101
|
Ren S, Liu J, Feng Y, Li Z, He L, Li L, Cao X, Wang Z, Zhang Y. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:388. [PMID: 31488193 PMCID: PMC6727545 DOI: 10.1186/s13046-019-1398-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Background Hypoxia is a key feature of breast cancer, which affects cancer development, metastasis and metabolism. Previous studies suggested that circular RNAs (circRNAs) could participate in cancer progression and hypoxia regulation. This study aimed to investigate the role of circRNA differentially expressed in normal cells and neoplasia domain containing 4C (circDENND4C) in breast cancer progression under hypoxia. Methods Forty-three patients with breast cancer were involved in this study. Breast cancer cell lines MDA-MB-453 and SK-BR-3 were cultured under hypoxia (1% O2) for experiments in vitro. The expression levels of circDENND4C, microRNA-200b (miR-200b) and miR-200c were measured by quantitative real-time polymerase chain reaction. Glycolysis was investigated by glucose consumption, lactate production and hexokinase II (HK2) protein level. Migration and invasion were evaluated via trans-well assay and protein levels of matrix metallopeptidase 9 (MMP9) and MMP2. The interaction between circDENND4C and miR-200b or miR-200c was explored by bioinformatics analysis, luciferase assay and RNA immunoprecipitation. Murine xenograft model was established to investigate the anti-cancer role of circDENND4C in vivo. Results circDENND4C highly expressed in breast cancer was up-regulated in response to hypoxia. Knockdown of circDENND4C decreased glycolysis, migration and invasion in breast cancer cells under hypoxia. circDENND4C was validated as a sponge of miR-200b and miR-200c. Deficiency of miR-200b or miR-200c reversed the suppressive effect of circDENND4C knockdown on breast cancer progression. Moreover, silence of circDENND4C reduced xenograft tumor growth by increasing miR-200b and miR-200c. Conclusion circDENND4C silence suppresses glycolysis, migration and invasion in breast cancer cells under hypoxia by increasing miR-200b and miR-200c. Electronic supplementary material The online version of this article (10.1186/s13046-019-1398-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shasha Ren
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Jiuzhou Liu
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Yun Feng
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Zhenyu Li
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Liang He
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Leilei Li
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Xiaozhong Cao
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Zhenghua Wang
- Department of Thyroid and Breast Surgery, the Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Zhongzhou Middle Road, Xigong District, Luoyang, China
| | - Yanwu Zhang
- Department of Breast Surgery, the Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
102
|
Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, Wang F, Yang L, Xiang Z, Cui H. The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol 2019; 57:59-71. [DOI: 10.1016/j.semcancer.2018.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
|
103
|
Ma Y, Ma M, Sun J, Li W, Li Y, Guo X, Zhang H. CHIR-99021 regulates mitochondrial remodelling via β-catenin signalling and miRNA expression during endodermal differentiation. J Cell Sci 2019; 132:jcs.229948. [PMID: 31289194 DOI: 10.1242/jcs.229948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial remodelling is a central feature of stem cell differentiation. However, little is known about the regulatory mechanisms during these processes. Previously, we found that a pharmacological inhibitor of glycogen synthase kinase-3α and -3β, CHIR-99021, initiates human adipose stem cell differentiation into human definitive endodermal progenitor cells (hEPCs), which were directed to differentiate synchronously into hepatocyte-like cells after further treatment with combinations of soluble factors. In this study, we show that CHIR-99021 promotes mitochondrial biogenesis, the expression of PGC-1α (also known as PPARGC1A), TFAM and NRF1 (also known as NFE2L1), oxidative phosphorylation capacities, and the production of reactive oxygen species in hEPCs. Blocking mitochondrial dynamics using siRNA targeting DRP1 (also known as DNM1L) impaired definitive endodermal differentiation. Downregulation of β-catenin (CTNNB1) expression weakened the effect of CHIR-99021 on the induction of mitochondrial remodelling and the expression of transcription factors for mitochondrial biogenesis. Moreover, CHIR-99021 decreased the expression of miR-19b-2-5p, miR-23a-3p, miR-23c, miR-130a-3p and miR-130a-5p in hEPCs, which target transcription factors for mitochondrial biogenesis. These data demonstrate that CHIR-99021 plays a role in mitochondrial structure and function remodelling via activation of the β-catenin signalling pathway and inhibits the expression of miRNAs during definitive endodermal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuejiao Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Minghui Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Jie Sun
