.1038/s41598-020-70289-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The therapeutic effect of irradiation is thought to come from DNA damage that affects rapidly proliferating cancer cells; however, resistant cells rapidly initiate mechanisms to repair such damage. While DNA repair mechanisms responsible for cancer cell survival following DNA damage are understood, less is known about the epigenetic mechanisms resulting in resistance to radiotherapy. Although changes in DNA methylation are related to mechanisms of long-term resistance, it is more likely that the methylation state of a series of proteins could be responsible for the first-line of defense of cancer cells against irradiation. In this study, we observed that irradiation of breast cancer cells was accompanied by an overproduction in S-adenosylmethionine, which increases the activity of cellular methylases. We found that by activating PRMT1, irradiation triggers a BRCA1-dependent program that results in efficient DNA repair and inhibition of apoptosis. Depletion of PRMT1 in irradiated cells resulted in a switch of BRCA1 functions from repair and survival in the nucleus to activation of cell death signals in the cytoplasm. We conclude that by modulating the cellular localization of BRCA1, PRMT1 is an important regulator of the oncogenic functions of BRCA1, contributing to the epigenetic defense of breast cancer cells against ionizing radiation.
Collapse
|
132
|
Fukushima K, Satoh T, Sugihara F, Sato Y, Okamoto T, Mitsui Y, Yoshio S, Li S, Nojima S, Motooka D, Nakamura S, Kida H, Standley DM, Morii E, Kanto T, Yanagita M, Matsuura Y, Nagasawa T, Kumanogoh A, Akira S. Dysregulated Expression of the Nuclear Exosome Targeting Complex Component Rbm7 in Nonhematopoietic Cells Licenses the Development of Fibrosis. Immunity 2020; 52:542-556.e13. [PMID: 32187520 DOI: 10.1016/j.immuni.2020.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022]
Abstract
Fibrosis is an incurable disorder of unknown etiology. Segregated-nucleus-containing atypical monocytes (SatMs) are critical for the development of fibrosis. Here we examined the mechanisms that recruit SatMs to pre-fibrotic areas. A screen based on cytokine expression in the fibrotic lung revealed that the chemokine Cxcl12, which is produced by apoptotic nonhematopoietic cells, was essential for SatM recruitment. Analyses of lung tissues at fibrosis onset showed increased expression of Rbm7, a component of the nuclear exosome targeting complex. Rbm7 deletion suppressed bleomycin-induced fibrosis and at a cellular level, suppressed apoptosis of nonhematopoietic cells. Mechanistically, Rbm7 bound to noncoding (nc)RNAs that form subnuclear bodies, including Neat1 speckles. Dysregulated expression of Rbm7 resulted in the nuclear degradation of Neat1 speckles, the dispersion of the DNA repair protein BRCA1, and the triggering of apoptosis. Thus, Rbm7 in epithelial cells plays a critical role in the development of fibrosis by regulating ncRNA decay and thereby the production of chemokines that recruit SatMs.
Collapse
Affiliation(s)
- Kiyoharu Fukushima
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| | - Fuminori Sugihara
- Laboratory of Biofunctional Imaging, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Medical Innovation Center TMK Project, Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Toru Okamoto
- Department of Molecular Virology, RIMD, Osaka University, Osaka 565-0871, Japan
| | - Yuichi Mitsui
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Songling Li
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, RIMD, Osaka University, Osaka 565-0871, Japan
| | - Shota Nakamura
- Genome Information Research Center, RIMD, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, RIMD, Osaka University, Osaka 565-0871, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
133
|
A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells. Biochem J 2020; 477:137-160. [PMID: 31820786 DOI: 10.1042/bcj20190596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy with critical roles in several cancers. Lysosomal autophagy promotes cancer survival through the degradation of toxic molecules and the maintenance of adequate nutrient supply. Doxorubicin (DOX) is the standard of care treatment for triple-negative breast cancer (TNBC); however, chemoresistance at lower doses and toxicity at higher doses limit its usefulness. By targeting pathways of survival, DOX can become an effective antitumor agent. In this study, we examined the role of TFEB in TNBC and its relationship with autophagy and DNA damage induced by DOX. In TNBC cells, TFEB was hypo-phosphorylated and localized to the nucleus upon DOX treatment. TFEB knockdown decreased the viability of TNBC cells while increasing caspase-3 dependent apoptosis. Additionally, inhibition of the TFEB-phosphatase calcineurin sensitized cells to DOX-induced apoptosis in a TFEB dependent fashion. Regulation of apoptosis by TFEB was not a consequence of altered lysosomal function, as TFEB continued to protect against apoptosis in the presence of lysosomal inhibitors. RNA-Seq analysis of MDA-MB-231 cells with TFEB silencing identified a down-regulation in cell cycle and homologous recombination genes while interferon-γ and death receptor signaling genes were up-regulated. In consequence, TFEB knockdown disrupted DNA repair following DOX, as evidenced by persistent γH2A.X detection. Together, these findings describe in TNBC a novel lysosomal independent function for TFEB in responding to DNA damage.
