101
|
Affiliation(s)
- Alexander K. Price
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Brian M. Paegel
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| |
Collapse
|
102
|
Colin PY, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvönen M, Morgavi DP, Janssen DB, Hollfelder F. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 2015; 6:10008. [PMID: 26639611 PMCID: PMC4686663 DOI: 10.1038/ncomms10008] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/25/2015] [Indexed: 12/25/2022] Open
Abstract
Unculturable bacterial communities provide a rich source of biocatalysts, but their experimental discovery by functional metagenomics is difficult, because the odds are stacked against the experimentor. Here we demonstrate functional screening of a million-membered metagenomic library in microfluidic picolitre droplet compartments. Using bait substrates, new hydrolases for sulfate monoesters and phosphotriesters were identified, mostly based on promiscuous activities presumed not to be under selection pressure. Spanning three protein superfamilies, these break new ground in sequence space: promiscuity now connects enzymes with only distantly related sequences. Most hits could not have been predicted by sequence analysis, because the desired activities have never been ascribed to similar sequences, showing how this approach complements bioinformatic harvesting of metagenomic sequencing data. Functional screening of a library of unprecedented size with excellent assay sensitivity has been instrumental in identifying rare genes constituting catalytically versatile hubs in sequence space as potential starting points for the acquisition of new functions.
Collapse
Affiliation(s)
- Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Balint Kintses
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Charlotte M Miton
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mark F Mohamed
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Diego P Morgavi
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France.,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France
| | - Dick B Janssen
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
103
|
High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives. Int J Mol Sci 2015; 16:24918-45. [PMID: 26492240 PMCID: PMC4632782 DOI: 10.3390/ijms161024918] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Over the last three decades, protein engineering has established itself as an important tool for the development of enzymes and (therapeutic) proteins with improved characteristics. New mutagenesis techniques and computational design tools have greatly aided in the advancement of protein engineering. Yet, one of the pivotal components to further advance protein engineering strategies is the high-throughput screening of variants. Compartmentalization is one of the key features allowing miniaturization and acceleration of screening. This review focuses on novel screening technologies applied in protein engineering, highlighting flow cytometry- and microfluidics-based platforms.
Collapse
|
104
|
Lu J, Dimroth J, Weck M. Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis. J Am Chem Soc 2015; 137:12984-9. [PMID: 26426145 DOI: 10.1021/jacs.5b07257] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In Nature, incompatible catalytic transformations are being carried out simultaneously through compartmentalization that allows for the combination of incompatible catalysts in tandem reactions. Herein, we take the compartmentalization concept to the synthetic realm and present an approach that allows two incompatible transition metal catalyzed transformations to proceed in one pot in tandem. The key is the site isolation of both catalysts through compartmentalization using a core-shell micellar support in an aqueous environment. The support is based on amphiphilic triblock copolymers of poly(2-oxazoline)s with orthogonal functional groups on the side chain that can be used to cross-link covalently the micelle and to conjugate two metal catalysts in different domains of the micelle. The micelle core and shell provide different microenvironments for the transformations: Co-catalyzed hydration of an alkyne proceeds in the hydrophobic core, while the Rh-catalyzed asymmetric transfer hydrogenation of the intermediate ketone into a chiral alcohol occurs in the hydrophilic shell.
Collapse
Affiliation(s)
- Jie Lu
- Molecular Design Institute and Department of Chemistry, New York University , New York, New York 10003, United States
| | - Jonas Dimroth
- Molecular Design Institute and Department of Chemistry, New York University , New York, New York 10003, United States
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
105
|
Colin PY, Zinchenko A, Hollfelder F. Enzyme engineering in biomimetic compartments. Curr Opin Struct Biol 2015; 33:42-51. [PMID: 26311177 DOI: 10.1016/j.sbi.2015.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
The success of a directed evolution approach to creating custom-made enzymes relies in no small part on screening as many clones as possible. The miniaturisation of assays into pico to femtoliter compartments (emulsion droplets, vesicles or gel-shell beads) makes directed evolution campaigns practically more straightforward than current large scale industrial screening that requires liquid handling equipment and much manpower. Several recent experimental formats have established protocols to screen more than 10 million compartments per day, representing unprecedented throughput at low cost. This review introduces the emerging approaches towards making biomimetic man-made compartments that are poised to be adapted by a wider circle of researchers. In addition to cost and time saving, control of selection pressures and conditions, the quantitative readout that reports on every library members and the ability to develop strategies based on these data will increase the degrees of freedom in designing and testing strategies for directed evolution experiments.
Collapse
Affiliation(s)
- Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
106
|
van Vliet LD, Colin PY, Hollfelder F. Bioinspired genotype-phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins. Interface Focus 2015; 5:20150035. [PMID: 26464791 PMCID: PMC4590426 DOI: 10.1098/rsfs.2015.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments-water-in-oil droplets and gel-shell beads-for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological components.
