101
|
Üstündağ Okur N, Hökenek N, Okur ME, Ayla Ş, Yoltaş A, Siafaka PI, Cevher E. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27:738-752. [PMID: 31297030 PMCID: PMC6598503 DOI: 10.1016/j.jsps.2019.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/19/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, novel adhesive films were prepared for Mupirocin dermal delivery. Natural polymers as chitosan, sodium alginate and carbopol were used for films development to evaluate possible interactions and drug release properties. Solvent evaporation method was used for films preparation. Preliminary studies involved FT-IR spectroscopy and Scanning Electron Microscopy to specify interactions and morphology. Thickness, tensile strength and water uptake in phosphate buffer saline were evaluated whereas in vitro release studies were also performed. In vitro drug release studies demonstrated that mupirocin release was improved. Ex vivo bioadhesion and permeation studies using Balb-c mice were performed to check the suitability of the films. Antimicrobial ability was evaluated by agar well diffusion tests. Finally, excisional wound model applied to test the wound healing effect and evaluated macroscopic and histopathologically. One formulation was found more effective compared to the market product for wound healing at Balb-c mice.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| | - Nesrin Hökenek
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| | - Mehmet Evren Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, İstanbul, Turkey
| | - Şule Ayla
- Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, Beykoz, Istanbul, Turkey
| | - Ayşegül Yoltaş
- Ege University, Faculty of Science, Department of Biology, Fundamental and Industrial Microbiology Division, Bornova, Izmir, Turkey
| | - Panoraia I Siafaka
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey.,Aristotle University of Thessaloniki, Department of Chemistry, Thessaloniki, Greece
| | - Erdal Cevher
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, Turkey
| |
Collapse
|
102
|
Abstract
Sepsis and septic shock are life-threating conditions, which form a continuum of the body's response to overwhelming infection. The current treatment consists of fluid and metabolic resuscitation, hemodynamic and end-organ support, and timely initiation of antibiotics. However, these measures may be ineffective and the sepsis-related mortality toll remains substantial; therefore, an urgent need exists for new therapies. Recently, several nanoparticle (NP) systems have shown excellent protective effects against sepsis in preclinical models, suggesting a potential utility in the management of sepsis and septic shock. These NPs serve as antibacterial agents, provide platforms to immobilize endotoxin adsorbents, interact with inflammatory cells to restore homeostasis and detect biomarkers of sepsis for timely diagnosis. This review discusses the recent developments in NP-based approaches for the treatment of sepsis.
Collapse
|
103
|
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 2019; 9:74. [PMID: 31001485 PMCID: PMC6454102 DOI: 10.3389/fcimb.2019.00074] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance. Among the innovative proposed strategies, anti-virulence therapy has been envisioned as a promising alternative for effective control of the emergence and spread of resistant pathogens. This review presents some of the anti-virulence strategies that are currently being developed, it will cover strategies focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial toxin neutralization.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon Henrique Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana Meira Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
104
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
105
|
Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019; 13:4. [PMID: 30820243 PMCID: PMC6380060 DOI: 10.1186/s13036-018-0138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over recent years, the development of new antibiotics has not kept pace with the rate at which bacteria develop resistance to these drugs. For this reason, many research groups have begun to design and study alternative therapeutics, including molecules to specifically inhibit the virulence of pathogenic bacteria. Because many of these pathogenic bacteria release protein toxins, which cause or exacerbate disease, inhibition of the activity of bacterial toxins is a promising anti-virulence strategy. In this review, we describe several approaches to inhibit the initial interactions of bacterial toxins with host cell membrane components. The mechanisms by which toxins interact with the host cell membrane components have been well-studied over the years, leading to the identification of therapeutic targets, which have been exploited in the work described here. We review efforts to inhibit binding to protein receptors and essential membrane lipid components, complex assembly, and pore formation. Although none of these molecules have yet been demonstrated in clinical trials, the in vitro and in vivo results presented here demonstrate their promise as novel alternatives and/or complements to traditional antibiotics.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
106
|
Chen Y, Zhang Y, Chen M, Zhuang J, Fang RH, Gao W, Zhang L. Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804994. [PMID: 30637970 DOI: 10.1002/smll.201804994] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Indexed: 05/18/2023]
Abstract
Polymeric nanoparticles coated with membrane of intact red blood cells have emerged as biomimetic toxin nanosponges (RBC-NS) that absorb and neutralize bacterial virulence factors associated with numerous bacterial infections. Despite its promise, a clear correlation between in vitro neutralization of complex bacterial toxins and in vivo therapeutic efficacy remains elusive. In this study, the whole secreted proteins (wSP) of methicillin-resistant Staphylococcus aureus (MRSA) are collected to induce lethality in mice. The wSP preserve the complexity of bacterial virulence profile while avoiding the intricacy and dynamics of infections by live bacteria. RBC-NS are first quantified for their neutralization capacity against the hemolytic activity of MRSA wSP in vitro. Using a mouse model, in vivo studies further demonstrate that, by neutralizing the hemolytic activity, RBC-NS confer significant survival benefits against wSP-induced lethality. Furthermore, when mice are challenged with a sublethal dosage of MRSA supernatant, RBC-NS reduce lung damages and inhibit the activation of nuclear factor kappa B in the spleen. These results provide a systematic evaluation of RBC-NS toward the treatment of severe MRSA infections such as MRSA bacteremia and MRSA-induced sepsis.