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Weihong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xinyue Guo
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| |
Collapse
|
104
|
Lee J, Jenjob R, Davaa E, Yang SG. NIR-responsive ROS generating core and ROS-triggered 5′-Deoxy-5-fluorocytidine releasing shell structured water-swelling microgel for locoregional combination cancer therapy. J Control Release 2019; 305:120-129. [DOI: 10.1016/j.jconrel.2019.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
|
105
|
Lee H, Lee HR, Kim HY, Lee H, Kim HJ, Choi HK. Characterization and classification of rat neural stem cells and differentiated cells by comparative metabolic and lipidomic profiling. Anal Bioanal Chem 2019; 411:5423-5436. [PMID: 31161326 DOI: 10.1007/s00216-019-01922-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/15/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022]
Abstract
It is necessary to characterize and classify neural stem cells (NSCs) and differentiated cells (DCs) for potential use of NSC to treat neurodegenerative diseases. We therefore performed an analysis of NSCs and DCs using gas chromatography mass spectrometry (GC-MS) and direct infusion mass spectrometry (DI-MS) with elaborate multivariate statistical analysis for the characterization and classification of rat NSCs and DCs. GC-MS and DI-MS detected a total of 92 metabolites and lipids in NSCs and DCs, and the levels of 72 of them differed significantly between NSCs and DCs. The optimal model for partial least squares (PLS) discriminant analysis was constructed by applying 3 and 2 PLS components with a unit-variance scaling method for classifying NSCs and DCs based on the data obtained in the GC-MS and DI-MS analyses, respectively. The obtained results from PCA and PLS-DA suggest that creatinine, lactic acid, lysine, glutamine, glycine, pyroglutamic acid, PG 18:1/20:2, PS 18:0/20:2, PI 18:0/20:3, PC 16:0/20:4, PI 16:0/20:4, and PI 18:1/20:4 were the main contributors that provided distinct characteristics of NSCs and DCs. The results of this study suggest objective and complementary criteria for the characterization and classification of NSCs and DCs for potential clinical applications. Graphical abstract.
Collapse
Affiliation(s)
- Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ha-Rim Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Heayyean Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
106
|
Ullmann P, Nurmik M, Begaj R, Haan S, Letellier E. Hypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells. Cells 2019; 8:E528. [PMID: 31159361 PMCID: PMC6627778 DOI: 10.3390/cells8060528] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC), the second most common cause of cancer mortality in the Western world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of different approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic differences between TICs and less aggressive differentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they affect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced effects on colon TICs.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Rubens Begaj
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
107
|
Zheng CX, Sui BD, Qiu XY, Hu CH, Jin Y. Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends Mol Med 2019; 26:89-104. [PMID: 31126872 DOI: 10.1016/j.molmed.2019.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China.
| |
Collapse
|
108
|
Spiegelman NA, Hong JY, Hu J, Jing H, Wang M, Price IR, Cao J, Yang M, Zhang X, Lin H. A Small-Molecule SIRT2 Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation. ChemMedChem 2019; 14:744-748. [PMID: 30734528 PMCID: PMC6452895 DOI: 10.1002/cmdc.201800715] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/02/2019] [Indexed: 11/09/2022]
Abstract
SIRT2, a member of the sirtuin family of protein lysine deacylases, has been identified as a promising therapeutic target for treating cancer. In addition to catalyzing deacetylation, SIRT2 has recently been shown to remove fatty acyl groups from K-Ras4a and promote its transforming activity. Among the SIRT2-specific inhibitors, only the thiomyristoyl lysine compound TM can weakly inhibit the demyristoylation activity of SIRT2. Therefore, more potent small-molecule SIRT2 inhibitors are needed to further evaluate the therapeutic potential of SIRT2 inhibition, and to understand the function of protein lysine defatty-acylation. Herein we report a SIRT2 inhibitor, JH-T4, which can increase K-Ras4a lysine fatty acylation. This is the first small-molecule inhibitor that can modulate the lysine fatty acylation levels of K-Ras4a. JH-T4 also inhibits SIRT1 and SIRT3 in vitro. The increased potency of JH-T4 is likely due to the formation of hydrogen bonding between the hydroxy group and SIRT1, SIRT2, and SIRT3. This is further supported by in vitro studies with another small-molecule inhibitor, NH-TM. These studies provide useful insight for future SIRT2 inhibitor development.
