101
|
The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosome Res 2018; 26:317-332. [PMID: 30539406 DOI: 10.1007/s10577-018-9593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Two marsupial families exemplify divergent rates of karyotypic change. The Dasyurid family has an extremely conserved karyotype. In contrast, there is significant chromosomal variation within the Macropodidae family, best exemplified by members of the genus Petrogale (rock-wallabies). Both families are also distinguished by their telomere landscape (length and epigenetics), with the dasyurids having a unique telomere length dimorphism not observed in other marsupials and hypothesised to be regulated in a parent-of-origin fashion. Previous work has shown that proximal ends of chromosomes are enriched in cytosine methylation in dasyurids, but that the chromosomes of a macropod, the tammar wallaby, have DNA methylation enrichment of pericentric regions. Using a combination of telomere and 5-methylcytosine immunofluorescence staining, we investigated the telomere landscape of four dasyurid and three Petrogale species. As part of this study, we also further examined the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, using epigenetic modifications known to differentiate the active maternal X chromosome, including 5-methylcytosine methylation and histone modifications H3K4me2, H3K9ac and H4Kac. Our results give further support to the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, where the paternally derived X chromosome in females was associated with long telomeres and the maternally derived with short telomeres. In contrast to the tammar wallaby, rock-wallabies demonstrated a similar 5-methylcytosine staining pattern across all chromosomes to that of dasyurids, suggesting that DNA methylation of telomeric regions is not responsible for differences in the rates of chromosome evolution between these two families.
Collapse
|
102
|
Teijido O, Cacabelos R. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2018; 19:E3199. [PMID: 30332838 PMCID: PMC6213964 DOI: 10.3390/ijms19103199] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular and neurodegenerative disorders affect one billion people around the world and result from a combination of genomic, epigenomic, metabolic, and environmental factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers and molecular mechanisms of the pathology, and conventional compounds based on symptomatic rather than mechanistic features, determine the lack of success of current treatments, including current FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of early presymptomatic pathological events that would allow the implementation of novel strategies in order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic aberrations along with their potential use as targets for pharmacological and dietary interventions sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial disorders involving neurodegeneration. This manuscript includes a description of the most relevant epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide, as well as the main potential epigenetic-based compounds under investigation for treatment of those disorders and their limitations.
Collapse
Affiliation(s)
- Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
103
|
Toubiana S, Velasco G, Chityat A, Kaindl AM, Hershtig N, Tzur-Gilat A, Francastel C, Selig S. Subtelomeric methylation distinguishes between subtypes of Immunodeficiency, Centromeric instability and Facial anomalies syndrome. Hum Mol Genet 2018; 27:3568-3581. [PMID: 30010917 DOI: 10.1093/hmg/ddy265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Human telomeres and adjacent subtelomeres are packaged as heterochromatin. Subtelomeric DNA undergoes methylation during development by DNA methyltransferase 3B (DNMT3B), including the CpG-rich promoters of the long non-coding RNA (TERRA) embedded in these regions. The factors that direct DNMT3B methylation to human subtelomeres and maintain this methylation throughout lifetime are yet unknown. The importance of subtelomeric methylation is manifested through the abnormal telomeric phenotype in Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome type 1 patients carrying mutations in DNMT3B. Patient cells demonstrate subtelomeric hypomethylation, accompanied by elevated TERRA transcription, accelerated telomere shortening and premature senescence of fibroblasts. ICF syndrome can arise due to mutations in at least three additional genes, ZBTB24 (ICF2), CDCA7 (ICF3) and HELLS (ICF4). While pericentromeric repeat hypomethylation is evident in all ICF syndrome subtypes, the status of subtelomeric DNA methylation had not been described for patients of subtypes 2-4. Here we explored the telomeric phenotype in cells derived from ICF2-4 patients with the aim to determine whether ZBTB24, CDCA7 and HELLS also play a role in establishing and/or maintaining human subtelomeric methylation. We found normal subtelomeric methylation in ICF2-4 and accordingly low TERRA levels and unperturbed telomere length. Moreover, depleting the ICF2-4-related proteins in normal fibroblasts did not influence subtelomeric methylation. Thus, these gene products are not involved in establishing or maintaining subtelomeric methylation. Our findings indicate that human subtelomeric heterochromatin has specialized methylation regulation and highlight the telomeric phenotype as a characteristic that distinguishes ICF1 from ICF2-4.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Guillaume Velasco
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS, Paris Cedex, France
| | - Adi Chityat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children, Institute of Cell Biology and Neurobiology, Augustenburger Platz 1, Berlin, Germany
| | | | - Aya Tzur-Gilat
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, CNRS, Paris Cedex, France
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
104
|
Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and Diabetic Complications: A Clinical Perspective. Antioxid Redox Signal 2018; 29:1041-1063. [PMID: 28950710 DOI: 10.1089/ars.2017.7318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The rising global prevalence of diabetes and its debilitating complications give rise to significant disability and premature mortality. Due to the silent nature of diabetes and its vascular complications, and limitations in current methods for detection, there is a need for novel biomarkers for early detection and prognosis. Recent Advances: Metabolic memory and epigenetic factors are important in the pathogenesis of diabetic complications and interact with genetic variants, metabolic factors, and clinical risk factors. Micro(mi)RNAs interact with epigenetic mechanisms and pleiotropically mediate the effects of hyperglycemia on the vasculature. Utilizing mature profiling techniques and platforms, an increasing number of miRNA signatures and interaction networks have been identified for diabetes and its related cardiorenal complications. As a result, these short, single-stranded molecules are emerging as potential diagnostic and predictive tools in human studies, and may function as disease biomarkers, as well as treatment targets. CRITICAL ISSUES However, there is complex interaction between the genome and epigenome. The regulation of miRNAs may differ across species and tissues. Most profiling studies to date lack validation, often requiring large, well-characterized cohorts and reliable normalization strategies. Furthermore, the incremental benefits of miRNAs as biomarkers, beyond prediction provided by traditional risk factors, are critical issues to consider, yet often neglected in published studies. FUTURE DIRECTIONS All in all, the future for miRNA-based diagnostics and therapeutics for diabetic complications appears promising. Improved understanding of the complex mechanisms underlying miRNA dysregulation, and more well-designed studies utilizing prospective samples would facilitate the translation to clinical use.