Collapse
Affiliation(s)
- Yijie Chen
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yue Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mengchun Chen
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
107
|
Drücker P, Iacovache I, Bachler S, Zuber B, Babiychuk EB, Dittrich PS, Draeger A. Membrane deformation and layer-by-layer peeling of giant vesicles induced by the pore-forming toxin pneumolysin. Biomater Sci 2019; 7:3693-3705. [DOI: 10.1039/c9bm00134d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membranes under attack by the pore-forming toxin pneumolysin reveal a hitherto unknown layer-by-layer peeling mechanism and disclose the multilamellar structure.
Collapse
Affiliation(s)
- Patrick Drücker
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
- Department of Cell Biology
| | - Ioan Iacovache
- Laboratory of Experimental Morphology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
| | - Benoît Zuber
- Laboratory of Experimental Morphology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Eduard B. Babiychuk
- Department of Cell Biology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
| | - Annette Draeger
- Department of Cell Biology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| |
Collapse
|
108
|
Gupta N, Rai DB, Jangid AK, Kulhari H. Use of nanotechnology in antimicrobial therapy. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
109
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
110
|
Leonard A, Lalk M. Infection and metabolism – Streptococcus pneumoniae metabolism facing the host environment. Cytokine 2018; 112:75-86. [DOI: 10.1016/j.cyto.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
|
111
|
Chen J, Mehraj V, Szabo J, Routy B, Michel RP, Routy JP. Multiple remissions of extracavitary primary effusion lymphoma treated with a single cycle of liposomal doxorubicin in a patient infected with HIV. ACTA ACUST UNITED AC 2018; 25:e592-e596. [PMID: 30607128 DOI: 10.3747/co.25.4119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary effusion lymphoma (pel) is a rare human herpesvirus 8 (hhv8)-related large B cell lymphoma with plasmablastic, immunoblastic, or anaplastic features that often carries a poor prognosis. This lymphoma occurs mainly in patients with hiv infection, most often with Epstein-Barr virus (ebv) co-infection, and usually presents as body cavity effusions or, less commonly, as extracavitary lesions without effusion (ec-pel). Chemotherapeutic treatment options are limited and require concurrent antiretroviral therapy (art). Here, we report the case of an adult patient with hiv infection and chronic hepatitis E virus (hev) co-infection who had low CD4 T cell recovery after years of art. The patient then developed a cutaneous ec-pel which rapidly regressed after 1 cycle of liposomal doxorubicin (ld) for his Kaposi sarcoma (ks) before treatment with chop chemotherapy. He had previously received numerous cycles of ld for cutaneous ks over 2 years. Because of the patient's low CD4 T cell count, hev co-infection, and earlier unexpected remission of ec-pel before chop, the patient opted for a single trial of ld before other options. Surprisingly, he experienced a complete remission lasting 18 months. Subsequently, his ec-pel relapsed twice at 31 and at 41 months after the initial diagnosis. Upon recurrence, a similar single cycle of ld was given, which again induced remission. The patient today is in complete remission after a total of 4 ld infusions over 54 months. This patient represents a unique case of hiv-with-hhv8-related, ebv-negative ec-pel with chronic hev coinfection, in which rapid remission was achieved after a single cycle of ld, suggesting an antiviral response in addition to the chemotherapeutic effect.
Collapse
Affiliation(s)
- J Chen
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC.,Research Institute of the McGill University Health Centre, Montreal, QC
| | - V Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC.,Research Institute of the McGill University Health Centre, Montreal, QC
| | - J Szabo
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC.,Research Institute of the McGill University Health Centre, Montreal, QC
| | - B Routy
- Division of Hemato-oncology, Centre hospitalier de l'Université de Montréal, Montreal, QC.,Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC
| | - R P Michel
- Department of Pathology, McGill University, Montreal, QC
| | - J P Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC.,Research Institute of the McGill University Health Centre, Montreal, QC.,Division of Hematology, McGill University Health Centre, Montreal, QC
| |
Collapse
|
112
|
Ilizirov Y, Formanovsky A, Mikhura I, Paitan Y, Nakonechny F, Nisnevitch M. Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria. Molecules 2018; 23:E3152. [PMID: 30513653 PMCID: PMC6320794 DOI: 10.3390/molecules23123152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
The well-known and rapidly growing phenomenon of bacterial resistance to antibiotics is caused by uncontrolled, excessive and inappropriate use of antibiotics. One of alternatives to antibiotics is Photodynamic Antibacterial Chemotherapy (PACT). In the present study, the effect of PACT using a photosensitizer Rose Bengal alone and in combination with antibiotics including methicillin and derivatives of sulfanilamide synthesized by us was tested against antibiotic-sensitive and antibiotic-resistant clinical isolates of Gram-positive S. aureus and Gram-negative P. aeruginosa. Antibiotic-sensitive and resistant strains of P. aeruginosa were eradicated by Rose Bengal under illumination and by sulfanilamide but were not inhibited by new sulfanilamide derivatives. No increase in sensitivity of P. aeruginosa cells to sulfanilamide was observed upon a combination of Rose Bengal and sulfanilamide under illumination. All tested S. aureus strains (MSSA and MRSA) were effectively inhibited by PACT. When treated with sub-MIC concentrations of Rose Bengal under illumination, the minimum inhibitory concentrations (MIC) of methicillin decreased significantly for MSSA and MRSA strains. In some cases, antibiotic sensitivity of resistant strains can be restored by combining antibiotics with PACT.
Collapse
Affiliation(s)
- Yana Ilizirov
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel.
| | - Andrei Formanovsky
- Shemyakin⁻Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Irina Mikhura
- Shemyakin⁻Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel.
| | - Faina Nakonechny
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel.
| | - Marina Nisnevitch
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel.
| |
Collapse
|
113
|
Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C, Docter D, Knauer SK, Stauber RH, Strieth S. Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 2018; 192:551-559. [PMID: 30530244 DOI: 10.1016/j.biomaterials.2018.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.