Collapse
|
134
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
135
|
Tsai L, Lopezcolorado F, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark J. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020; 48:6032-6052. [PMID: 32427332 PMCID: PMC7293022 DOI: 10.1093/nar/gkaa380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.
Collapse
Affiliation(s)
- Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
136
|
Ubiquitylation-Mediated Fine-Tuning of DNA Double-Strand Break Repair. Cancers (Basel) 2020; 12:cancers12061617. [PMID: 32570875 PMCID: PMC7352447 DOI: 10.3390/cancers12061617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
The proper function of DNA repair is indispensable for eukaryotic cells since accumulation of DNA damages leads to genome instability and is a major cause of oncogenesis. Ubiquitylation and deubiquitylation play a pivotal role in the precise regulation of DNA repair pathways by coordinating the recruitment and removal of repair proteins at the damaged site. Here, we summarize the most important post-translational modifications (PTMs) involved in DNA double-strand break repair. Although we highlight the most relevant PTMs, we focus principally on ubiquitylation-related processes since these are the most robust regulatory pathways among those of DNA repair.
Collapse
|
137
|
BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun 2020; 11:3018. [PMID: 32541668 PMCID: PMC7295806 DOI: 10.1038/s41467-020-16589-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/07/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis represents a risk factor for the development of pancreatic cancer. We find that heterozygous loss of histone H2A lysine 119 deubiquitinase BAP1 (BRCA1 Associated Protein-1) associates with a history of chronic pancreatitis and occurs in 25% of pancreatic ductal adenocarcinomas and 40% of acinar cell carcinomas. Deletion or heterozygous loss of Bap1 in murine pancreata causes genomic instability, tissue damage, and pancreatitis with full penetrance. Concomitant expression of KrasG12D leads to predominantly intraductal papillary mucinous neoplasms and mucinous cystic neoplasms, while pancreatic intraepithelial neoplasias are rarely detected. These lesions progress to metastatic pancreatic cancer with high frequency. Lesions with histological features mimicking Acinar Cell Carcinomas are also observed in some tumors. Heterozygous mice also develop pancreatic cancer suggesting a haploinsufficient tumor suppressor role for BAP1. Mechanistically, BAP1 regulates genomic stability, in a catalytic independent manner, and its loss confers sensitivity to irradiation and platinum-based chemotherapy in pancreatic cancer.
Collapse
|
138
|
He X, Chen W, Liu Z, Yu G, Chen Y, Cai YJ, Sun L, Xu W, Zhong L, Gao C, Chen J, Zhang M, Yang S, Yao Y, Zhang Z, Ma F, Zhang CC, Lu HP, Yu B, Cheng TL, Qiu J, Sheng Q, Zhou HM, Lv ZR, Yan J, Zhou Y, Qiu Z, Cui Z, Zhang X, Meng A, Sun Q, Yang Y. Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Res 2020; 48:e57. [PMID: 32232370 PMCID: PMC7261186 DOI: 10.1093/nar/gkaa195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.
Collapse
Affiliation(s)
- Xiaozhen He
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guirong Yu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Youbang Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Jun Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wanli Xu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lili Zhong
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Caixi Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jishen Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minjie Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shengxi Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yizhou Yao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiping Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fujun Ma
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Ping Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Lin Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juhui Qiu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hai-Meng Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Zhi-Rong Lv
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xi Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
139
|
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR J 2020; 2:209-222. [PMID: 31436506 DOI: 10.1089/crispr.2019.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CRISPR-based technologies have become central to genome engineering. However, CRISPR-based editing strategies are dependent on the repair of DNA breaks via endogenous DNA repair mechanisms, which increases susceptibility to unwanted mutations. Here we complement Cas9 with a recombinase's functionality by fusing a hyperactive mutant resolvase from transposon Tn3, a member of serine recombinases, to a catalytically inactive Cas9, which we term integrase Cas9 (iCas9). We demonstrate iCas9 targets DNA deletion and integration. First, we validate iCas9's function in Saccharomyces cerevisiae using a genome-integrated reporter. Cooperative targeting by CRISPR RNAs at spacings of 22 or 40 bp enables iCas9-mediated recombination. Next, iCas9's ability to target DNA deletion and integration in human HEK293 cells is demonstrated using dual GFP-mCherry fluorescent reporter plasmid systems. Finally, we show that iCas9 is capable of targeting integration into a genomic reporter locus. We envision targeting and design concepts of iCas9 will contribute to genome engineering and synthetic biology.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona; University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Parithi Balachandran
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Qi Zhang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - David A Brafman
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Xiao Wang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
140
|
Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? Cells 2020; 9:cells9051318. [PMID: 32466303 PMCID: PMC7291049 DOI: 10.3390/cells9051318] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.