Collapse
Affiliation(s)
- Baoqi Fan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China
| | - Andrea On Yan Luk
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China
| | - Juliana Chung Ngor Chan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| | - Ronald Ching Wan Ma
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| |
Collapse
|
105
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
106
|
Chow TT, Shi X, Wei JH, Guan J, Stadler G, Huang B, Blackburn EH. Local enrichment of HP1alpha at telomeres alters their structure and regulation of telomere protection. Nat Commun 2018; 9:3583. [PMID: 30181605 PMCID: PMC6123478 DOI: 10.1038/s41467-018-05840-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Enhanced telomere maintenance is evident in malignant cancers. While telomeres are thought to be inherently heterochromatic, detailed mechanisms of how epigenetic modifications impact telomere protection and structures are largely unknown in human cancers. Here we develop a molecular tethering approach to experimentally enrich heterochromatin protein HP1α specifically at telomeres. This results in increased deposition of H3K9me3 at cancer cell telomeres. Telomere extension by telomerase is attenuated, and damage-induced foci at telomeres are reduced, indicating augmentation of telomere stability. Super-resolution STORM imaging shows an unexpected increase in irregularity of telomeric structure. Telomere-tethered chromo shadow domain (CSD) mutant I165A of HP1α abrogates both the inhibition of telomere extension and the irregularity of telomeric structure, suggesting the involvement of at least one HP1α-ligand in mediating these effects. This work presents an approach to specifically manipulate the epigenetic status locally at telomeres to uncover insights into molecular mechanisms underlying telomere structural dynamics.
Collapse
Affiliation(s)
- Tracy T Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
107
|
Diao D, Wang H, Li T, Shi Z, Jin X, Sperka T, Zhu X, Zhang M, Yang F, Cong Y, Shen L, Zhan Q, Yan J, Song Z, Ju Z. Telomeric epigenetic response mediated by Gadd45a regulates stem cell aging and lifespan. EMBO Rep 2018; 19:embr.201745494. [PMID: 30126922 DOI: 10.15252/embr.201745494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Progressive attrition of telomeres triggers DNA damage response (DDR) and limits the regenerative capacity of adult stem cells during mammalian aging. Intriguingly, telomere integrity is not only determined by telomere length but also by the epigenetic status of telomeric/sub-telomeric regions. However, the functional interplay between DDR induced by telomere shortening and epigenetic modifications in aging remains unclear. Here, we show that deletion of Gadd45a improves the maintenance and function of intestinal stem cells (ISCs) and prolongs lifespan of telomerase-deficient mice (G3Terc -/-). Mechanistically, Gadd45a facilitates the generation of a permissive chromatin state for DDR signaling by inducing base excision repair-dependent demethylation of CpG islands specifically at sub-telomeric regions of short telomeres. Deletion of Gadd45a promotes chromatin compaction in sub-telomeric regions and attenuates DDR initiation at short telomeres of G3Terc -/- ISCs. Treatment with a small molecule inhibitor of base excision repair reduces DDR and improves the maintenance and function of G3Terc -/- ISCs. Taken together, our study proposes a therapeutic approach to enhance stem cell function and prolong lifespan by targeting epigenetic modifiers.
Collapse
Affiliation(s)
- Daojun Diao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Hu Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhencan Shi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | | | - Tobias Sperka
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Meimei Zhang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yusheng Cong
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yan
- Zhejiang Hospital, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital affiliated to Zhejiang University, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China .,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
108
|
Behravan E, Moallem SA, Kalalinia F, Ahmadimanesh M, Blain P, Jowsey P, Khateri S, Forghanifard MM, BalaliMood M. Telomere shortening associated with increased levels of oxidative stress in sulfur mustard-exposed Iranian veterans. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:1-5. [PMID: 30173859 DOI: 10.1016/j.mrgentox.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Sulfur Mustard (SM) is the most widely used chemical weapon. It was used in World War 1 and in the more recent Iran-Iraq conflict. Genetic toxicity and DNA alkylation effects of SM in molecular and animal experiments are well documented. In this study, lymphocytic telomere lengths and serum levels of isoprostane F2α were measured using q-PCR and enzyme immunoassay-based methods in 40 Iranian veterans who had been exposed to SM between 1983-88 and 40 non-exposed healthy volunteers. The relative telomere length in SM-exposed individuals was found to be significantly shorter than the non-exposed individuals. In addition, the level of 8-isoprostane F2α was significantly higher in the SM-exposed group compared to controls. Oxidative stress can be caused by defective antioxidant responses following gene mutations or altered activities of antioxidant enzymes. Chronic respiratory diseases and infections may also increaseoxidative stress. The novel finding of this study was a the identification of 'premature ageing phenotype'. More specifically, telomere shortening which occurs naturally with aging is accelerated in SM-exposed individuals. Oxidative stress, mutations in DNA repair genes and epimutaions may be among the major mechanisms of telomere attrition. These findings may help for a novel therapeutic strategy by telomere elongation or for validation of an exposure biomarker for SM toxicity.
Collapse
Affiliation(s)
- Effat Behravan
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahl Al Bayt University, Karbala, Iraq
| | - Fatemeh Kalalinia
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter Blain
- NIHR Health Protection Research Unit for Chemical & Radiation Threats & Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| | - Paul Jowsey
- NIHR Health Protection Research Unit for Chemical & Radiation Threats & Hazards, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| | - Shahriar Khateri
- Organization for the Prohibition of Chemical Weapons, The Hague, The Netherlands
| | | | - Mahdi BalaliMood
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
109
|
Dan J, Rousseau P, Hardikar S, Veland N, Wong J, Autexier C, Chen T. Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells. Cell Rep 2018; 20:1936-1949. [PMID: 28834755 DOI: 10.1016/j.celrep.2017.07.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/20/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022] Open
Abstract
Proper telomere length is essential for embryonic stem cell (ESC) self-renewal and pluripotency. Mouse ESCs (mESCs) sporadically convert to a transient totipotent state similar to that of two-cell (2C) embryos to recover shortened telomeres. Zscan4, which exhibits a burst of expression in 2C-like mESCs, is required for telomere extension in these cells. However, the mechanism by which Zscan4 extends telomeres remains elusive. Here, we show that Zscan4 facilitates telomere elongation by inducing global DNA demethylation through downregulation of Uhrf1 and Dnmt1, major components of the maintenance DNA methylation machinery. Mechanistically, Zscan4 recruits Uhrf1 and Dnmt1 and promotes their degradation, which depends on the E3 ubiquitin ligase activity of Uhrf1. Blocking DNA demethylation prevents telomere elongation associated with Zscan4 expression, suggesting that DNA demethylation mediates the effect of Zscan4. Our results define a molecular pathway that contributes to the maintenance of telomere length homeostasis in mESCs.