Collapse
Affiliation(s)
- Nicole A. Spiegelman
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Jun Young Hong
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Jing Hu
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Hui Jing
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Miao Wang
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Ian R. Price
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Ji Cao
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Min Yang
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Xiaoyu Zhang
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
| | - Hening Lin
- Department of Chemistry & Chemical Biology, Nicole A. Spiegelman, Jun Young Hong, Dr. Jing Hu, Dr. Hui Jing, Miao Wang, Dr. Ian R. Price, Dr. Ji Cao, Dr. Min Yang, Dr. Xiaoyu Zhang, and Professor Dr. Hening Lin, Cornell University, Ithaca, NY 14853, USA,
- Professor. Dr. Hening Lin, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
109
|
Metabolic switching in pluripotent stem cells reorganizes energy metabolism and subcellular organelles. Exp Cell Res 2019; 379:55-64. [PMID: 30922922 DOI: 10.1016/j.yexcr.2019.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/07/2023]
Abstract
Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.
Collapse
|
110
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
111
|
Fang Y, Tang S, Li X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol Metab 2019; 30:177-188. [PMID: 30630664 PMCID: PMC6382540 DOI: 10.1016/j.tem.2018.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
Abstract
Sirtuins are highly conserved NAD+-dependent enzymes that are capable of removing a wide range of lipid lysine acyl-groups from protein substrates in a NAD+-dependent manner. These NAD+-dependent activities enable sirtuins to monitor cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals. Consequently, sirtuins are important for cell survival, stress resistance, proliferation, and differentiation. In recent years, sirtuins are increasingly recognized as crucial regulators of stem cell biology in addition to their well-known roles in metabolism and aging. This review article highlights our current knowledge on sirtuins in stem cells, including their functions in pluripotent stem cells, embryogenesis, and development as well as their roles in adult stem cell maintenance, regeneration, and aging.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; These authors contributed equally to this work
| | - Shuang Tang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Current address: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; These authors contributed equally to this work
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
112
|
The Human Cytomegalovirus UL38 protein drives mTOR-independent metabolic flux reprogramming by inhibiting TSC2. PLoS Pathog 2019; 15:e1007569. [PMID: 30677091 PMCID: PMC6363234 DOI: 10.1371/journal.ppat.1007569] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/05/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Human Cytomegalovirus (HCMV) infection induces several metabolic activities that are essential for viral replication. Despite the important role that this metabolic modulation plays during infection, the viral mechanisms involved are largely unclear. We find that the HCMV UL38 protein is responsible for many aspects of HCMV-mediated metabolic activation, with UL38 being necessary and sufficient to drive glycolytic activation and induce the catabolism of specific amino acids. UL38's metabolic reprogramming role is dependent on its interaction with TSC2, a tumor suppressor that inhibits mTOR signaling. Further, shRNA-mediated knockdown of TSC2 recapitulates the metabolic phenotypes associated with UL38 expression. Notably, we find that in many cases the metabolic flux activation associated with UL38 expression is largely independent of mTOR activity, as broad spectrum mTOR inhibition does not impact UL38-mediated induction of glycolysis, glutamine consumption, or the secretion of proline or alanine. In contrast, the induction of metabolite concentrations observed with UL38 expression are largely dependent on active mTOR. Collectively, our results indicate that the HCMV UL38 protein induces a pro-viral metabolic environment via inhibition of TSC2.