Collapse
|
141
|
Wong X, Stewart CL. The Laminopathies and the Insights They Provide into the Structural and Functional Organization of the Nucleus. Annu Rev Genomics Hum Genet 2020; 21:263-288. [PMID: 32428417 DOI: 10.1146/annurev-genom-121219-083616] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.
Collapse
Affiliation(s)
- Xianrong Wong
- Regenerative and Developmental Biology Group, Institute of Medical Biology, Singapore 138648; ,
| | - Colin L Stewart
- Regenerative and Developmental Biology Group, Institute of Medical Biology, Singapore 138648; ,
| |
Collapse
|
142
|
Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2020; 47:10662-10677. [PMID: 31586400 PMCID: PMC6847799 DOI: 10.1093/nar/gkz780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.
Collapse
Affiliation(s)
- Amélie Rodrigue
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Thiago Torres Gomes
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Gemma Montalban
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Simone da Costa E Silva Carvalho
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | - Larissa Milano
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Mandy Ducy
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Giuliana De-Gregoriis
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Wilson Araújo da Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
143
|
Batenburg NL, Walker JR, Coulombe Y, Sherker A, Masson JY, Zhu XD. CSB interacts with BRCA1 in late S/G2 to promote MRN- and CtIP-mediated DNA end resection. Nucleic Acids Res 2020; 47:10678-10692. [PMID: 31501894 PMCID: PMC6847465 DOI: 10.1093/nar/gkz784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023] Open
Abstract
CSB, a member of the SWI2/SNF2 superfamily, has been implicated in evicting histones to promote the DSB pathway choice towards homologous recombination (HR) repair. However, how CSB promotes HR repair remains poorly characterized. Here we demonstrate that CSB interacts with both MRE11/RAD50/NBS1 (MRN) and BRCA1 in a cell cycle regulated manner, with the former requiring its WHD and occurring predominantly in early S phase. CSB interacts with the BRCT domain of BRCA1 and this interaction is regulated by CDK-dependent phosphorylation of CSB on S1276. The CSB–BRCA1 interaction, which peaks in late S/G2 phase, is responsible for mediating the interaction of CSB with the BRCA1-C complex consisting of BRCA1, MRN and CtIP. While dispensable for histone eviction at DSBs, CSB phosphorylation on S1276 is necessary to promote efficient MRN- and CtIP-mediated DNA end resection, thereby restricting NHEJ and enforcing the DSB repair pathway choice to HR. CSB phosphorylation on S1276 is also necessary to support cell survival in response to DNA damage-inducing agents. These results altogether suggest that CSB interacts with BRCA1 to promote DNA end resection for HR repair and that although prerequisite, CSB-mediated histone eviction alone is insufficient to promote the pathway choice towards HR.
Collapse
Affiliation(s)
- Nicole L Batenburg
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - John R Walker
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
144
|
Tarsounas M, Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 2020; 21:284-299. [PMID: 32094664 PMCID: PMC7204409 DOI: 10.1038/s41580-020-0218-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair. Understanding the functional crosstalk between BRCA1-BARD1 and its cofactors and antagonists will illuminate the molecular basis of cancers that arise from a deficiency or misregulation of chromosome damage repair and replication fork maintenance. Such knowledge will also be valuable for understanding acquired tumour resistance to poly(ADP-ribose) polymerase (PARP) inhibitors and other therapeutics and for the development of new treatments. In this Review, we discuss recent advances in elucidating the mechanisms by which BRCA1-BARD1 functions in DNA repair, replication fork maintenance and tumour suppression, and its therapeutic relevance.