Collapse
Affiliation(s)
- Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Philippe Rousseau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada; Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
110
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
111
|
Espiritu SMG, Liu LY, Rubanova Y, Bhandari V, Holgersen EM, Szyca LM, Fox NS, Chua ML, Yamaguchi TN, Heisler LE, Livingstone J, Wintersinger J, Yousif F, Lalonde E, Rouette A, Salcedo A, Houlahan KE, Li CH, Huang V, Fraser M, van der Kwast T, Morris QD, Bristow RG, Boutros PC. The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression. Cell 2018; 173:1003-1013.e15. [DOI: 10.1016/j.cell.2018.03.029] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/01/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
112
|
Montero JJ, López-Silanes I, Megías D, F Fraga M, Castells-García Á, Blasco MA. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun 2018; 9:1548. [PMID: 29670078 PMCID: PMC5906467 DOI: 10.1038/s41467-018-03916-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
TERRAs are long non-coding RNAs generated from the telomeres. Lack of TERRA knockout models has hampered understanding TERRAs’ functions. We recently identified chromosome 20q as one of the main origins of human TERRAs, allowing us to generate the first 20q-TERRA knockout models and to demonstrate that TERRAs are essential for telomere length maintenance and protection. Here, we use ALT 20q-TERRA knockout cells to address a direct role of TERRAs in telomeric heterochromatin formation. We find that 20q-TERRAs are essential for the establishment of H3K9me3, H4K20me3, and H3K27me3 heterochromatin marks at telomeres. At the mechanistic level, we find that TERRAs bind to PRC2, responsible for catalyzing H3K27 tri-methylation, and that its localization to telomeres is TERRA-dependent. We further demonstrate that PRC2-dependent H3K27me3 at telomeres is required for the establishment of H3K9me3, H4K20me3, and HP1 binding at telomeres. Together, these findings demonstrate an important role for TERRAs in telomeric heterochromatin assembly. Long non-coding RNA TERRAs are essential for telomere protection and telomere length maintenance. Here the authors report a role for TERRAs in telomeric heterochromatin formation by recruiting Polycomb Repressive Complex 2 to telomeres.
Collapse
Affiliation(s)
- Juan J Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Isabel López-Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo, Institute of Oncology of Asturias (IUOPA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda De la Vega, 4-6, 33940, El Entrego, Spain
| | - Álvaro Castells-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Drive Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
113
|
Avogaro L, Querido E, Dalachi M, Jantsch MF, Chartrand P, Cusanelli E. Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells. RNA Biol 2018; 15:787-796. [PMID: 29658398 PMCID: PMC6152429 DOI: 10.1080/15476286.2018.1456300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
Collapse
Affiliation(s)
- Laura Avogaro
- a Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Emmanuelle Querido
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Myriam Dalachi
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Michael F Jantsch
- c Centre of Anatomy and Cell Biology, Medical University of Vienna , Vienna , Austria
| | - Pascal Chartrand
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Emilio Cusanelli
- a Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| |
Collapse
|
114
|
Liu H, Chen Q, Lei L, Zhou W, Huang L, Zhang J, Chen D. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances affects leukocyte telomere length in female newborns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:446-452. [PMID: 29310088 DOI: 10.1016/j.envpol.2017.12.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 05/22/2023]
Abstract
Evidence has shown that leukocyte telomere length (LTL) at birth is related to the susceptibility to various diseases in later life and the setting of newborn LTL is influenced by the intrauterine environment. Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as a kind of persistent organic pollutants, are commonly used in commercial and domestic applications and are capable of crossing the maternal-fetal barrier during pregnancy. We hypothesized that intrauterine exposure to PFASs may affect fetal LTL by increasing oxidative stress. To verify this hypothesis, LTL, concentrations of PFASs and reactive oxygen species (ROS) were measured in umbilical cord blood of 581 newborns from a prospective cohort. Our results showed that there were interactions between PFOS/PFDA and sex on LTL and ROS. The LTL was significantly shorter (0.926 ± 0.053 vs 0.945 ± 0.054, P = .023 for PFOS; 0.919 ± 0.063 vs 0.940 ± 0.059, P = .011 for PFDA) and the ROS levels were extremely higher (252.9 ± 60.5 [M] vs 233.5 ± 53.6 [M], P = .031 for PFOS; 255.2 ± 62.9 [M] vs 232.9 ± 58.3 [M], P = .011 for PFDA) in the female newborns whose PFOS or PFDA concentrations fell in the upmost quartile compared with those in the lowest quartile after adjusting for potential confounders. ROS levels were inversely associated with LTL in female newborns (β = -1.42 × 10-4, P = .022). 13% of the effect of PFOS on female LTL was mediated through ROS approximately by the mediation analyses. However, in male newborns, no relationships among PFASs, ROS and LTL were observed. Our findings suggest a "programming" role of PFASs on fetal telomere biology system in females in intrauterine stage.
Collapse
Affiliation(s)
- Han Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Lei
- Department of Obstetrics and Gynecology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Zhou
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Pediatric Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Research Unit, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
115
|
Fortuny A, Polo SE. The response to DNA damage in heterochromatin domains. Chromosoma 2018; 127:291-300. [PMID: 29594515 PMCID: PMC6440646 DOI: 10.1007/s00412-018-0669-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 10/24/2022]
Abstract
Eukaryotic genomes are organized into chromatin, divided into structurally and functionally distinct euchromatin and heterochromatin compartments. The high level of compaction and the abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to overcome these constraints. Here, we summarize recent findings on how the heterochromatic state influences DNA damage formation, signaling, and repair. By focusing on distinct heterochromatin domains in different eukaryotic species, we highlight the heterochromatin contribution to the compartmentalization of DNA damage repair in the cell nucleus and to the repair pathway choice. We also describe the diverse chromatin alterations associated with the DNA damage response in heterochromatin domains and present our current understanding of their regulatory mechanisms. Finally, we discuss the biological significance and the evolutionary conservation of these processes.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, Paris, France.
| |
Collapse
|
116
|
Xie X, Shippen DE. DDM1 guards against telomere truncation in Arabidopsis. PLANT CELL REPORTS 2018; 37:501-513. [PMID: 29392401 PMCID: PMC5880217 DOI: 10.1007/s00299-017-2245-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 05/20/2023]
Abstract
Prolonged hypomethylation of DNA leads to telomere truncation correlated with increased telomere recombination, transposon mobilization and stem cell death. Epigenetic pathways, including DNA methylation, are crucial for telomere maintenance. Deficient in DNA Methylation 1 (DDM1) encodes a nucleosome remodeling protein, required to maintain DNA methylation in Arabidopsis thaliana. Plants lacking DDM1 can be self-propagated, but in the sixth generation (G6) hypomethylation leads to rampant transposon activation and infertility. Here we examine the role of DDM1 in telomere length homeostasis through a longitudinal study of successive generations of ddm1-2 mutants. We report that bulk telomere length remains within the wild-type range for the first five generations (G1-G5), and then precipitously drops in G6. While telomerase activity becomes more variable in later generation ddm1-2 mutants, there is no correlation between enzyme activity and telomere length. Plants lacking DDM1 also exhibit no dysregulation of several known telomere-associated transcripts, including TERRA. Instead, telomere shortening coincides with increased G-overhangs and extra-chromosomal circles, consistent with deletional recombination. Telomere shortening also correlates with transcriptional activation of retrotransposons, and a hypersensitive DNA damage response in root apical meristems. Since abiotic stresses, including DNA damage, stimulate homologous recombination, we hypothesize that telomere deletion in G6 ddm1-2 mutants is a by-product of elevated genome-wide recombination in response to transposon mobilization. Further, we speculate that telomere truncation may be beneficial in adverse environmental conditions by accelerating the elimination of stem cells with aberrant genomes.