Collapse
Affiliation(s)
- Svenja Siemer
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Dana Westmeier
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55099, Mainz, Germany
| | - Jonas Eckrich
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Désirée Wünsch
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Christof Seckert
- Institute for Medical Microbiology and Hygiene, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Thyssen
- Biofilm Centre, University Duisburg-Essen, Universitätsstraße 5, 45117, Essen, Germany
| | - Oliver Schilling
- Institute of Institute of Surgical Pathology/Translational Proteomics, University of Freiburg, Breisacher Strasse 115a, 79106, Freiburg, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Chengfang Pang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, 2800, Kgs. Lyngby, Denmark
| | - Dominic Docter
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/CENIDE, University Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | - Sebastian Strieth
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| |
Collapse
|
114
|
Jabaley CS, Groff RF, Stentz MJ, Moll V, Lynde GC, Blum JM, O'Reilly-Shah VN. Highly visible sepsis publications from 2012 to 2017: Analysis and comparison of altmetrics and bibliometrics. J Crit Care 2018; 48:357-371. [PMID: 30296750 DOI: 10.1016/j.jcrc.2018.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE We sought to delineate highly visible publications related to sepsis. Within these subsets, elements of altmetrics performance, including mentions on Twitter, and the correlation between altmetrics and conventional citation counts were ascertained. MATERIALS AND METHODS Three subsets of sepsis publications from 2012 to 2017 were synthesized by the overall Altmetric.com attention score, number of mentions by unique Twitter users, and conventional citation counts. For these subsets, geolocated Twitter activity was plotted on a choropleth, the lag between publication date and altmetrics mentions was characterized, and correlations were examined between altmetrics performance and normalized conventional citation counts. RESULTS Of 57,152 PubMed query results, Altmetric.com data was available for 28,344 (49.6%). The top 50 publications by Altmetric.com attention score and Twitter attention represented a mix of original research and other types of work, garnering attention from Twitter users in 143 countries that was highly contemporaneous with publication. Altmetrics performance and conventional citation counts were poorly correlated. CONCLUSIONS While unreliable to gauge impact or future citation potential, altmetrics may be valuable for parties who wish to detect and drive public awareness of research findings and may enable researchers to dynamically explore the reach of their work in novel dimensions.
Collapse
Affiliation(s)
- Craig S Jabaley
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Robert F Groff
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Michael J Stentz
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Vanessa Moll
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Grant C Lynde
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - James M Blum
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Biomedical Informatics, Emory University School of Medicine, 201 Bowman Dr, Atlanta, GA 30322, USA.
| | - Vikas N O'Reilly-Shah
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Department of Anesthesiology, Children's Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA.
| |
Collapse
|
115
|
Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018:246-259. [PMID: 30455950 PMCID: PMC6234326 DOI: 10.1093/emph/eoy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
LAY SUMMARY We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in their propensity to select for resistance. BACKGROUND AND OBJECTIVES Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that antivirulence treatments disarm rather than kill pathogens, is controversial. Here, we probe the evolutionary robustness of two repurposed drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine of the opportunistic human pathogen Pseudomonas aeruginosa. METHODOLOGY We subjected replicated cultures of bacteria to two concentrations of each drug for 20 consecutive days in human serum as an ex vivo infection model. We screened evolved populations and clones for resistance phenotypes, including the restoration of growth and pyoverdine production, and the evolution of iron uptake by-passing mechanisms. We whole-genome sequenced evolved clones to identify the genetic basis of resistance. RESULTS We found that mutants resistant against antivirulence treatments readily arose, but their selective spreading varied between treatments. Flucytosine resistance quickly spread in all populations due to disruptive mutations in upp, a gene encoding an enzyme required for flucytosine activation. Conversely, resistance against gallium arose only sporadically, and was based on mutations in transcriptional regulators, upregulating pyocyanin production, a redox-active molecule promoting siderophore-independent iron acquisition. The spread of gallium resistance was presumably hampered because pyocyanin-mediated iron delivery benefits resistant and susceptible cells alike. CONCLUSIONS AND IMPLICATIONS Our work highlights that antivirulence treatments are not evolutionarily robust per se. Instead, evolutionary robustness is a relative measure, with specific treatments occupying different positions on a continuous scale.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - David Wilson
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
116
|
Köffel R, Wolfmeier H, Larpin Y, Besançon H, Schoenauer R, Babiychuk VS, Drücker P, Pabst T, Mitchell TJ, Babiychuk EB, Draeger A. Host-Derived Microvesicles Carrying Bacterial Pore-Forming Toxins Deliver Signals to Macrophages: A Novel Mechanism of Shaping Immune Responses. Front Immunol 2018; 9:1688. [PMID: 30100903 PMCID: PMC6072879 DOI: 10.3389/fimmu.2018.01688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial infectious diseases are a leading cause of death. Pore-forming toxins (PFTs) are important virulence factors of Gram-positive pathogens, which disrupt the plasma membrane of host cells and can lead to cell death. Yet, host defense and cell membrane repair mechanisms have been identified: i.e., PFTs can be eliminated from membranes as microvesicles, thus limiting the extent of cell damage. Released into an inflammatory environment, these host-derived PFTs-carrying microvesicles encounter innate immune cells as first-line defenders. This study investigated the impact of microvesicle- or liposome-sequestered PFTs on human macrophage polarization in vitro. We show that microvesicle-sequestered PFTs are phagocytosed by macrophages and induce their polarization into a novel CD14+MHCIIlowCD86low phenotype. Macrophages polarized in this way exhibit an enhanced response to Gram-positive bacterial ligands and a blunted response to Gram-negative ligands. Liposomes, which were recently shown to sequester PFTs and so protect mice from lethal bacterial infections, show the same effect on macrophage polarization in analogy to host-derived microvesicles. This novel type of polarized macrophage exhibits an enhanced response to Gram-positive bacterial ligands. The specific recognition of their cargo might be of advantage in the efficiency of targeted bacterial clearance.