Collapse
Affiliation(s)
- Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
145
|
Chou S, Yang P, Ban Q, Yang Y, Wang M, Chien C, Chen S, Sun N, Zhu Y, Liu H, Hui W, Lin T, Wang F, Zhang RY, Nguyen VQ, Liu W, Chen M, Jonas SJ, Weiss PS, Tseng H, Chiou S. Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9-Mediated Knockin of Retinoschisin 1 Gene-A Potential Nonviral Therapeutic Solution for X-Linked Juvenile Retinoschisis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903432. [PMID: 32440478 PMCID: PMC7237855 DOI: 10.1002/advs.201903432] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 05/13/2023]
Abstract
The homology-independent targeted integration (HITI) strategy enables effective CRISPR/Cas9-mediated knockin of therapeutic genes in nondividing cells in vivo, promising general therapeutic solutions for treating genetic diseases like X-linked juvenile retinoschisis. Herein, supramolecular nanoparticle (SMNP) vectors are used for codelivery of two DNA plasmids-CRISPR-Cas9 genome-editing system and a therapeutic gene, Retinoschisin 1 (RS1)-enabling clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) knockin of the RS1 gene with HITI. Through small-scale combinatorial screenings, two SMNP vectors, with Cas9 and single guide RNA (sgRNA)-plasmid in one and Donor-RS1 and green fluorescent protein (GFP)-plasmid in the other, with optimal delivery performances are identified. These SMNP vectors are then employed for CRISPR/Cas9 knockin of RS1/GFP genes into the mouse Rosa26 safe-harbor site in vitro and in vivo. The in vivo study involves intravitreally injecting the two SMNP vectors into the mouse eyes, followed by repeated ocular imaging by fundus camera and optical coherence tomography, and pathological and molecular analyses of the harvested retina tissues. Mice ocular organs retain their anatomical integrity, a single-copy 3.0-kb RS1/GFP gene is precisely integrated into the Rosa26 site in the retinas, and the integrated RS1/GFP gene is expressed in the retinas, demonstrating CRISPR/Cas9 knockin of RS1/GFP gene.
Collapse
Affiliation(s)
- Shih‐Jie Chou
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| | - Peng Yang
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Qian Ban
- Center for Stem Cell and Translational MedicineSchool of Life SciencesAnhui UniversityHefei230601China
| | - Yi‐Ping Yang
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- School of Medicine, and School of Pharmaceutical SciencesNational Yang‐Ming UniversityTaipei112Taiwan
| | - Mong‐Lien Wang
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of Food Safety and Health Risk AssessmentNational Yang Ming UniversityTaipei112Taiwan
| | - Chian‐Shiu Chien
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| | - Shih‐Jen Chen
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| | - Na Sun
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Yazhen Zhu
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Hongtao Liu
- Shandong Provincial Qianfoshan Hospitalthe First Hospital Affiliated to Shandong First Medical UniversityJinan250014China
| | - Wenqiao Hui
- Institute of Animal Husbandry and Veterinary MedicineAnhui Academy of Agriculture SciencesHefei230031China
| | - Tai‐Chi Lin
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| | - Fang Wang
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Ryan Yue Zhang
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Viet Q. Nguyen
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| | - Wenfei Liu
- Department of Chemistry and BiochemistryDepartment of BioengineeringDepartment of Materials Science and EngineeringCalifornia NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Mengxiang Chen
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Steve J. Jonas
- California NanoSystems Institute (CNSI)Department of PediatricsDavid Geffen School of MedicineEli & Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchChildren's Discovery and Innovation InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Paul S. Weiss
- Department of Chemistry and BiochemistryDepartment of BioengineeringDepartment of Materials Science and EngineeringCalifornia NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Hsian‐Rong Tseng
- Department of Molecular and Medical PharmacologyCrump Institute for Molecular Imaging (CIMI)California NanoSystems Institute (CNSI)University of California, Los AngelesLos AngelesCA90095USA
| | - Shih‐Hwa Chiou
- Division of Basic ResearchDepartment of Medical Researchand Department of OphthalmologyTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang‐Ming UniversityTaipei112Taiwan
| |
Collapse
|
146
|