Collapse
Affiliation(s)
- Xiaoyuan Xie
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA.
| |
Collapse
|
117
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
118
|
Li JSZ, Denchi EL. How stem cells keep telomeres in check. Differentiation 2018; 100:21-25. [PMID: 29413749 DOI: 10.1016/j.diff.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
In multicellular organisms, regulation of telomere length in pluripotent stem cells is critical to ensure organism development and survival. Telomeres consist of repetitive DNA that are progressively lost with each cellular division. When telomeres become critically short, they activate a DNA damage response that results in cell cycle arrest. To counteract telomere attrition, pluripotent stem cells are equipped with telomere elongation mechanisms that ensure prolonged proliferation capacity and self-renewal capacity. Excessive telomere elongation can also be deleterious and is counteracted by a rapid telomere deletion mechanism termed telomere trimming. While the consequences of critically short telomeres are well established, we are only beginning to understand the mechanisms that counteract excessive telomere elongation. The balance between telomere elongation and shortening determine the telomere length set point in pluripotent stem cells and ensures sustained proliferative potential without causing chromosome instability.
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
119
|
Ventura Ferreira MS, Bienert M, Müller K, Rath B, Goecke T, Opländer C, Braunschweig T, Mela P, Brümmendorf TH, Beier F, Neuss S. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem Cell Res Ther 2018; 9:28. [PMID: 29402304 PMCID: PMC5800083 DOI: 10.1186/s13287-017-0757-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Studies in which mesenchymal stromal cells (MSC) from the placenta are compared with multiple MSC types from other sources are rare. The chorionic plate of the human placenta is mainly composed of fetal blood vessels embedded in fetal stroma tissue, lined by trophoblastic cells and organized into chorionic villi (CV) structures. METHODS We comprehensively characterized human MSC collected from postnatal human chorionic villi of placenta (CV-MSC) by analyzing their growth and proliferation potential, differentiation, immunophenotype, extracellular matrix production, telomere length, aging phenotype, and plasticity. RESULTS Immunophenotypic characterization of CV-MSC confirmed the typical MSC marker expression as defined by the International Society for Cellular Therapy. The surface marker profile was consistent with increased potential for proliferation, vascular localization, and early myogenic marker expression. CV-MSC retained multilineage differentiation potential and extracellular matrix remodeling properties. They have undergone reduced telomere loss and delayed onset of cellular senescence as they aged in vitro compared to three other MSC sources. We present evidence that increased human telomerase reverse transcriptase gene expression could not explain the exceptional telomere maintenance and senescence onset delay in cultured CV-MSC. Our in-vitro tumorigenesis detection assay suggests that CV-MSC are not prone to undergo malignant transformation during long-term in-vitro culture. Besides SOX2 expression, no other pluripotency features were observed in early and late passages of CV-MSC. CONCLUSIONS Our work brings forward two remarkable characteristics of CV-MSC, the first being their extended life span as a result of delayed replicative senescence and the second being a delayed aged phenotype characterized by improved telomere length maintenance. MSC from human placenta are very attractive candidates for stem cell-based therapy applications.
Collapse
Affiliation(s)
- Mónica S. Ventura Ferreira
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Michaela Bienert
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aHelmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Aachen, Germany
| | - Katrin Müller
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Björn Rath
- 0000 0001 0728 696Xgrid.1957.aDepartment of Orthopedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Tamme Goecke
- 0000 0001 0728 696Xgrid.1957.aDepartment for Gynecology, RWTH Aachen University, Aachen, Germany
| | - Christian Opländer
- 0000 0000 9024 6397grid.412581.bDepartment of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Till Braunschweig
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- 0000 0001 0728 696Xgrid.1957.aDepartment of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aHelmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
120
|
Tremblay R, Dufort I, Sirard MA. Metabolic stress induces modifications in the epigenetic program of preimplantation bovine embryos. Mol Reprod Dev 2018; 85:117-127. [PMID: 29240275 DOI: 10.1002/mrd.22941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
The mammalian embryo is sensitive to and adapts to its metabolic environment. The mother's metabolic health and nutrient availability, for example, can modulate the oviductal fluid composition and thus embryo development. In this project, we induced energetic stress in bovine embryos during early culture to observe the epigenetic responses associated with metabolic stress, using a treatment paradigm known to decrease blastocyst rates. Embryos were generated using oocytes from slaughtered cows, and then exposed to an elevated glucose concentration (5 vs. 0.2 mM in control conditions) for the first 3 days post-fertilization, followed by normal media until the blastocyst stage. The EmbryoGENE platform was then used to identify DNA methylation differences between the two treatments. Probes (450,000) were then analyzed based on their genome location and methylation differences. Our results revealed that elevated glucose led to hypomethylation close to telomeric regions and methylation changes on genomic regions associated with energy metabolism.
Collapse
Affiliation(s)
- Rachele Tremblay
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Pavillon des services, Université Laval, Québec, Québec, Canada
| | - Isabelle Dufort
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Pavillon des services, Université Laval, Québec, Québec, Canada
| | - Marc-Andre Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Pavillon des services, Université Laval, Québec, Québec, Canada
| |
Collapse
|
121
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
122
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
123
|
Williams BP, Gehring M. Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit. Nat Commun 2017; 8:2124. [PMID: 29242626 PMCID: PMC5730562 DOI: 10.1038/s41467-017-02219-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023] Open
Abstract
Epigenetic states are stably propagated in eukaryotes. In plants, DNA methylation patterns are faithfully inherited over many generations but it is unknown how the dynamic activities of cytosine DNA methyltransferases and 5-methylcytosine DNA glycosylases interact to maintain epigenetic homeostasis. Here we show that a methylation-sensing gene regulatory circuit centered on a 5-methylcytosine DNA glycosylase gene is required for long-term epigenetic fidelity in Arabidopsis. Disrupting this circuit causes widespread methylation losses and abnormal phenotypes that progressively worsen over generations. In heterochromatin, these losses are counteracted such that methylation returns to a normal level over four generations. However, thousands of loci in euchromatin progressively lose DNA methylation between generations and remain unmethylated. We conclude that an actively maintained equilibrium between methylation and demethylation activities is required to ensure long-term stable inheritance of epigenetic information. DNA methylation patterns are inherited over many generations in plants. Here, Williams and Gehring show that the 5-methylcytosine DNA glycosylase ROS1 functions as part of a methylation-sensitive circuit that ensures long-term epigenetic fidelity in Arabidopsis.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
124
|
Abou Assi H, Lin YC, Serrano I, González C, Damha MJ. Probing Synergistic Effects of DNA Methylation and 2′-β-Fluorination on i-Motif Stability. Chemistry 2017; 24:471-477. [PMID: 29096420 DOI: 10.1002/chem.201704591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry; McGill University; 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Yu Chen Lin
- Department of Chemistry; McGill University; 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| | - Israel Serrano
- Instituto de Química Física “Rocasolano”; CSIC; Serrano 119 28006 Madrid Spain
| | - Carlos González
- Instituto de Química Física “Rocasolano”; CSIC; Serrano 119 28006 Madrid Spain
| | - Masad J. Damha
- Department of Chemistry; McGill University; 801 Sherbrooke St. West Montreal QC H3A 0B8 Canada
| |
Collapse
|
125
|
Telomeres, Aging and Exercise: Guilty by Association? Int J Mol Sci 2017; 18:ijms18122573. [PMID: 29186077 PMCID: PMC5751176 DOI: 10.3390/ijms18122573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
Telomeres are repetitive tandem DNA sequences that cap chromosomal ends protecting genomic DNA from enzymatic degradation. Telomeres progressively shorten with cellular replication and are therefore assumed to correlate with biological and chronological age. An expanding body of evidence suggests (i) a predictable inverse association between telomere length, aging and age-related diseases and (ii) a positive association between physical activity and telomere length. Both hypotheses have garnered tremendous research attention and broad consensus; however, the evidence for each proposition is inconsistent and equivocal at best. Telomere length does not meet the basic criteria for an aging biomarker and at least 50% of key studies fail to find associations with physical activity. In this review, we address the evidence in support and refutation of the putative associations between telomere length, aging and physical activity. We finish with a brief review of plausible mechanisms and potential future research directions.
