101
|
Iino R, Noji H. Rotary catalysis of the stator ring of F(1)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1732-9. [PMID: 22465022 DOI: 10.1016/j.bbabio.2012.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 11/28/2022]
Abstract
F(1)-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α(3)β(3) ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a "dictator" completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F(1)-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Ryota Iino
- Department of Applied Chemistry, the University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
102
|
Komoriya Y, Ariga T, Iino R, Imamura H, Okuno D, Noji H. Principal role of the arginine finger in rotary catalysis of F1-ATPase. J Biol Chem 2012; 287:15134-42. [PMID: 22403407 DOI: 10.1074/jbc.m111.328153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F(1)-ATPase (F(1)) is an ATP-driven rotary motor wherein the γ subunit rotates against the surrounding α(3)β(3) stator ring. The 3 catalytic sites of F(1) reside on the interface of the α and β subunits of the α(3)β(3) ring. While the catalytic residues predominantly reside on the β subunit, the α subunit has 1 catalytically critical arginine, termed the arginine finger, with stereogeometric similarities with the arginine finger of G-protein-activating proteins. However, the principal role of the arginine finger of F(1) remains controversial. We studied the role of the arginine finger by analyzing the rotation of a mutant F(1) with a lysine substitution of the arginine finger. The mutant showed a 350-fold longer catalytic pause than the wild-type; this pause was further lengthened by the slowly hydrolyzed ATP analog ATPγS. On the other hand, the mutant F(1) showed highly unidirectional rotation with a coupling ratio of 3 ATPs/turn, the same as wild-type, suggesting that cooperative torque generation by the 3 β subunits was not impaired. The hybrid F(1) carrying a single copy of the α mutant revealed that the reaction step slowed by the mutation occurs at +200° from the binding angle of the mutant subunit. Thus, the principal role of the arginine finger is not to mediate cooperativity among the catalytic sites, but to enhance the rate of the ATP cleavage by stabilizing the transition state of ATP hydrolysis. Lysine substitution also caused frequent pauses because of severe ADP inhibition, and a slight decrease in ATP-binding rate.
Collapse
Affiliation(s)
- Yoshihito Komoriya
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Blum DJ, Ko YH, Pedersen PL. Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP. Biochemistry 2012; 51:1532-46. [DOI: 10.1021/bi201595v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Blum
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Young H. Ko
- Cancer Cure Med, LLC, 300 Redland Court, Suite 212, Owings Mills, Maryland
21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
104
|
Watanabe R, Noji H. Chemomechanical coupling of F1-ATPase under hydrolysis conditions. Biophysics (Nagoya-shi) 2012; 8:73-8. [PMID: 27493523 PMCID: PMC4629648 DOI: 10.2142/biophysics.8.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/15/2012] [Indexed: 12/04/2022] Open
Abstract
F1-ATPase (F1) is the smallest rotary motor protein that couples ATP hydrolysis/synthesis to rotary motion in a highly reversible manner. F1 is unique compared with other motor proteins because of its high efficiency and reversibility in converting chemical energy into mechanical work. To determine the energy conversion mechanism of F1-ATPase, we developed a novel single-molecule manipulation technique with magnetic tweezers and determined the timing of Pi release, which was the last unknown piece of the chemomechanical coupling scheme of F1. The established fundamental chemomechanical coupling scheme provides evidence to explain the high reversibility between catalysis and mechanical work.
Collapse
Affiliation(s)
- Rikiya Watanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
105
|
Watanabe R, Okuno D, Sakakihara S, Shimabukuro K, Iino R, Yoshida M, Noji H. Mechanical modulation of catalytic power on F1-ATPase. Nat Chem Biol 2011; 8:86-92. [PMID: 22101603 DOI: 10.1038/nchembio.715] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/01/2011] [Indexed: 11/09/2022]
Abstract
The conformational fluctuation of enzymes has a crucial role in reaction acceleration. However, the contribution to catalysis enhancement of individual substates with conformations far from the average conformation remains unclear. We studied the catalytic power of the rotary molecular motor F(1)-ATPase from thermophilic Bacillus PS3 as it was stalled in transient conformations far from a stable pausing angle. The rate constants of ATP binding and hydrolysis were determined as functions of the rotary angle. Both rates exponentially increase with rotation, revealing the molecular basis of positive cooperativity among three catalytic sites: elementary reaction steps are accelerated via the mechanical rotation driven by other reactions on neighboring catalytic sites. The rate enhancement induced by ATP binding upon rotation was greater than that brought about by hydrolysis, suggesting that the ATP binding step contributes more to torque generation than does the hydrolysis step. Additionally, 9% of the ATP-driven rotary step was supported by thermal diffusion, suggesting that acceleration of the ATP docking process occurs via thermally agitated conformational fluctuations.