Collapse
|
113
|
Lu Y, Tao F, Zhou MT, Tang KF. The signaling pathways that mediate the anti-cancer effects of caloric restriction. Pharmacol Res 2019; 141:512-520. [PMID: 30641278 DOI: 10.1016/j.phrs.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) has been shown to promote longevity and ameliorate aging-associated diseases, including cancer. Extensive research over recent decades has revealed that CR reduces IGF-1/PI3K/AKT signaling and increases sirtuin signaling. We recently found that CR also enhances ALDOA/DNA-PK/p53 signaling. In the present review, we summarize the molecular mechanisms underlying the modulation of the IGF-1/PI3K/AKT pathway, sirtuin signaling, and the ALDOA/DNA-PK/p53 pathway by CR. We also summarize the evidence concerning the roles of these signaling pathways in carcinogenesis, and discuss how they are regulated by CR. Finally, we discuss the crosstalk between these signaling pathways.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Fengxing Tao
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Meng-Tao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
114
|
Hsu YC, Wu YT, Tsai CL, Wei YH. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells. Exp Biol Med (Maywood) 2019; 243:563-575. [PMID: 29557214 DOI: 10.1177/1535370218759636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact statement This is an extensive review of the recent advances in our understanding of the roles of some members of the sirtuins family, such as SIRT1, SIRT2, SIRT3, and SIRT6, in the regulation of intermediary metabolism during stem cell differentiation and in the reprogramming of somatic cells to form induced pluripotent stem cells (iPSCs). This article provides an updated integrated view on the mechanisms by which sirtuins-mediated posttranslational protein modifications regulate mitochondrial biogenesis, bioenergetics, and antioxidant defense in the maintenance and differentiation of stem cells and in iPSCs formation, respectively.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,*These two authors made equal contributions
| | - Yu-Ting Wu
- 2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan.,*These two authors made equal contributions
| | - Chia-Ling Tsai
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan
| | - Yau-Huei Wei
- 1 Institute of Biomedical Sciences, 145474 Mackay Medical College , New Taipei City 252, Taiwan.,2 Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
115
|
Dhaliwal A, Pelka S, Gray DS, Moghe PV. Engineering Lineage Potency and Plasticity of Stem Cells using Epigenetic Molecules. Sci Rep 2018; 8:16289. [PMID: 30389989 PMCID: PMC6215020 DOI: 10.1038/s41598-018-34511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Stem cells are considered as a multipotent regenerative source for diseased and dysfunctional tissues. Despite the promise of stem cells, the inherent capacity of stem cells to convert to tissue-specific lineages can present a major challenge to the use of stem cells for regenerative medicine. We hypothesized that epigenetic regulating molecules can modulate the stem cell’s developmental program, and thus potentially overcome the limited lineage differentiation that human stem cells exhibit based on the source and processing of stem cells. In this study, we screened a library of 84 small molecule pharmacological agents indicated in nucleosomal modification and identified a sub-set of specific molecules that influenced osteogenesis in human mesenchymal stem cells (hMSCs) while maintaining cell viability in-vitro. Pre-treatment with five candidate hits, Gemcitabine, Decitabine, I-CBP112, Chidamide, and SIRT1/2 inhibitor IV, maximally enhanced osteogenesis in-vitro. In contrast, five distinct molecules, 4-Iodo-SAHA, Scriptaid, AGK2, CI-amidine and Delphidine Chloride maximally inhibited osteogenesis. We then tested the role of these molecules on hMSCs derived from aged human donors and report that small epigenetic molecules, namely Gemcitabine and Chidamide, can significantly promote osteogenic differentiation by 5.9- and 2.3-fold, respectively. Taken together, this study demonstrates new applications of identified small molecule drugs for sensitively regulating the lineage plasticity fates of bone-marrow derived mesenchymal stem cells through modulating the epigenetic profile of the cells.