Collapse
Affiliation(s)
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
107
|
Pan M, Lyu F, Tang SKY. Fluorinated Pickering Emulsions with Nonadsorbing Interfaces for Droplet-based Enzymatic Assays. Anal Chem 2015; 87:7938-43. [DOI: 10.1021/acs.analchem.5b01753] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ming Pan
- Department
of Material Science and Engineering, Stanford University, Stanford, California 94305-2004, United States
| | - Fengjiao Lyu
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305-2004, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305-2004, United States
| |
Collapse
|
108
|
Meyer A, Pellaux R, Potot S, Becker K, Hohmann HP, Panke S, Held M. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem 2015. [PMID: 26201745 DOI: 10.1038/nchem.2301] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microcompartmentalization offers a high-throughput method for screening large numbers of biocatalysts generated from genetic libraries. Here we present a microcompartmentalization protocol for benchmarking the performance of whole-cell biocatalysts. Gel capsules served as nanolitre reactors (nLRs) for the cultivation and analysis of a library of Bacillus subtilis biocatalysts. The B. subtilis cells, which were co-confined with E. coli sensor cells inside the nLRs, converted the starting material cellobiose into the industrial product vitamin B2. Product formation triggered a sequence of reactions in the sensor cells: (1) conversion of B2 into flavin mononucleotide (FMN), (2) binding of FMN by a RNA riboswitch and (3) self-cleavage of RNA, which resulted in (4) the synthesis of a green fluorescent protein (GFP). The intensity of GFP fluorescence was then used to isolate B. subtilis variants that convert cellobiose into vitamin B2 with elevated efficiency. The underlying design principles of the assay are general and enable the development of similar protocols, which ultimately will speed up the optimization of whole-cell biocatalysts.
Collapse
Affiliation(s)
- Andreas Meyer
- 1] Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland [2] FGen GmbH, Basel 4057, Switzerland
| | - René Pellaux
- 1] Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland [2] FGen GmbH, Basel 4057, Switzerland
| | | | - Katja Becker
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | | | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
109
|
Zhou XM, Shimanovich U, Herling TW, Wu S, Dobson CM, Knowles TPJ, Perrett S. Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS NANO 2015; 9:5772-81. [PMID: 26030507 PMCID: PMC4537113 DOI: 10.1021/acsnano.5b00061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
Amyloid fibrils represent a generic class of protein structure associated with both pathological states and with naturally occurring functional materials. This class of protein nanostructure has recently also emerged as an excellent foundation for sophisticated functional biocompatible materials including scaffolds and carriers for biologically active molecules. Protein-based materials offer the potential advantage that additional functions can be directly incorporated via gene fusion producing a single chimeric polypeptide that will both self-assemble and display the desired activity. To succeed, a chimeric protein system must self-assemble without the need for harsh triggering conditions which would damage the appended functional protein molecule. However, the micrometer to nanoscale patterning and morphological control of protein-based nanomaterials has remained challenging. This study demonstrates a general approach for overcoming these limitations through the microfluidic generation of enzymatically active microgels that are stabilized by amyloid nanofibrils. The use of scaffolds formed from biomaterials that self-assemble under mild conditions enables the formation of catalytic microgels while maintaining the integrity of the encapsulated enzyme. The enzymatically active microgel particles show robust material properties and their porous architecture allows diffusion in and out of reactants and products. In combination with microfluidic droplet trapping approaches, enzymatically active microgels illustrate the potential of self-assembling materials for enzyme immobilization and recycling, and for biological flow-chemistry. These design principles can be adopted to create countless other bioactive amyloid-based materials with diverse functions.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ulyana Shimanovich
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Address correspondence to ,
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Address correspondence to ,
| |
Collapse
|
110
|
Abstract
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
111
|
Denard CA, Ren H, Zhao H. Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 2015; 25:55-64. [DOI: 10.1016/j.cbpa.2014.12.036] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
|
112
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
113
|
Yang H, Fu L, Wei L, Liang J, Binks BP. Compartmentalization of Incompatible Reagents within Pickering Emulsion Droplets for One-Pot Cascade Reactions. J Am Chem Soc 2015; 137:1362-71. [DOI: 10.1021/ja512337z] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hengquan Yang
- School
of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road
92, Taiyuan 030006, China
| | - Luman Fu
- School
of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road
92, Taiyuan 030006, China
| | - Lijuan Wei
- School
of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road
92, Taiyuan 030006, China
| | - Jifen Liang
- School
of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road
92, Taiyuan 030006, China
| | - Bernard P. Binks
- Surfactant
and Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
114
|
Harimech PK, Hartmann R, Rejman J, del Pino P, Rivera-Gil P, Parak WJ. Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. J Mater Chem B 2015; 3:2801-2807. [DOI: 10.1039/c4tb02077d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Capsules filled with enzymes and fluorescence probes allow in situ enzymatic activity as well as kinetics on a single particle level to be monitored.
Collapse
Affiliation(s)
| | - Raimo Hartmann
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
| | - Joanna Rejman
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
| | | | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Marburg
- Germany
- CIC Biomagune
| |
Collapse
|
115
|
Yong KJ, Scott DJ. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS). Biotechnol Bioeng 2014; 112:438-46. [DOI: 10.1002/bit.25451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- K. J. Yong
- The Florey Institute of Neuroscience and Mental Health and The Department of Biochemistry and Molecular Biology; The University of Melbourne; Parkville Victoria 3010 Australia
| | - D. J. Scott
- The Florey Institute of Neuroscience and Mental Health and The Department of Biochemistry and Molecular Biology; The University of Melbourne; Parkville Victoria 3010 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
116
|
|