Collapse
Affiliation(s)
- René Köffel
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Yu Larpin
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Hervé Besançon
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, Bern, Switzerland
| | - Timothy J Mitchell
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | |
Collapse
|
117
|
Schoenauer R, Larpin Y, Babiychuk EB, Drücker P, Babiychuk VS, Avota E, Schneider-Schaulies S, Schumacher F, Kleuser B, Köffel R, Draeger A. Down‐regulation of acid sphingomyelinase and neutral sphingomyelinase‐2 inversely determines the cellular resistance to plasmalemmal injury by pore‐forming toxins. FASEB J 2018; 33:275-285. [DOI: 10.1096/fj.201800033r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Schoenauer
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Yu Larpin
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Eduard B. Babiychuk
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Patrick Drücker
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | | | - Elita Avota
- Institute of Virology and ImmunobiologyUniversity of Würzburg Würzburg Germany
| | | | - Fabian Schumacher
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - Burkhard Kleuser
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - René Köffel
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Annette Draeger
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| |
Collapse
|
118
|
Peritoneal dialysis beyond kidney failure? J Control Release 2018; 282:3-12. [DOI: 10.1016/j.jconrel.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
|
119
|
Wolfmeier H, Mansour SC, Liu LT, Pletzer D, Draeger A, Babiychuk EB, Hancock REW. Liposomal Therapy Attenuates Dermonecrosis Induced by Community-Associated Methicillin-Resistant Staphylococcus aureus by Targeting α-Type Phenol-Soluble Modulins and α-Hemolysin. EBioMedicine 2018; 33:211-217. [PMID: 29936135 PMCID: PMC6085503 DOI: 10.1016/j.ebiom.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), typified by the pulse-field type USA300, is an emerging endemic pathogen that is spreading rapidly among healthy people. CA-MRSA causes skin and soft tissue infections, life-threatening necrotizing pneumonia and sepsis, and is remarkably resistant to many antibiotics. Here we show that engineered liposomes composed of naturally occurring sphingomyelin were able to sequester cytolytic toxins secreted by USA300 and prevent necrosis of human erythrocytes, peripheral blood mononuclear cells and bronchial epithelial cells. Mass spectrometric analysis revealed the capture by liposomes of phenol-soluble modulins, α-hemolysin and other toxins. Sphingomyelin liposomes prevented hemolysis induced by pure phenol-soluble modulin-α3, one of the main cytolytic components in the USA300 secretome. In contrast, sphingomyelin liposomes harboring a high cholesterol content (66 mol/%) were unable to protect human cells from phenol-soluble modulin-α3-induced lysis, however these liposomes efficiently sequestered the potent staphylococcal toxin α-hemolysin. In a murine cutaneous abscess model, a single dose of either type of liposomes was sufficient to significantly decrease tissue dermonecrosis. Our results provide further insights into the promising potential of tailored liposomal therapy in the battle against infectious diseases.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Sarah C Mansour
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Leo T Liu
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, V6T1Z4 Vancouver, British Columbia, Canada.
| |
Collapse
|
120
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
121
|
Goes A, Fuhrmann G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infect Dis 2018; 4:881-892. [PMID: 29553240 DOI: 10.1021/acsinfecdis.8b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
122
|
|
123
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|
124
|
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 2018; 127:46-57. [PMID: 28939377 PMCID: PMC5860926 DOI: 10.1016/j.addr.2017.09.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Despite the wide success of antibiotics in modern medicine, the treatment of bacterial infections still faces critical challenges, especially due to the rapid emergence of antibiotic resistance. As a result, local antimicrobial treatment aimed at enhancing drug concentration at the site of infection while avoiding systemic exposure is becoming increasingly attractive, as it may alleviate resistance development. Meanwhile, therapeutic nanoparticles, especially liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles, are gaining traction to improve the therapeutic efficacy with many applications specifically focused on local antimicrobial treatment. This review highlights topics where nanoparticle-based strategies hold significant potential to advance treatment against local bacterial infections, including (1) promoting antibiotic localization to the pathogen, (2) modulating drug-pathogen interaction against antibiotic resistance, and (3) enabling novel anti-virulence approaches for 'drug-free' antimicrobial activity. In each area, we highlight the innovative antimicrobial strategies tailored for local applications and review the progress made for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijie Chen
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
125
|
Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 2018; 102:2075-2089. [PMID: 29392390 DOI: 10.1007/s00253-018-8776-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/26/2023]
Abstract
Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.
Collapse
Affiliation(s)
- Arnau Bassegoda
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Eva Ramon
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain.
| |
Collapse
|
126
|
Westmeier D, Hahlbrock A, Reinhardt C, Fröhlich-Nowoisky J, Wessler S, Vallet C, Pöschl U, Knauer SK, Stauber RH. Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev 2018; 47:5312-5337. [DOI: 10.1039/c6cs00691d] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NPs’ characteristics impact their spontaneous binding to microbes, which may affect the (patho)biological identity of both NP and microbes.