Collapse
Affiliation(s)
- Anandika Dhaliwal
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Sandra Pelka
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - David S Gray
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States. .,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
116
|
Cho SJ, Kim KT, Jeong HC, Park JC, Kwon OS, Song YH, Shin JG, Kang S, Kim W, Shin HD, Lee MO, Moon SH, Cha HJ. Selective Elimination of Culture-Adapted Human Embryonic Stem Cells with BH3 Mimetics. Stem Cell Reports 2018; 11:1244-1256. [PMID: 30293852 PMCID: PMC6235677 DOI: 10.1016/j.stemcr.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023] Open
Abstract
The selective survival advantage of culture-adapted human embryonic stem cells (hESCs) is a serious safety concern for their clinical application. With a set of hESCs with various passage numbers, we observed that a subpopulation of hESCs at late passage numbers was highly resistant to various cell death stimuli, such as YM155, a survivin inhibitor. Transcriptome analysis from YM155-sensitive (YM155S) and YM155-resistant (YM155R) hESCs demonstrated that BCL2L1 was highly expressed in YM155R hESCs. By matching the gene signature of YM155R hESCs with the Cancer Therapeutics Response Portal dataset, BH3 mimetics were predicted to selectively ablate these cells. Indeed, short-course treatment with a sub-optimal dose of BH3 mimetics induced the spontaneous death of YM155R, but not YM155S hESCs by disrupting the mitochondrial membrane potential. YM155S hESCs remained pluripotent following BH3 mimetics treatment. Therefore, the use of BH3 mimetics is a promising strategy to specifically eliminate hESCs with a selective survival advantage. Culture-adapted hESCs against YM155/genotoxic agents mediated by high BCL-xL expression Selective cell death of culture-adapted hPSCs by BH3 mimetics Pluripotency maintenance of normal hESCs after exposure to BH3 mimetics
Collapse
Affiliation(s)
- Seung-Ju Cho
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Keun-Tae Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Ho-Chang Jeong
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Ju-Chan Park
- School of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ok-Seon Kwon
- School of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yun-Ho Song
- Department of Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Gon Shin
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Seungmin Kang
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Wankyu Kim
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi-Ok Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Hyuk-Jin Cha
- School of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
117
|
SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis 2018; 9:893. [PMID: 30166528 PMCID: PMC6117269 DOI: 10.1038/s41419-018-0920-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 01/22/2023]
Abstract
The role of sirtuins (SIRTs) in cancer biology has been the focus of recent research. The similarities between underlying pathways involved in the induction of pluripotent stem cells and transformation of cancer cells revealed the role of SIRTs in cellular reprogramming. Seven SIRTs have been identified in mammals and downregulation of SIRT2 was found to facilitate the generation of primed pluripotent stem cells, such as human induced pluripotent stem cells. Herein, we evaluated the role of SIRT2 in naive pluripotent stem cell generation using murine cells. We found that absolute depletion of SIRT2 in mouse embryonic fibroblasts resulted in a notable reduction in reprogramming efficiency. SIRT2 depletion not only upregulated elements of the INK4/ARF locus, which in turn had an antiproliferative effect, but also significantly altered the expression of proteins related to the PI3K/Akt and Hippo pathways, which are important signaling pathways for stemness. Thus, this study demonstrated that SIRT2 is required for cellular reprogramming to naive states of pluripotency in contrast to primed pluripotency states.
Collapse
|
118
|
Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends Endocrinol Metab 2018; 29:549-559. [PMID: 29907340 DOI: 10.1016/j.tem.2018.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
Abstract
The aldolase family members involved in metabolism and glycolysis are present in three isoforms: ALDOA, ALDOB, and ALDOC. Aldolases are differentially expressed in human tissues, and aberrant expression has been observed in several human diseases and cancer types. However, non-enzymatic functions through protein-protein interactions or epigenetic modifications have been reported in recent years. Using high-throughput screening and -omics database integration, aldolase has been validated as an independent clinical prognostic marker of human cancers. Therefore, the aim of this review was to provide potential clinical value from in silico predictions and also summarize well-known signaling axes or phenotypes in various cancer types. Finally, we discuss the role of aldolase in the treatment of human diseases and cancers.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Chieh Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ping Tien
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
119
|
Ma W, Zhao X, Wang K, Liu J, Huang G. Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell lung cancer. Cancer Biol Ther 2018; 19:835-846. [PMID: 30067423 DOI: 10.1080/15384047.2018.1480281] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Combination chemotherapy is a potentially promising approach to enhance anticancer activity, overcome drug resistance, and improve disease-free and overall survival. The current study investigates the antitumor activity of sodium dichloroacetic acid (DCA) in combination with SIRT2 inhibitor Sirtinol and AGK2. We found that combining DCA with Sirtinol produced a synergistic therapeutic benefit in A549 and H1299 NSCLC cells in vitro and in a mouse A549 xenograft model. Synergistic potentiation of oxidative phosphorylation (OXPHOS) was observed, including decreased glucose consumption, decreased lactate production, increased OCR and increased ROS generation, possibly via co-targeting pyruvate dehydrogenase alpha 1(PDHA1). Mechanically, AGK2 and Sirtinol were found to increase the lysine-acetylation and decrease the serine-phosphorylation of PDHA1, which enabled the two inhibitors to synergize with DCA to further activate PDHA1. Besides, a AMPKα-ROS feed-forward loop was notably activated after the combined treatments compared with mono-therapy. Our results indicate that the combination of DCA and SIRT2 inhibitor may provide a promising therapeutic strategy to effectively kill cancer cells.