Collapse
|
126
|
Sagie S, Edni O, Weinberg J, Toubiana S, Kozlovski T, Frostig T, Katzin N, Bar-Am I, Selig S. Non-random length distribution of individual telomeres in immunodeficiency, centromeric instability and facial anomalies syndrome, type I. Hum Mol Genet 2017; 26:4244-4256. [PMID: 28973513 DOI: 10.1093/hmg/ddx313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.
Collapse
Affiliation(s)
- Shira Sagie
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Omer Edni
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Joseph Weinberg
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Shir Toubiana
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Tal Kozlovski
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Tzviel Frostig
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Nirit Katzin
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Irit Bar-Am
- Applied Spectral Imaging Ltd., Yokneam 2069200, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
127
|
Wu Y, Cui W, Zhang D, Wu W, Yang Z. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 2017; 8:73964-73973. [PMID: 29088760 PMCID: PMC5650315 DOI: 10.18632/oncotarget.18167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/11/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We aim to investigate the cross-talking of leukocyte telomere length (LTL) and DNA methylation of LINE-1 in type 2 diabetes mellitus (T2DM). RESULTS LTL (ratio of the copy number of telomere [T] repeats to that of a single [S] gene) was significantly shortened in T2DM compared with controls (0.94 ± 0.41 vs. 1.14 ± 0.48, P < 0.001), and decreased steadily with age in both controls and T2DM. Conversely, significant increase of LINE-1 DNA methylation was found in T2DM compared with controls (49.60 ± 14.55 vs. 37.81 ± 9.07, P < 0.001). Moreover, age, HbA1c, and LINE-1 methylation ratio were stably negatively related with LTL after multi-adjustment. Shorter LTL was associated with an increased risk of T2DM [adjusted OR (95% CI) = 2.458 (1.192, 5.070), P = 0.015], while lower LINE-1 DNA methylation levels could reduce the risk of T2DM [adjusted OR (95% CI) = 0.189 (0.089, 0.400), P < 0.001]. MATERIALS AND METHODS We performed a hospital-based case-control study of 205 T2DM patients and 213 subjects of healthy control with sex and age matched. LTL and DNA methylation of LINE-1 was measured by quantitative PCR and quantitative methylation-specific PCR (qMSP), respectively. CONCLUSIONS Our research demonstrates the association between shorter LTL and LINE-1 hyper-methylation in Chinese T2DM patients. These findings suggest that shorter LTL might be associated with T2DM in a manner dependent of epigenetic level.
Collapse
Affiliation(s)
- Yue Wu
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhuo Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
128
|
Regulated expression of the lncRNA TERRA and its impact on telomere biology. Mech Ageing Dev 2017; 167:16-23. [PMID: 28888705 DOI: 10.1016/j.mad.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
The telomere protects against genomic instability by minimizing the accelerated end resection of the genetic material, a phenomenon that results in severe chromosome instability that could favor the transformation of a cell by enabling the emergence of tumor-promoting mutations. Some mechanisms that avoid this fate, such as capping and loop formation, have been very well characterized; however, telomeric non-coding transcripts, such as long non-coding RNAs (lncRNAs), should also be considered in this context because they play roles in the organization of telomere dynamics, involving processes such as replication, degradation, extension, and heterochromatin stabilization. Although the mechanism through which the expression of telomeric transcripts regulates telomere dynamics is not yet clear, a non-coding RNA component opens the research options in telomere biology and the impact that it can have on telomere-associated diseases such as cancer.
Collapse
|
129
|
Genome-wide DNA methylation and transcriptome analyses reveal genes involved in immune responses of pig peripheral blood mononuclear cells to poly I:C. Sci Rep 2017; 7:9709. [PMID: 28852164 PMCID: PMC5575306 DOI: 10.1038/s41598-017-10648-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
DNA methylation changes play essential roles in regulating the activities of genes involved in immune responses. Understanding of variable DNA methylation linked to immune responses may contribute to identifying biologically promising epigenetic markers for pathogenesis of diseases. Here, we generated genome-wide DNA methylation and transcriptomic profiles of six pairs of polyinosinic-polycytidylic acid-treated pig peripheral blood mononuclear cell (PBMC) samples and corresponding controls using methylated DNA immunoprecipitation sequencing and RNA sequencing. Comparative methylome analyses identified 5,827 differentially methylated regions and 615 genes showing differential expression between the two groups. Integrative analyses revealed inverse associations between DNA methylation around transcriptional start site and gene expression levels. Furthermore, 70 differentially methylated and expressed genes were identified such as TNFRSF9, IDO1 and EBI3. Functional annotation revealed the enriched categories including positive regulation of immune system process and regulation of leukocyte activation. These findings demonstrated DNA methylation changes occurring in immune responses of PBMCs to poly I:C stimulation and a subset of genes potentially regulated by DNA methylation in the immune responses. The PBMC DNA methylome provides an epigenetic overview of this physiological system in response to viral infection, and we expect it to constitute a valuable resource for future epigenetic epidemiology studies in pigs.