Collapse
Affiliation(s)
- Rikiya Watanabe
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Yoshidome T. Importance of water entropy in rotation mechanism of F 1-ATPase. Biophysics (Nagoya-shi) 2011; 7:113-122. [PMID: 27857599 PMCID: PMC5036781 DOI: 10.2142/biophysics.7.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/21/2011] [Indexed: 12/01/2022] Open
Abstract
We briefly review our theoretical study on the rotation scheme of F1-ATPase. In the scheme, the key factor is the water entropy which has been shown to drive a variety of self-assembly processes in biological systems. We decompose the crystal structure of F1-ATPase into three sub-complexes each of which is composed of the γ subunit, one of the β subunits, and two α subunits adjacent to them. The βE, βTP, and βDP subunits are involved in the sub-complexes I, II, and III, respectively. We calculate the hydration entropy of each sub-complex using a hybrid of the integral equation theory for molecular liquids and the morphometric approach. It is found that the absolute value of the hydration entropy follows the order, sub-complex I > sub-complex II > sub-complex III. Moreover, the differences are quite large, which manifests highly asymmetrical packing of F1-ATPase. In our picture, this asymmetrical packing plays crucially important roles in the rotation of the γ subunit. We discuss how the rotation is induced by the water-entropy effect coupled with such chemical processes as ATP binding, ATP hydrolysis, and release of the products.
Collapse
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
107
|
Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci U S A 2011; 108:17951-6. [PMID: 21997211 DOI: 10.1073/pnas.1106787108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a nanosized biological energy transducer working as part of F(o)F(1)-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Actually, fundamental questions such as how efficiently F(1)-ATPase transduces free energy remain unanswered. Here, we demonstrated reversible rotations of isolated F(1)-ATPase in discrete 120° steps by precisely controlling both the external torque and the chemical potential of ATP hydrolysis as a model system of F(o)F(1)-ATP synthase. We found that the maximum work performed by F(1)-ATPase per 120° step is nearly equal to the thermodynamical maximum work that can be extracted from a single ATP hydrolysis under a broad range of conditions. Our results suggested a 100% free-energy transduction efficiency and a tight mechanochemical coupling of F(1)-ATPase.
Collapse
|
108
|
Uchihashi T, Iino R, Ando T, Noji H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F₁-ATPase. Science 2011; 333:755-8. [PMID: 21817054 DOI: 10.1126/science.1205510] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
F(1) is an adenosine triphosphate (ATP)-driven motor in which three torque-generating β subunits in the α(3)β(3) stator ring sequentially undergo conformational changes upon ATP hydrolysis to rotate the central shaft γ unidirectionally. Although extensive experimental and theoretical work has been done, the structural basis of cooperative torque generation to realize the unidirectional rotation remains elusive. We used high-speed atomic force microscopy to show that the rotorless F(1) still "rotates"; in the isolated α(3)β(3) stator ring, the three β subunits cyclically propagate conformational states in the counterclockwise direction, similar to the rotary shaft rotation in F(1). The structural basis of unidirectionality is programmed in the stator ring. These findings have implications for cooperative interplay between subunits in other hexameric ATPases.
Collapse
Affiliation(s)
- Takayuki Uchihashi
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
109
|
Okazaki KI, Takada S. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Structure 2011; 19:588-98. [PMID: 21481781 DOI: 10.1016/j.str.2011.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
F(1)-ATPase, a rotary motor powered by adenosine triphosphate hydrolysis, has been extensively studied by various methods. Here, we performed a systematic comparison of 29 X-ray crystal structures of F(1)-complexes, finding fine interplay among enzyme structures, catalysis, and rotations. First, analyzing the 87 structures of enzymatic αβ-subunits, we confirmed that the two modes, the hinge motion of β-subunit and the loose/tight motion of the αβ-interface, dominate the variations. The structural ensemble was nearly contiguous bridging three clusters, αβ(TP), αβ(DP), and αβ(E). Second, the catalytic site analysis suggested the correlation between the phosphate binding and the tightening of the αβ-interface. Third, addressing correlations of enzymatic structures with the orientations of the central stalk γ, we found that the γ rotation highly correlates with loosening of αβ(E)-interface and β(DP) hinge motions. Finally, calculating the helix 6 angle of β, we identified the recently observed partially closed conformation being consistent with β(HC).