Collapse
Affiliation(s)
- D. Westmeier
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - A. Hahlbrock
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - C. Reinhardt
- Center for Thrombosis and Hemostasis
- University Medical Center Mainz
- 55101 Mainz
- Germany
| | - J. Fröhlich-Nowoisky
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. Wessler
- Department of Molecular Biology
- Paris-Lodron University of Salzburg
- A-5020 Salzburg
- Austria
| | - C. Vallet
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - U. Pöschl
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. K. Knauer
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - R. H. Stauber
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| |
Collapse
|
127
|
Azeredo da Silveira S, Perez A. Improving the fate of severely infected patients: the promise of anti-toxin treatments and superiority trials. Expert Rev Anti Infect Ther 2017; 15:973-975. [DOI: 10.1080/14787210.2017.1400908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
128
|
Escajadillo T, Olson J, Luk BT, Zhang L, Nizet V. A Red Blood Cell Membrane-Camouflaged Nanoparticle Counteracts Streptolysin O-Mediated Virulence Phenotypes of Invasive Group A Streptococcus. Front Pharmacol 2017; 8:477. [PMID: 28769806 PMCID: PMC5513932 DOI: 10.3389/fphar.2017.00477] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Group A Streptococcus (GAS), an important human-specific Gram-positive bacterial pathogen, is associated with a broad spectrum of disease, ranging from mild superficial infections such as pharyngitis and impetigo, to serious invasive infections including necrotizing fasciitis and streptococcal toxic shock syndrome. The GAS pore-forming streptolysin O (SLO) is a well characterized virulence factor produced by nearly all GAS clinical isolates. High level expression of SLO is epidemiologically linked to intercontinental dissemination of hypervirulent clonotypes and poor clinical outcomes. SLO can trigger macrophage and neutrophil cell death and/or the inactivation of immune cell functions, and promotes tissue injury and bacterial survival in animal models of infection. In the present work, we describe how the pharmacological presentation of red blood cell (RBC) derived biomimetic nanoparticles ("nanosponges") can sequester SLO and block the ability of GAS to damage host cells, thereby preserving innate immune function and increasing bacterial clearance in vitro and in vivo. Nanosponge administration protected human neutrophils, macrophages, and keratinocytes against SLO-mediated cytotoxicity. This therapeutic intervention prevented SLO-induced macrophage apoptosis and increased neutrophil extracellular trap formation, allowing increased GAS killing by the respective phagocytic cell types. In a murine model of GAS necrotizing skin infection, local administration of the biomimetic nanosponges was associated with decreased lesion size and reduced bacterial colony-forming unit recovery. Utilization of a toxin decoy and capture platform that inactivates the secreted SLO before it contacts the host cell membrane, presents a novel virulence factor targeted strategy that could be a powerful adjunctive therapy in severe GAS infections where morbidity and mortality are high despite antibiotic treatment.
Collapse
Affiliation(s)
- Tamara Escajadillo
- Biomedical Sciences Graduate Program, University of California, San Diego, La JollaCA, United States.,Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La JollaCA, United States
| | - Joshua Olson
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La JollaCA, United States
| | - Brian T Luk
- Department of NanoEngineering, University of California, San Diego, La JollaCA, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La JollaCA, United States
| | - Victor Nizet
- Biomedical Sciences Graduate Program, University of California, San Diego, La JollaCA, United States.,Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La JollaCA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La JollaCA, United States
| |
Collapse
|
129
|
Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017; 74:527-544. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Acute pulmonary and cardiac injury remain significant causes of morbidity and mortality in those afflicted with severe pneumococcal disease, with the risk for early mortality often persisting several years beyond clinical recovery. Although remaining to be firmly established in the clinical setting, a considerable body of evidence, mostly derived from murine models of experimental infection, has implicated the pneumococcal, cholesterol-binding, pore-forming toxin, pneumolysin (Ply), in the pathogenesis of lung and myocardial dysfunction. Topics covered in this review include the burden of pneumococcal disease, risk factors, virulence determinants of the pneumococcus, complications of severe disease, antibiotic and adjuvant therapies, as well as the structure of Ply and the role of the toxin in disease pathogenesis. Given the increasing recognition of the clinical potential of Ply-neutralisation strategies, the remaining sections of the review are focused on updates of the types, benefits and limitations of currently available therapies which may attenuate, directly and/or indirectly, the injurious actions of Ply. These include recently described experimental therapies such as various phytochemicals and lipids, and a second group of more conventional agents the members of which remain the subject of ongoing clinical evaluation. This latter group, which is covered more extensively, encompasses macrolides, statins, corticosteroids, and platelet-targeted therapies, particularly aspirin.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
130
|
Munguia J, Nizet V. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs. Trends Pharmacol Sci 2017; 38:473-488. [PMID: 28283200 DOI: 10.1016/j.tips.2017.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/17/2023]
Abstract
The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.
Collapse
Affiliation(s)
- Jason Munguia
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
131
|
Opal SM. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:397. [PMID: 27978847 PMCID: PMC5159963 DOI: 10.1186/s13054-016-1549-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
The emergence of multi-drug resistant (MDR) microbial pathogens threatens the very foundation upon which standard antibacterial chemotherapy is based. We must consider non-antibiotic solutions to manage invasive bacterial infections. Transition from antibiotics to non-traditional treatments poses real clinical challenges that will not be easy to solve. Antibiotics will continue to reliably treat some infections (e.g., group A streptococci and Treponema pallidum) but will likely need adjuvant therapies or will need to be replaced for many bacterial infections in the future.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Division, Alpert Medical School of Brown University, Providence, RI, USA. .,Ocean State Clinical Coordinating Center, 1 Virginia Ave, Suite 105, Providence, RI, 02905, USA.