Collapse
Affiliation(s)
- Wenjing Ma
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Shanghai Key Laboratory for Molecular Imaging , Shanghai University of Medicine and Health Sciences , Shanghai , China
| | - Xiaoping Zhao
- b Department of Nuclear Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kaiying Wang
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jianjun Liu
- b Department of Nuclear Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Gang Huang
- a The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Department of Nuclear Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Shanghai Key Laboratory for Molecular Imaging , Shanghai University of Medicine and Health Sciences , Shanghai , China
| |
Collapse
|
120
|
Cho SJ, Kim KT, Kim JS, Kwon OS, Go YH, Kang NY, Heo H, Kim MR, Han DW, Moon SH, Chang YT, Cha HJ. A fluorescent chemical probe CDy9 selectively stains and enables the isolation of live naïve mouse embryonic stem cells. Biomaterials 2018; 180:12-23. [PMID: 30014963 DOI: 10.1016/j.biomaterials.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Human and mouse embryonic stem cells (ESCs) differ in terms of their pluripotency status, i.e., naïve vs. primed. This affects various biological properties and leads to several technical hurdles for future clinical applications, such as difficulties in chimera formation, single-cell passaging, and gene editing. In terms of generating functional human tissues and organs via mammalian interspecies chimerism, a fluorescent chemical probe that specifically labels naïve ESCs would help to isolate these cells and monitor their conversion. This study demonstrates that the fluorescent chemical probe compound of designation yellow 9 (CDy9) selectively stains naïve, but not primed, mouse ESCs (mESCs). CDy9 entered cells via Slc13a5, a highly expressed membrane transporter in naïve mESCs. Fluorescence-based cell sorting based on CDy9 staining successfully separated naïve mESCs from primed mESCs. Mice generated using CDy9+ cells isolated during the conversion of mouse epiblast stem cells into naïve mESCs exhibited coat color chimerism. Furthermore, CDy9 specifically stained cells in the inner cell mass of mouse embryos. These findings suggest that CDy9 is a useful tool to isolate functional naïve mESCs.
Collapse
Affiliation(s)
- Seung-Ju Cho
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Keun-Tae Kim
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jong-Soo Kim
- Department of Medicine, School of Medicine Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ok-Seon Kwon
- College of Pharmacy, Department of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Hyun Go
- Department of Life Sciences Sogang University, 35 Baeckbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Nam-Young Kang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore 138667, Singapore
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Mi-Rang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong Wook Han
- Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul, South Korea
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Department of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
121
|
Li Y, Zhang D, Kong L, Shi H, Tian X, Gao L, Liu Y, Wu L, Du B, Huang Z, Liang C, Wang Z, Yao R, Zhang Y. Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling. Exp Cell Res 2018; 370:78-86. [PMID: 29902536 DOI: 10.1016/j.yexcr.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/27/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
Metabolic dysfunction is a hallmark of cardiac hypertrophy and heart failure. During cardiac failure, the metabolism of cardiomyocyte switches from fatty acid oxidation to glycolysis. However, the roles of key metabolic enzymes in cardiac hypertrophy are not understood fully. Here in the present work, we identified Aldolase A (AldoA) as a core regulator of cardiac hypertrophy. The mRNA and protein levels of AldoA were significantly up-regulated in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced hypertrophic mouse hearts. Overexpression of AldoA in cardiomyocytes promoted ISO-induced cardiomyocyte hypertrophy, whereas AldoA knockdown repressed cardiomyocyte hypertrophy. In addition, adeno-associated virus 9 (AAV9)-mediated in vivo knockdown of AldoA in the hearts rescued ISO-induced decrease in cardiac ejection fraction and fractional shortening and repressed cardiac hypertrophy. Mechanism study revealed that AldoA repressed the activation of AMP-dependent protein kinase (AMPK) signaling in a liver kinase B1 (LKB1)-dependent and AMP-independent manner. Inactivation of AMPK is a core mechanism underlying AldoA-mediated promotion of ISO-induced cardiomyocyte hypertrophy. By contrast, activation of AMPK with metformin and AICAR blocked AldoA function during cardiomyocyte hypertrophy. In summary, our data support the notion that AldoA-AMPK axis is a core regulatory signaling sensing energetic status and participates in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianhong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingyao Kong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Shi
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leiming Wu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
122
|