Collapse
Affiliation(s)
- Kei-ichi Okazaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
110
|
Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao YL, Botros YY, Sauvage JP, Stoddart JF. A Light-Stimulated Molecular Switch Driven by Radical-Radical Interactions in Water. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102510] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
111
|
Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao YL, Botros YY, Sauvage JP, Stoddart JF. A Light-Stimulated Molecular Switch Driven by Radical-Radical Interactions in Water. Angew Chem Int Ed Engl 2011; 50:6782-8. [PMID: 21717550 DOI: 10.1002/anie.201102510] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.
Collapse
Affiliation(s)
- Daichi Okuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
113
|
Manimekalai MSS, Kumar A, Jeyakanthan J, Grüber G. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase. J Mol Biol 2011; 408:736-54. [PMID: 21396943 DOI: 10.1016/j.jmb.2011.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/18/2022]
Abstract
Archaeal A-ATP synthases catalyze the formation of the energy currency ATP. The chemical mechanisms of ATP synthesis in A-ATP synthases are unknown. We have determined the crystal structure of a transition-like state of the vanadate-bound form of catalytic subunit A (A(Vi)) of the A-ATP synthase from Pyrococcus horikoshii OT3. Two orthovanadate molecules were observed in the A(Vi) structure, one of which interacts with the phosphate binding loop through residue S238. The second vanadate is positioned in the transient binding site, implicating for the first time the pathway for phosphate entry to the catalytic site. Moreover, since residues K240 and T241 are proposed to be essential for catalysis, the mutant structures of K240A and T241A were also determined. The results demonstrate the importance of these two residues for transition-state stabilization. The structures presented shed light on the diversity of catalytic mechanisms used by the biological motors A- and F-ATP synthases and eukaryotic V-ATPases.
Collapse
|
114
|
Yoshidome T, Ito Y, Ikeguchi M, Kinoshita M. Rotation Mechanism of F1-ATPase: Crucial Importance of the Water Entropy Effect. J Am Chem Soc 2011; 133:4030-9. [PMID: 21348521 DOI: 10.1021/ja109594y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
115
|
|
116
|
Fang L, Basu S, Sue CH, Fahrenbach AC, Stoddart JF. Syntheses and Dynamics of Donor−Acceptor [2]Catenanes in Water. J Am Chem Soc 2010; 133:396-9. [DOI: 10.1021/ja1087562] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Fang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Subhadeep Basu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chi-Hau Sue
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Albert C. Fahrenbach
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
117
|
|
118
|
Haruyama T, Hirono-Hara Y, Kato-Yamada Y. Inhibition of thermophilic F 1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition. Biophysics (Nagoya-shi) 2010; 6:59-65. [PMID: 27857586 PMCID: PMC5036666 DOI: 10.2142/biophysics.6.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/28/2010] [Indexed: 12/01/2022] Open
Abstract
The F1-ATPase, the soluble part of FoF1-ATP synthase, is a rotary molecular motor consisting of α3β3γδε. The γ and ε subunits rotate relative to the α3β3δ sub-complex on ATP hydrolysis by the β subunit. The ε subunit is known as an endogenous inhibitor of the ATPase activity of the F1-ATPase and is believed to function as a regulator of the ATP synthase. This inhibition by the ε subunit (ε inhibition) of F1-ATPase from thermophilic Bacillus PS3 was analyzed by single molecule measurements. By using a mutant ε subunit deficient in ATP binding, reversible transitions between active and inactive states were observed. Analysis of pause and rotation durations showed that the ε inhibition takes a different path from the ADP-Mg inhibition. Furthermore, the addition of the mutant ε subunit to the α3β3γ sub-complex was found to facilitate recovery of the ATPase activity from the ADP-Mg inhibition. Thus, it was concluded that these two inhibitions are essentially exclusive of each other.
Collapse
Affiliation(s)
- Takamitsu Haruyama
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoko Hirono-Hara
- Institute of Industrial Science, the University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|