| |
Collapse
|
132
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
133
|
Rello J, Bunsow E, Perez A. What if there were no new antibiotics? A look at alternatives. Expert Rev Clin Pharmacol 2016; 9:1547-1555. [DOI: 10.1080/17512433.2016.1241141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
134
|
Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N. Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+Conventional versus Foxp3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3130-3141. [DOI: 10.4049/jimmunol.1600691] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023]
|
135
|
Feldman C, Anderson R. Prevalence, pathogenesis, therapy, and prevention of cardiovascular events in patients with community-acquired pneumonia. Pneumonia (Nathan) 2016; 8:11. [PMID: 28702290 PMCID: PMC5471702 DOI: 10.1186/s41479-016-0011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
It is now well recognised that cardiac events occur relatively commonly in patients with acute community-acquired pneumonia. While these events are more frequent in patients with underlying risk factors—such as those with underlying chronic cardiovascular and respiratory comorbidities, the elderly, and in nursing home residents—they also occur in patients with no underlying risks other than severe pneumonia. Recent research elucidating the underlying pathogenic mechanisms related to these cardiac events has indicated a probable role for platelet activation, which is possibly exacerbated by pneumolysin in the case of pneumococcal infections. This, in turn, has resulted in the identification of possible therapeutic strategies targeting platelet activation, as well as the cardio-toxic activity of pneumolysin. These issues represent the primary focus of the current review.
Collapse
Affiliation(s)
- Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Internal Medicine, University of the Witwatersrand Medical School, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
136
|
Baumgartner D, Aebi S, Grandgirard D, Leib SL, Draeger A, Babiychuk E, Hathaway LJ. Clinical Streptococcus pneumoniae isolates induce differing CXCL8 responses from human nasopharyngeal epithelial cells which are reduced by liposomes. BMC Microbiol 2016; 16:154. [PMID: 27430279 PMCID: PMC4950757 DOI: 10.1186/s12866-016-0777-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
Background Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. Results We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. Conclusion The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0777-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denja Baumgartner
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3001, Switzerland
| | - Suzanne Aebi
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3001, Switzerland
| | - Denis Grandgirard
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3001, Switzerland
| | - Stephen L Leib
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3001, Switzerland
| | - Annette Draeger
- Faculty of Medicine, Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern, CH-3012, Switzerland
| | - Eduard Babiychuk
- Faculty of Medicine, Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern, CH-3012, Switzerland
| | - Lucy J Hathaway
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3001, Switzerland.
| |
Collapse
|
137
|
Burygin GL, Sigida EN, Fedonenko YP, Khlebtsov BN, Shchyogolev SY. The use and development of the dynamic light-scattering method to investigate supramolecular structures in aqueous solutions of bacterial lipopolysaccharides. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
138
|
Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action. Biochem J 2016; 473:1929-40. [DOI: 10.1042/bcj20160062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
This work elucidates the role of the transmembrane protease ADAM10 (a disintegrin and metalloprotease 10) for the action of Staphylococcus aureus α-toxin, by showing that the cytotoxicity of α-toxin does not depend on ADAM10’s catalytic activity but on the chaperone function of its prodomain.
Collapse
|
139
|
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1:10-29. [PMID: 29313004 PMCID: PMC5689513 DOI: 10.1002/btm2.10003] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle/microparticle-based drug delivery systems for systemic (i.e., intravenous) applications have significant advantages over their nonformulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery systems cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here, we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems.
Collapse
Affiliation(s)
- Aaron C Anselmo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge MA 02139
| | - Samir Mitragotri
- Dept. of Chemical Engineering, Center for Bioengineering University of California Santa Barbara CA 93106
| |
Collapse
|
140
|
Vincent JL, Bassetti M, François B, Karam G, Chastre J, Torres A, Roberts JA, Taccone FS, Rello J, Calandra T, De Backer D, Welte T, Antonelli M. Advances in antibiotic therapy in the critically ill. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:133. [PMID: 27184564 PMCID: PMC4869332 DOI: 10.1186/s13054-016-1285-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infections occur frequently in critically ill patients and their management can be challenging for various reasons, including delayed diagnosis, difficulties identifying causative microorganisms, and the high prevalence of antibiotic-resistant strains. In this review, we briefly discuss the importance of early infection diagnosis, before considering in more detail some of the key issues related to antibiotic management in these patients, including controversies surrounding use of combination or monotherapy, duration of therapy, and de-escalation. Antibiotic pharmacodynamics and pharmacokinetics, notably volumes of distribution and clearance, can be altered by critical illness and can influence dosing regimens. Dosing decisions in different subgroups of patients, e.g., the obese, are also covered. We also briefly consider ventilator-associated pneumonia and the role of inhaled antibiotics. Finally, we mention antibiotics that are currently being developed and show promise for the future.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, 1070, Brussels, Belgium.