Collapse
|
130
|
Ravlić S, Škrobot Vidaček N, Nanić L, Laganović M, Slade N, Jelaković B, Rubelj I. Mechanisms of fetal epigenetics that determine telomere dynamics and health span in adulthood. Mech Ageing Dev 2017; 174:55-62. [PMID: 28847485 DOI: 10.1016/j.mad.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Advances in epigenetics now enable us to better understand environmental influences on the genetic background of human diseases. This refers especially to fetal development where an adverse intrauterine environment impacts oxygen and nutrient supply to the fetus. Recently, differences in telomere length and telomere loss dynamics among individuals born with intrauterine growth restriction compared to normal controls have been described. In this paper we propose possible molecular mechanisms that (pre)program telomere epigenetics during pregnancy. This programming sets differences in telomere lengths and dynamics of telomere shortening in adulthood and therefore dictates the dynamics of aging and morbidity in later life.
Collapse
Affiliation(s)
- Sanda Ravlić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Nikolina Škrobot Vidaček
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Mario Laganović
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, RBI, Zagreb, Croatia.
| | - Bojan Jelaković
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| |
Collapse
|
131
|
Terranova-Barberio M, Thomas S, Munster PN. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy 2017; 8:705-19. [PMID: 27197539 DOI: 10.2217/imt-2016-0014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.
Collapse
Affiliation(s)
- Manuela Terranova-Barberio
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| | - Scott Thomas
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| | - Pamela N Munster
- Department of Medicine, Division of Hematology & Oncology, University of California, Room A722, 1600 Divisadero St, Box 1770, San Francisco, CA 94115, USA
| |
Collapse
|
132
|
Park JH, Yoo Y, Park YJ. Epigenetics: Linking Nutrition to Molecular Mechanisms in Aging. Prev Nutr Food Sci 2017; 22:81-89. [PMID: 28702424 PMCID: PMC5503416 DOI: 10.3746/pnf.2017.22.2.81] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 11/06/2022] Open
Abstract
Healthy aging has become a major goal of public health. Many studies have provided evidence and theories to explain molecular mechanisms of the aging process. Recent studies suggest that epigenetic mechanisms are responsible for life span and the progression of aging. Epigenetics is a fascinating field of molecular biology, which studies heritable modifications of DNA and histones that regulate gene expression without altering the DNA sequence. DNA methylation is a major epigenetic mark that shows progressive changes during aging. Recent studies have investigated aging-related DNA methylation as a biomarker that predicts cellular age. Interestingly, growing evidence proposes that nutrients play a crucial role in the regulation of epigenetic modifiers. Because various nutrients and their metabolites function as substrates or cofactors for epigenetic modifiers, nutrition can modulate or reverse epigenetic marks in the genome as well as expression patterns. Here, we will review the results on aging-associated epigenetic modifications and the possible mechanisms by which nutrition, including nutrient availability and bioactive compounds, regulate epigenetic changes and affect aging physiology.
Collapse
Affiliation(s)
- Joo Hyun Park
- Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yeongran Yoo
- Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoon Jung Park
- Metabolism and Epigenetics Laboratory, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
133
|
Dong Y, Huang Y, Gutin B, Raed A, Dong Y, Zhu H. Associations between Global DNA Methylation and Telomere Length in Healthy Adolescents. Sci Rep 2017. [PMID: 28646162 PMCID: PMC5482897 DOI: 10.1038/s41598-017-04493-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that epigenetics regulates telomere dynamics in adults. However, the relationship between these pathways in children and youth remains unknown. Thus, we examined this association in 542 healthy adolescents aged 14 to 18 years old (44.8% African Americans; 55.2% females). Global DNA methylation level (%5-mC) was quantified using ELISA method. Leukocyte telomere length (LTL) was defined as relative telomere to single copy gene (T/S) ratio. Multiple linear regression models, adjusted for age, gender, ethnicity, Tanner stage, BMI, PA, and batch effect, revealed that %5 mC was associated with LTL (adjusted β = 0.17, p < 0.01). %5 mC accounted for 5.0% of the variation for LTL. A significant gender interaction was identified (p < 0.01). There was an association between %5 mC and LTL in females (all ps < 0.01), but not in males. Further sensitivity analyses by race revealed similar associations in African Americans and whites (all ps < 0.03). The present study, for the first time, shows that lower levels of global DNA methylation are associated with shorter telomere lengths in youth, which may decrease genome stability and augment the susceptibility to diseases. Longitudinal studies are warranted to establish the effects of global DNA methylation on LTL maintenance over time.
Collapse
Affiliation(s)
- Yutong Dong
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Bernard Gutin
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Anas Raed
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.,Internal Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA.
| |
Collapse
|
134
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
135
|
Chirino MG, Dalíková M, Marec FR, Bressa MJ. Chromosomal distribution of interstitial telomeric sequences as signs of evolution through chromosome fusion in six species of the giant water bugs (Hemiptera, Belostoma). Ecol Evol 2017; 7:5227-5235. [PMID: 28770061 PMCID: PMC5528210 DOI: 10.1002/ece3.3098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/11/2022] Open
Abstract
Tandem arrays of TTAGG repeats show a highly conserved location at the telomeres across the phylogenetic tree of arthropods. In giant water bugs Belostoma, the chromosome number changed during speciation by fragmentation of the single ancestral X chromosome, resulting in a multiple sex chromosome system. Several autosome–autosome fusions and a fusion between the sex chromosome pair and an autosome pair resulted in the reduced number in several species. We mapped the distribution of telomeric sequences and interstitial telomeric sequences (ITSs) in Belostoma candidulum (2n = 12 + XY/XX; male/female), B. dentatum (2n = 26 + X1X2Y/X1X1X2X2), B. elegans (2n = 26 + X1X2Y/X1X1X2X2), B. elongatum (2n = 26 + X1X2Y/X1X1X2X2), B. micantulum (2n = 14 + XY/XX), and B. oxyurum (2n = 6 + XY/XX) by FISH with the (TTAGG)n probes. Hybridization signals confirmed the presence of TTAGG repeats in the telomeres of all species examined. The three species with reduced chromosome numbers showed additional hybridization signals in interstitial positions, indicating the occurrence of ITS. From the comparison of all species here analyzed, we observed inverse relationships between chromosome number and chromosome size, and between presence/absence of ITS and chromosome number. The ITS distribution between these closely related species supports the hypothesis that several telomere–telomere fusions of the chromosomes from an ancestral diploid chromosome number 2n = 26 + XY/XX played a major role in the karyotype evolution of Belostoma. Consequently, our study provide valuable features that can be used to understand the karyotype evolution, may contribute to a better understanding of taxonomic relationships, and also elucidate the high plasticity of nuclear genomes at the chromosomal level during the speciation processes.