Sonntag KC, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Neff C, Kong SW, Carter BS, Schweitzer J, Kim KS. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Prog Neurobiol 2018; 168:1-20. [PMID: 29653250 DOI: 10.1016/j.pneurobio.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects about 0.3% of the general population. As the population in the developed world ages, this creates an escalating burden on society both in economic terms and in quality of life for these patients and for the families that support them. Although currently available pharmacological or surgical treatments may significantly improve the quality of life of many patients with PD, these are symptomatic treatments that do not slow or stop the progressive course of the disease. Because motor impairments in PD largely result from loss of midbrain dopamine neurons in the substantia nigra pars compacta, PD has long been considered to be one of the most promising target diseases for cell-based therapy. Indeed, numerous clinical and preclinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells as a standardized therapeutic regimen has been fraught with fundamental ethical, practical, and clinical issues, prompting scientists to explore alternative cell sources. Based on groundbreaking establishments of human embryonic stem cells and induced pluripotent stem cells, these human pluripotent stem cells have been the subject of extensive research, leading to tremendous advancement in our understanding of these novel classes of stem cells and promising great potential for regenerative medicine. In this review, we discuss the prospects and challenges of human pluripotent stem cell-based cell therapy for PD.
Collapse
Affiliation(s)
- Kai-C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Laboratory for Translational Research on Neurodegeneration, 115 Mill Street, Belmont, MA, 02478, United States; Program for Neuropsychiatric Research, 115 Mill Street, Belmont, MA, 02478, United States
| | - Bin Song
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Nayeon Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Jin Hyuk Jung
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Pierre Leblanc
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Carolyn Neff
- Kaiser Permanente Medical Group, Irvine, CA, 92618, United States
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, United States; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States
| | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States.
| |
Collapse
|
123
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
124
|
Alfar EA, El-Armouche A, Guan K. MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovasc Res 2018; 114:779-781. [DOI: 10.1093/cvr/cvy065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ezzaldin Ahmed Alfar
- Institute of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
125
|
Zhang X, Azhar G, Wei JY. SIRT2 gene has a classic SRE element, is a downstream target of serum response factor and is likely activated during serum stimulation. PLoS One 2017; 12:e0190011. [PMID: 29267359 PMCID: PMC5739444 DOI: 10.1371/journal.pone.0190011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023] Open
Abstract
The sirtuin proteins are an evolutionarily conserved family of NAD+-dependent deacetylases that regulate various cellular functions. Among the seven sirtuins, SIRT2 is predominantly found in the cytoplasm, and is present in a wide range of tissues. Recent studies indicate that SIRT2 plays an important role in metabolic homeostasis. Several studies indicate that SIRT2 is upregulated under serum deprivation conditions. Since the serum response factor gene usually responds rapidly to serum deprivation and/or serum restoration following deprivation, we hypothesized that a common mechanism may serve to regulate both SIRT2 and SRF during serum stimulation. Using a bioinformatics approach, we searched the SRF binding motif in the SIRT2 gene, and found one classic CArG element (CCATAATAGG) in the SIRT2 gene promoter, which was bound to SRF in the electrophoretic mobility shift assay (EMSA). Serum deprivation induced SIRT2 expression, while SRF and the SRF binding protein, p49/STRAP, repressed SIRT2 gene expression. SIRT2 gene expression was also repressed by the Rho/SRF inhibitor, CCG-1423. These data demonstrate that the classic SRE element in the SIRT2 gene promoter region is functional and therefore, SIRT2 gene is a downstream target of the Rho/SRF signaling pathway. The increased expression of SRF that was observed in the aged heart may affect SIRT2 gene expression and contribute to altered metabolic status in senescence.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gohar Azhar
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeanne Y. Wei
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
126
|
Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci 2017; 18:ijms18122755. [PMID: 29257069 PMCID: PMC5751354 DOI: 10.3390/ijms18122755] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Focus on the Warburg effect, initially descriptive of increased glycolysis in cancer cells, has served to illuminate mitochondrial function in many other pathologies. This review explores our current understanding of the Warburg effect’s role in cancer, diabetes and ageing. We highlight how it can be regulated through a chain of oncogenic events, as a chosen response to impaired glucose metabolism or by chance acquisition of genetic changes associated with ageing. Such chain, choice or chance perspectives can be extended to help understand neurodegeneration, such as Alzheimer’s disease, providing clues with scope for therapeutic intervention. It is anticipated that exploration of Warburg effect pathways in extreme conditions, such as deep space, will provide further insights crucial for comprehending complex metabolic diseases, a frontier for medicine that remains equally significant for humanity in space and on earth.