| | - Matteo Bassetti
- Infectious Diseases Division, Santa Maria Misericordia University Hospital, 33100, Udine, Italy
| | - Bruno François
- Service de Réanimation Polyvalente, CHU de Dupuytren, 87042, Limoges, France
| | - George Karam
- Infectious Disease Section, Louisiana State University School of Medicine, 70112, New Orleans, LA, USA
| | - Jean Chastre
- Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
| | - Antoni Torres
- Department of Pulmonary Medicine, Hospital Clinic of Barcelona, IDIBAPS-Ciberes, 08036, Barcelona, Spain
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Royal Brisbane and Women's Hospital, 4029 Herston, Brisbane, Australia
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, 1070, Brussels, Belgium
| | - Jordi Rello
- Department of Intensive care, CIBERES, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Thierry Calandra
- Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011, Lausanne, Switzerland
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospital, Université Libre de Bruxelles, 1420, Braine L'Alleud, Belgium
| | - Tobias Welte
- Department of Respiratory Medicine, Medizinische Hochschule, 30625, Hannover, Germany
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of Rome, A. Gemelli University Hospital, Rome, Italy
| |
Collapse
|
141
|
Huston JP, Kornhuber J, Mühle C, Japtok L, Komorowski M, Mattern C, Reichel M, Gulbins E, Kleuser B, Topic B, De Souza Silva MA, Müller CP. A sphingolipid mechanism for behavioral extinction. J Neurochem 2016; 137:589-603. [PMID: 26788861 DOI: 10.1111/jnc.13537] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/24/2022]
Abstract
Reward-dependent instrumental behavior must continuously be re-adjusted according to environmental conditions. Failure to adapt to changes in reward contingencies may incur psychiatric disorders like anxiety and depression. When an expected reward is omitted, behavior undergoes extinction. While extinction involves active re-learning, it is also accompanied by emotional behaviors indicative of frustration, anxiety, and despair (extinction-induced depression). Here, we report evidence for a sphingolipid mechanism in the extinction of behavior. Rapid extinction, indicating efficient re-learning, coincided with a decrease in the activity of the enzyme acid sphingomyelinase (ASM), which catalyzes turnover of sphingomyelin to ceramide, in the dorsal hippocampus of rats. The stronger the decline in ASM activity, the more rapid was the extinction. Sphingolipid-focused lipidomic analysis showed that this results in a decline of local ceramide species in the dorsal hippocampus. Ceramides shape the fluidity of lipid rafts in synaptic membranes and by that way can control neural plasticity. We also found that aging modifies activity of enzymes and ceramide levels in selective brain regions. Aging also changed how the chronic treatment with corticosterone (stress) or intranasal dopamine modified regional enzyme activity and ceramide levels, coinciding with rate of extinction. These data provide first evidence for a functional ASM-ceramide pathway in the brain involved in the extinction of learned behavior. This finding extends the known cellular mechanisms underlying behavioral plasticity to a new class of membrane-located molecules, the sphingolipids, and their regulatory enzymes, and may offer new treatment targets for extinction- and learning-related psychopathological conditions. Sphingolipids are common lipids in the brain which form lipid domains at pre- and postsynaptic membrane compartments. Here we show a decline in dorsal hippocampus ceramide species together with a reduction of acid sphingomyelinase activity during extinction of conditioned behavior in rats. This reduction was associated with expression of re-learning-related behavior, but not with emotional behaviors. Read the Editorial Highlight for this article on page 485.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lukasz Japtok
- Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Mara Komorowski
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AG, Emmetten, Switzerland.,Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Burkhard Kleuser
- Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Bianca Topic
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Maria A De Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-University of Dusseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
142
|
Morris E, Chavez M, Tan C. Dynamic biomaterials: toward engineering autonomous feedback. Curr Opin Biotechnol 2016; 39:97-104. [PMID: 26974245 DOI: 10.1016/j.copbio.2016.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli.
Collapse
Affiliation(s)
- Eliza Morris
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Michael Chavez
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, USA.
| |
Collapse
|
143
|
Woloszynek S, Pastor S, Mell JC, Nandi N, Sokhansanj B, Rosen GL. Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:67-124. [PMID: 27017007 DOI: 10.1016/bs.ircmb.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complex relationship between microbiota, human physiology, and environmental perturbations has become a major research focus, particularly with the arrival of culture-free and high-throughput approaches for studying the microbiome. Early enthusiasm has come from results that are largely correlative, but the correlative phase of microbiome research has assisted in defining the key questions of how these microbiota interact with their host. An emerging repertoire for engineering the microbiome places current research on a more experimentally grounded footing. We present a detailed look at the interplay between microbiota and host and how these interactions can be exploited. A particular emphasis is placed on unstable microbial communities, or dysbiosis, and strategies to reestablish stability in these microbial ecosystems. These include manipulation of intermicrobial communication, development of designer probiotics, fecal microbiota transplantation, and synthetic biology.
Collapse
Affiliation(s)
- S Woloszynek
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America
| | - S Pastor
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - J C Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - N Nandi
- Division of Gastroenterology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - B Sokhansanj
- McKool Smith Hennigan, P. C., Redwood Shores, CA, United States of America
| | - G L Rosen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
144
|
Nel JG, Theron AJ, Durandt C, Tintinger GR, Pool R, Mitchell TJ, Feldman C, Anderson R. Pneumolysin activates neutrophil extracellular trap formation. Clin Exp Immunol 2016; 184:358-67. [PMID: 26749379 DOI: 10.1111/cei.12766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection.
Collapse
Affiliation(s)
| | - A J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service.,South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - C Durandt
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| | - G R Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - R Pool
- Department of Haematology
| | - T J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - C Feldman
- Division of Pulmonology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and Charlotte Maxeke Academic Hospital, Johannesburg, South Africa
| | - R Anderson
- South African Medical Research Council Unit for Stem Cell Research, Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria
| |
Collapse
|
145
|
Rello J, Perez A. Precision medicine for the treatment of severe pneumonia in intensive care. Expert Rev Respir Med 2016; 10:297-316. [PMID: 26789703 DOI: 10.1586/17476348.2016.1144477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite advances in its management, community-acquired pneumonia (CAP) remains the most important cause of sepsis-related mortality and the reason for many ICU admissions. Severity assessment is the cornerstone of CAP patient management and the attempts to ensure the best site of care and therapy. Survival depends on a combination of host factors (genetic, age, comorbidities, defenses), pathogens (virulence, serotypes) and drugs. To reduce CAP mortality, early adequate antibiotic therapy is fundamental. The use of combination therapy with a macrolide seems to improve the clinical outcome in the subset of patients with high inflammation due to immunomodulation. Guidelines on antibiotic therapy have been associated with beneficial effects, and studies of newer adjunctive drugs have produced promising results. This paper discusses the current state of knowledge regarding of precision medicine and the treatment of severe CAP patients.