Collapse
Affiliation(s)
- Mónica G Chirino
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - Martina Dalíková
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - František R Marec
- Laboratory of Molecular Cytogenetics Institute of Entomology Biology Centre ASCR České Budějovice Czech Republic
| | - María J Bressa
- Grupo de Citogenética de Insectos Instituto de Ecología, Genética y Evolución de Buenos Aires Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
136
|
Cantarella CD, Ragusa D, Giammanco M, Tosi S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. GENES & NUTRITION 2017; 12:14. [PMID: 28588742 PMCID: PMC5455200 DOI: 10.1186/s12263-017-0560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Folic acid and its derivates, known as folates, are chemoprotective micronutrients of great interest because of their essential role in the maintenance of health and genomic integrity. The supplementation of folic acid during pregnancy has long been known to reduce the risk of neural tube defects (NTDs) in the foetus. Folate metabolism can be altered by many factors, including adequate intake through diet. Folate deficiency can compromise the synthesis, repair and methylation of DNA, with deleterious consequences on genomic stability and gene expression. These processes are known to be altered in chronic diseases, including cancer and cardiovascular diseases. MAIN BODY This review focuses on the association between folate intake and the risk of childhood leukaemia. Having compiled and analysed studies from the literature, we show the documented effects of folates on the genome and their role in cancer prevention and progression with particular emphasis on DNA methylation modifications. These changes are of crucial importance during pregnancy, as maternal diet has a profound impact on the metabolic and physiological functions of the foetus and the susceptibility to disease in later life. Folate deficiency is capable of modifying the methylation status of certain genes at birth in both animals and humans, with potential pathogenic and tumorigenic effects on the progeny. Pre-existing genetic polymorphisms can modify the metabolic network of folates and influence the risk of cancer, including childhood leukaemias. The protective effects of folic acid might be dose dependent, as excessive folic acid could have the adverse effect of nourishing certain types of tumours. CONCLUSION Overall, maternal folic acid supplementation before and during pregnancy seems to confer protection against the risk of childhood leukaemia in the offspring. The optimal folic acid requirements and supplementation doses need to be established, especially in conjunction with other vitamins in order to determine the most successful combinations of nutrients to maintain genomic health and wellbeing. Further research is therefore needed to uncover the role of maternal diet as a whole, as it represents a main factor capable of inducing permanent changes in the foetus.
Collapse
Affiliation(s)
- Catia Daniela Cantarella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Marco Giammanco
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
137
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
138
|
Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration. J Virol 2017; 91:JVI.02105-16. [PMID: 28298607 DOI: 10.1128/jvi.02105-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located <1 Mb from chromosomal ends and were all hypomethylated in virus-infected cells. This was most evident at chromosome 17p13.3, where HHV-6B had induced CpG hypomethylation after 2 days of infection, possibly through TET2, which was found to be upregulated by the virus. In addition, virus-induced cytosine hydroxymethylation was observed. Genes located in the hypomethylated region at 17p13.3 showed significantly upregulated expression in HHV-6B-infected cells. A temporal experiment revealed HHV-6B integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible.IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces hypomethylated regions close to the telomeres and that integrating viruses may use the host methylation machinery to facilitate their integration process. The results from this study contribute to knowledge of HHV-6B biology and virus-host interaction. This in turn will lead to further progress in our understanding of the underlying mechanisms by which HHV-6B contributes to pathological processes and may have important implications in both disease prevention and treatment.
Collapse
|
139
|
Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:51-65. [PMID: 28927537 DOI: 10.1016/j.mrrev.2017.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina.
| |
Collapse
|
140
|
Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Mol Cell 2017; 65:818-831.e5. [PMID: 28216227 PMCID: PMC5924698 DOI: 10.1016/j.molcel.2017.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.
Collapse
Affiliation(s)
- Rong Tan
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Qun Wang
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Xue
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jian Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Sabine Hellwig
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA
| | - Nathan A Yates
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, 3501 Fifth Avenue, 9th Floor Biomedical Science Tower III, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S362 Biomedical Science Tower S, Pittsburgh, PA 15261, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Ming Lei
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, W1058 Thomas E. Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Bing Su
- Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale School of Medicine, 10 Amistad Street, PO Box 208011, New Haven, CT 06520, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
141
|
Lee J, Solomon DA, Tihan T. The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children. J Neurooncol 2017; 132:1-11. [PMID: 28064387 PMCID: PMC5354997 DOI: 10.1007/s11060-016-2349-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
Abstract
Genetic profiling is an increasingly useful tool for sub-classification of gliomas in adults and children. Specific gene mutations, structural rearrangements, DNA methylation patterns, and gene expression profiles are now recognized to define molecular subgroups of gliomas that arise in distinct anatomic locations and patient age groups, and also provide a better prediction of clinical outcomes for glioma patients compared to histologic assessment alone. Understanding the role of these distinctive genetic alterations in gliomagenesis is also important for the development of potential targeted therapeutic interventions. Mutations including K27M and G34R/V that affect critical amino acids within the N-terminal tail of the histone H3 variants, H3.3 and H3.1 (encoded by H3F3A and HIST1H3B genes), are prime examples of mutations in diffuse gliomas with characteristic clinical associations that can help diagnostic classification and guide effective patient management. These histone H3 mutations frequently co-occur with inactivating mutations in ATRX in association with alternative lengthening of telomeres. Telomere length can also be maintained through upregulation of telomerase reverse transcriptase (TERT) expression driven by mutation within the TERT gene promoter region, an alteration most commonly found in oligodendrogliomas and primary glioblastomas arising in adults. Interestingly, the genetic alterations perturbing histone and telomere function in pediatric gliomas tend to be different from those present in adult tumors. We present a review of these mutations affecting the histone code and telomere length, highlighting their importance in prognosis and as targets for novel therapeutics in the treatment of diffuse gliomas.
Collapse
Affiliation(s)
- Julieann Lee
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Ave, Room M-551, Box 0102, San Francisco, CA, 94143, USA
| | - David A Solomon
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Ave, Room M-551, Box 0102, San Francisco, CA, 94143, USA
| | - Tarik Tihan
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Ave, Room M-551, Box 0102, San Francisco, CA, 94143, USA.
| |
Collapse
|
142
|
Marinoni I, Wiederkeher A, Wiedmer T, Pantasis S, Di Domenico A, Frank R, Vassella E, Schmitt A, Perren A. Hypo-methylation mediates chromosomal instability in pancreatic NET. Endocr Relat Cancer 2017; 24:137-146. [PMID: 28115389 DOI: 10.1530/erc-16-0554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
DAXX and or ATRX loss occur in 40% of pancreatic neuroendocrine tumors (PanNETs). PanNETs negative for DAXX or ATRX show an increased risk of relapse. The tumor-associated pathways activated upon DAXX or ATRX loss and how this event may induce chromosomal instability (CIN) and alternative lengthening telomeres (ALT) are still unknown. Both DAXX and ATRX are involved in DNA methylation regulation. DNA methylation of heterochromatin and of non-coding sequences is extremely important for the maintenance of genomic stability. We analyzed the association of DAXX and/or ATRX loss and CIN with global DNA methylation in human PanNET samples and the effect of DAXX knock-down on methylation and cell proliferation. We assessed LINE1 as well as global DNA methylation in 167 PanNETs, and we found that DAXX and or ATRX-negative tumors and tumors with CIN were hypomethylated. DAXX knock-down in PanNET cell lines blocked cells in G1/G0 phase and seemed to increase CIN in QGP-1 cells. However, no direct changes in DNA methylation were observed after DAXX knock-down in vitro In conclusion, our data indicate that epigenetic changes are crucial steps in the progression of PanNETs loss and suggest that DNA methylation is the mechanism via which CIN is induced, allowing clonal expansion and selection.