Ceppi I, Howard SM, Kasaciunaite K, Pinto C, Anand R, Seidel R, Cejka P. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proc Natl Acad Sci U S A 2020; 117:8859-8869. [PMID: 32241893 PMCID: PMC7183222 DOI: 10.1073/pnas.2001165117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To repair a DNA double-strand break by homologous recombination, 5'-terminated DNA strands must first be resected to reveal 3'-overhangs. This process is initiated by a short-range resection catalyzed by MRE11-RAD50-NBS1 (MRN) stimulated by CtIP, which is followed by a long-range step involving EXO1 or DNA2 nuclease. DNA2 is a bifunctional enzyme that contains both single-stranded DNA (ssDNA)-specific nuclease and motor activities. Upon DNA unwinding by Bloom (BLM) or Werner (WRN) helicase, RPA directs the DNA2 nuclease to degrade the 5'-strand. RPA bound to ssDNA also represents a barrier, explaining the need for the motor activity of DNA2 to displace RPA prior to resection. Using ensemble and single-molecule biochemistry, we show that CtIP also dramatically stimulates the adenosine 5'-triphosphate (ATP) hydrolysis-driven motor activity of DNA2 involved in the long-range resection step. This activation in turn strongly promotes the degradation of RPA-coated ssDNA by DNA2. Accordingly, the stimulatory effect of CtIP is only observed with wild-type DNA2, but not the helicase-deficient variant. Similarly to the function of CtIP to promote MRN, also the DNA2 stimulatory effect is facilitated by CtIP phosphorylation. The domain of CtIP required to promote DNA2 is located in the central region lacking in lower eukaryotes and is fully separable from domains involved in the stimulation of MRN. These results establish how CtIP couples both MRE11-dependent short-range and DNA2-dependent long-range resection and define the involvement of the motor activity of DNA2 in this process. Our data might help explain the less severe resection defects of MRE11 nuclease-deficient cells compared to those lacking CtIP.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zürich, Zürich, 8057, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland;
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| |
Collapse
|
147
|
Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020; 18:e3000665. [PMID: 32275651 PMCID: PMC7176289 DOI: 10.1371/journal.pbio.3000665] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution. This study describes the development of a genome editing toolbox (ORANGE) for endogenous tagging of proteins in neurons. This open resource allows the investigation of protein localization and dynamics in neurons using live-cell and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Arthur P. H. de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eline Mertens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lisa A. E. Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier B. Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Frank J. Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Harold D. MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
148
|
Pan-cancer analysis reveals synergistic effects of CDK4/6i and PARPi combination treatment in RB-proficient and RB-deficient breast cancer cells. Cell Death Dis 2020; 11:219. [PMID: 32249776 PMCID: PMC7136254 DOI: 10.1038/s41419-020-2408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
DNA damage results in mutations and plays critical roles in cancer development, progression, and treatment. Targeting DNA damage response in cancers by inhibiting poly-(ADP-ribose) polymerases (PARPs) offers an important therapeutic strategy. However, the failure of PARP inhibitors to markedly benefit patients suggests the necessity for developing new strategies to improve their efficacy. Here, we show that the expression of cyclin-dependent kinase 4/6 (CDK4/6) complex members significantly correlates with mutations (as proxies of DNA damages), and that the combination of CDK4/6 and PARP inhibitors shows synergy in both RB-proficient and RB-deficient breast cancer cells. As PARPs constitute sensors of DNA damage and are broadly involved in multiple DNA repair pathways, we hypothesized that the combined inhibition of PARPs and DNA repair (or repair-related) pathways critical for cancer (DRPCC) should show synergy. To identify druggable candidate DRPCC(s), we analyzed the correlation between the genome-wide expression of individual genes and the mutations for 27 different cancer types, assessing 7146 exomes and over 1,500,000 somatic mutations. Pathway enrichment analyses of the top-ranked genes correlated with mutations indicated “cell cycle pathway” as the top candidate DRPCC. Additionally, among functional cell-cycle complexes, the CDK4/6 complex showed the most significant negative correlation with mutations, also suggesting that combined CDK4/6 and PARP inhibition might exhibit synergy. Furthermore, combination treatment showed synergy in not only RB-proficient but also RB-deficient breast cancer cells in a reactive oxygen species-dependent manner. These findings suggest a potential therapeutic strategy to improve the efficacy of PARP and CDK4/6 inhibitors in cancer treatment.
Collapse
|
149
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
150
|
Enikanolaiye A, Ruston J, Zeng R, Taylor C, Schrock M, Buchovecky CM, Shendure J, Acar E, Justice MJ. Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology. Genome Res 2020; 30:540-552. [PMID: 32317254 PMCID: PMC7197480 DOI: 10.1101/gr.258400.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT.
Collapse
Affiliation(s)
- Adebola Enikanolaiye
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Julie Ruston
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Rong Zeng
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Christine Taylor
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Marijke Schrock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christie M Buchovecky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | - Elif Acar
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- The Centre for Phenogenomics, Toronto, Ontario, M5T 3H7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|