Collapse
|
127
|
Abstract
The metabolic transition from mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis is critical for somatic reprogramming of induced pluripotent stem cells (iPSCs). SIRT2 has now been established as a previously unknown regulator of this metabolic transition during somatic reprogramming by controlling the acetylation status of glycolytic enzymes.
Collapse
|
128
|
Ciarlo E, Heinonen T, Théroude C, Herderschee J, Mombelli M, Lugrin J, Pfefferlé M, Tyrrell B, Lensch S, Acha-Orbea H, Le Roy D, Auwerx J, Roger T. Sirtuin 2 Deficiency Increases Bacterial Phagocytosis by Macrophages and Protects from Chronic Staphylococcal Infection. Front Immunol 2017; 8:1037. [PMID: 28894448 PMCID: PMC5581327 DOI: 10.3389/fimmu.2017.01037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 2 (SIRT2) is one of the seven members of the family of NAD+-dependent histone deacetylases. Sirtuins target histones and non-histone proteins according to their subcellular localization, influencing various biological processes. SIRT2 resides mainly in the cytoplasm and regulates cytoskeleton dynamics, cell cycle, and metabolic pathways. As such, SIRT2 has been implicated in the pathogenesis of neurodegenerative, metabolic, oncologic, and chronic inflammatory disorders. This motivated the development of SIRT2-directed therapies for clinical purposes. However, the impact of SIRT2 on antimicrobial host defense is largely unknown. Here, we address this question using SIRT2 knockout mice. We show that SIRT2 is the most highly expressed sirtuin in myeloid cells, especially macrophages. SIRT2 deficiency does not affect immune cell development and marginally impacts on intracellular signaling and cytokine production by splenocytes and macrophages. However, SIRT2 deficiency enhances bacterial phagocytosis by macrophages. In line with these observations, in preclinical models, SIRT2 deficiency increases survival of mice with chronic staphylococcal infection, while having no effect on the course of toxic shock syndrome toxin-1, LPS or TNF-induced shock, fulminant Escherichia coli peritonitis, sub-lethal Klebsiella pneumoniae pneumonia, and chronic candidiasis. Altogether, these data support the safety profile of SIRT2 inhibitors under clinical development in terms of susceptibility to infections.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Jacobus Herderschee
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Matteo Mombelli
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Jérôme Lugrin
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Marc Pfefferlé
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Beatrice Tyrrell
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Sarah Lensch
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| |
Collapse
|
129
|
Burger GA, Danen EHJ, Beltman JB. Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches. Front Oncol 2017; 7:162. [PMID: 28824874 PMCID: PMC5540937 DOI: 10.3389/fonc.2017.00162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can convert into motile mesenchymal cells, plays an important role in development and wound healing but is also involved in cancer progression. It is increasingly recognized that EMT is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including metastasis, is debated. Given the complexity of EMT regulation, computational modeling has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts in experimental data and to guide experiments by generating testable hypotheses. In this review, we provide an overview of computational modeling efforts that have been applied to regulation of EMT in the context of cancer progression and its associated tumor characteristics. Moreover, we identify possibilities to bridge different modeling approaches and point out outstanding questions in which computational modeling can contribute to advance our understanding of pathological EMT.
Collapse
Affiliation(s)
- Gerhard A Burger
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Erik H J Danen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Joost B Beltman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
130
|
Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V, Outeiro TF, Gomes P. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 2017; 26:4105-4117. [DOI: 10.1093/hmg/ddx298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023] Open
|