Collapse
Affiliation(s)
- Jordi Rello
- a CIBERES , Barcelona , Spain.,b School of Medicine , Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Antonio Perez
- a CIBERES , Barcelona , Spain.,b School of Medicine , Universitat Autonoma de Barcelona , Barcelona , Spain
| |
Collapse
|
146
|
The UK joint specialist societies guideline on the diagnosis and management of acute meningitis and meningococcal sepsis in immunocompetent adults. J Infect 2016; 72:405-38. [PMID: 26845731 DOI: 10.1016/j.jinf.2016.01.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/14/2016] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
Bacterial meningitis and meningococcal sepsis are rare conditions with high case fatality rates. Early recognition and prompt treatment saves lives. In 1999 the British Infection Society produced a consensus statement for the management of immunocompetent adults with meningitis and meningococcal sepsis. Since 1999 there have been many changes. We therefore set out to produce revised guidelines which provide a standardised evidence-based approach to the management of acute community acquired meningitis and meningococcal sepsis in adults. A working party consisting of infectious diseases physicians, neurologists, acute physicians, intensivists, microbiologists, public health experts and patient group representatives was formed. Key questions were identified and the literature reviewed. All recommendations were graded and agreed upon by the working party. The guidelines, which for the first time include viral meningitis, are written in accordance with the AGREE 2 tool and recommendations graded according to the GRADE system. Main changes from the original statement include the indications for pre-hospital antibiotics, timing of the lumbar puncture and the indications for neuroimaging. The list of investigations has been updated and more emphasis is placed on molecular diagnosis. Approaches to both antibiotic and steroid therapy have been revised. Several recommendations have been given regarding the follow-up of patients.
Collapse
|
147
|
Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH. Alternatives to antibiotics-a pipeline portfolio review. THE LANCET. INFECTIOUS DISEASES 2016; 16:239-51. [PMID: 26795692 DOI: 10.1016/s1473-3099(15)00466-1] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023]
Abstract
Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.
Collapse
Affiliation(s)
- Lloyd Czaplewski
- Chemical Biology Ventures, Abingdon, Oxfordshire, UK; Abgentis, Edgbaston, Birmingham, UK; Persica Pharmaceuticals, Canterbury, Kent, UK.
| | | | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mike Dawson
- Novacta Biosystems, Welwyn Garden City, Hertfordshire, UK; Cantab Anti-infectives, Welwyn Garden City, Hertfordshire, UK
| | | | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Simon Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; Absynth Biologics, Liverpool, UK
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - David Harper
- Evolution Biotechnologies, Ampthill, Bedfordshire, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's, University of London, London, UK; TiKa Diagnostics, London, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Queen Victoria Hospital NHS Foundation Trust, East Grinstead, West Sussex, UK
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - David Knowles
- Absynth Biologics, Liverpool, UK; Procarta Biosystems, Norwich, UK
| | | | - David Payne
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA
| | | | - Sunil Shaunak
- Department of Medicine, Imperial College London, London, UK
| | | | - Christopher M Thomas
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK; Plasgene, Edgbaston, Birmingham, UK
| | - Trevor J Trust
- Pan-Provincial Vaccine Enterprise, Saskatoon, SK, Canada
| | | | - John H Rex
- AstraZeneca, Boston, MA, USA; F2G, Manchester, UK
| |
Collapse
|
148
|
Thanh Nguyen TD, Pitchaimani A, Koirala MB, Muhammad F, Aryal S. Engineered biomimetic nanoabsorbent for cellular detoxification of chemotherapeutics. RSC Adv 2016. [DOI: 10.1039/c6ra02026g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An approach to reduce the nonspecific cytotoxicity of chemotherapeutics has been put-forth using a biomimetic nanoabsorbent (NAb) as a detoxifying agent.
Collapse
Affiliation(s)
- Tuyen Duong Thanh Nguyen
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| | - Arunkumar Pitchaimani
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| | - Mukund Bahadur Koirala
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| | - Faqir Muhammad
- Department of Anatomy and Physiology
- Kansas State University
- Manhattan
- USA
- Institute of Pharmacy, Physiology and Pharmacology
| | - Santosh Aryal
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
- Nanotechnology Innovation Center of Kansas State (NICKS)
| |
Collapse
|
149
|
Zhou S, Feng Y, Chen M, Li Q, Liu B, Cao J, Sun X, Li H, Hao J. Robust onionlike structures with magnetic and photodynamic properties formed by a fullerene C60–POM hybrid. Chem Commun (Camb) 2016; 52:12171-12174. [DOI: 10.1039/c6cc06492b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A fullerene C60–Dawson POM hybrid was prepared for the first time, which can aggregate into onionlike structures with magnetic and photodynamic properties.
Collapse
Affiliation(s)
- Shengju Zhou
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Yongqiang Feng
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Qian Li
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Baoyong Liu
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Jiamei Cao
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Xiaofeng Sun
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Hongguang Li
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan
- China
| |
Collapse
|
150
|
Babiychuk EB, Draeger A. Defying death: Cellular survival strategies following plasmalemmal injury by bacterial toxins. Semin Cell Dev Biol 2015; 45:39-47. [PMID: 26481974 DOI: 10.1016/j.semcdb.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.
Collapse
|