Collapse
Affiliation(s)
- I Marinoni
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Wiederkeher
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - T Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- GCB Graduate School BernBern, Switzerland
| | - S Pantasis
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- GCB Graduate School BernBern, Switzerland
| | - R Frank
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - E Vassella
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Schmitt
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| | - A Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
143
|
Marión RM, López de Silanes I, Mosteiro L, Gamache B, Abad M, Guerra C, Megías D, Serrano M, Blasco MA. Common Telomere Changes during In Vivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports 2017; 8:460-475. [PMID: 28162998 PMCID: PMC5312258 DOI: 10.1016/j.stemcr.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Reprogramming of differentiated cells into induced pluripotent stem cells has been recently achieved in vivo in mice. Telomeres are essential for chromosomal stability and determine organismal life span as well as cancer growth. Here, we study whether tissue dedifferentiation induced by in vivo reprogramming involves changes at telomeres. We find telomerase-dependent telomere elongation in the reprogrammed areas. Notably, we found highly upregulated expression of the TRF1 telomere protein in the reprogrammed areas, which was independent of telomere length. Moreover, TRF1 inhibition reduced in vivo reprogramming efficiency. Importantly, we extend the finding of TRF1 upregulation to pathological tissue dedifferentiation associated with neoplasias, in particular during pancreatic acinar-to-ductal metaplasia, a process that involves transdifferentiation of adult acinar cells into ductal-like cells due to K-Ras oncogene expression. These findings place telomeres as important players in cellular plasticity both during in vivo reprogramming and in pathological conditions associated with increased plasticity, such as cancer.
Collapse
Affiliation(s)
- Rosa M Marión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Lluc Mosteiro
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Benjamin Gamache
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - María Abad
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
144
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
145
|
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017; 25:77-87. [PMID: 28078514 DOI: 10.1007/s10577-016-9547-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France
| | - Jérôme Déjardin
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France.
| |
Collapse
|
146
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
147
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
148
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
149
|
Increased Telomere Attrition After Renal Transplantation-Impact of Antimetabolite Therapy. Transplant Direct 2016; 2:e116. [PMID: 27990481 PMCID: PMC5142370 DOI: 10.1097/txd.0000000000000629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Background The uremic milieu exposes chronic kidney disease (CKD) patients to premature ageing processes. The impact of renal replacement therapy (dialysis and renal transplantation [RTx]) or immunosuppressive treatment regimens on ageing biomarkers has scarcely been studied. Methods In this study telomere length in whole blood cells was measured in 49 dialysis patients and 47 RTx patients close to therapy initiation and again after 12 months. Forty-three non-CKD patients were included as controls. Results Non-CKD patients had significantly (P ≤ 0.01) longer telomeres than CKD patients. Telomere attrition after 12 months was significantly greater in RTx patients compared to dialysis patients (P = 0.008). RTx patients receiving mycophenolate mofetil (MMF) had a greater (P = 0.007) degree of telomere attrition compared to those treated with azathioprine. After 12 months, folate was significantly higher in RTx patients than in dialysis patients (P < 0.0001), whereas the opposite was true for homocysteine (P < 0.0001). The azathioprine group had lower levels of folate after 12 months than the MMF group (P = 0.003). Conclusions The associations between immunosuppressive therapy, telomere attrition, and changes in folate indicate a link between methyl donor potential, immunosuppressive drugs, and biological ageing. The hypothesis that the increased telomere attrition, observed in the MMF group after RTx, is driven by the immunosuppressive treatment, deserves further attention.
Collapse
|
150
|
Wilson SL, Liu Y, Robinson WP. Placental telomere length decline with gestational age differs by sex and TERT, DNMT1, and DNMT3A DNA methylation. Placenta 2016; 48:26-33. [PMID: 27871469 DOI: 10.1016/j.placenta.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/22/2016] [Accepted: 10/02/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Telomere length (TL) has been suggested to be influenced by inherited genetic and epigenetic variation, hormonal effects, oxidative stress and age. However, the dynamics of TL during in utero development have not been well explored. This study investigates the relationship between placental TL and sex, gestational age (GA), and DNA methylation (DNAm). Placental TL is further evaluated in pregnancies complicated by preeclampsia (PE) and intrauterine growth restriction (IUGR), conditions hypothesized to lead to decreased placental TL due to increased oxidative stress. METHODS Average TL in 21 early-onset PE (EOPE), 18 late-onset PE (LOPE), 9 IUGR, 59 viable and 33 non-viable control placentas were measured by qPCR. Of these, 13 control, 20 EOPE, 17 LOPE, and 8 IUGR samples were also run on the Illumina 450K array. ANOVA was used to compare TL between controls and EOPE, LOPE, and IUGR. Linear regression correcting for GA and sex, assessed the association between TL and DNAm in biologically-relevant genes (TERC, TERT, DNMT1, DNMT3a, DNMT3b), and array-wide. RESULTS Male sex and increasing GA were associated with shorter placental TL. Correcting for these factors, no significant difference in TL was observed between EOPE, LOPE, and IUGR placentas compared to controls. Targeted analysis revealed TL was associated with DNAm at TERT, DNMT1, and DNMT3a. An array-wide approach found no additional sites associated with TL. CONCLUSION Variability in placental TL is associated with alterations in DNAm at TERT, DNMT1, and DNMT3a. Placental TL is not strongly influenced by EOPE, LOPE, or IUGR.
Collapse
Affiliation(s)
- Samantha L Wilson
- BC Children's Hospital Research, 950 W 28th Ave, Vancouver, BC, V5Z 4H4 Canada; Dept. of Medical Genetics, University of British Columbia, C201-4500 Oak St, Vancouver, BC, V6H 3N1 Canada.
| | - Yao Liu
- BC Children's Hospital Research, 950 W 28th Ave, Vancouver, BC, V5Z 4H4 Canada; Dept. of Medical Genetics, University of British Columbia, C201-4500 Oak St, Vancouver, BC, V6H 3N1 Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research, 950 W 28th Ave, Vancouver, BC, V5Z 4H4 Canada; Dept. of Medical Genetics, University of British Columbia, C201-4500 Oak St, Vancouver, BC, V6H 3N1 Canada.
| |
Collapse
|