101
|
Nourse JL, Prieto JL, Dickson AR, Lu J, Pathak MM, Tombola F, Demetriou M, Lee AP, Flanagan LA. Membrane biophysics define neuron and astrocyte progenitors in the neural lineage. Stem Cells 2014; 32:706-16. [PMID: 24105912 DOI: 10.1002/stem.1535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self-renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes. Accurately identifying and characterizing the different progenitor cells in this lineage has continued to be a challenge for the field. We found previously that populations of NSPCs with more neurogenic progenitors (NPs) can be distinguished from those with more astrogenic progenitors (APs) by their inherent biophysical properties, specifically the electrophysiological property of whole cell membrane capacitance, which we characterized with dielectrophoresis (DEP). Here, we hypothesize that inherent electrophysiological properties are sufficient to define NPs and APs and test this by determining whether isolation of cells solely by these properties specifically separates NPs and APs. We found NPs and APs are enriched in distinct fractions after separation by electrophysiological properties using DEP. A single round of DEP isolation provided greater NP enrichment than sorting with PSA-NCAM, which is considered an NP marker. Additionally, cell surface N-linked glycosylation was found to significantly affect cell fate-specific electrophysiological properties, providing a molecular basis for the cell membrane characteristics. Inherent plasma membrane biophysical properties are thus sufficient to define progenitor cells of differing fate potential in the neural lineage, can be used to specifically isolate these cells, and are linked to patterns of glycosylation on the cell surface.
Collapse
Affiliation(s)
- J L Nourse
- Department of Neurology, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca²⁺ signaling. Nat Immunol 2014; 15:1038-45. [PMID: 25263124 DOI: 10.1038/ni.3007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells. During thymocyte development, N-glycan branching varied approximately 15-fold. N-glycan branching was required for positive selection and decoupled Lck signaling from TCR-driven Ca(2+) flux to simultaneously promote low-affinity peptide-MHC responses while inhibiting high-affinity ones. Therefore, N-glycan branching imposes a sliding scale on interactions between peptide-MHC and TCR that bidirectionally expands the affinity range for positive selection.
Collapse
|
103
|
Oreja-Guevara C, Wiendl H, Kieseier BC, Airas L. Specific aspects of modern life for people with multiple sclerosis: considerations for the practitioner. Ther Adv Neurol Disord 2014; 7:137-49. [PMID: 24587828 DOI: 10.1177/1756285613501575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, debilitating, neurodegenerative disease that has a high impact on patients' quality of life. Individuals are often diagnosed in early adulthood and are faced with the difficulty of managing their lifestyle within the context of this chronic illness. Here we review factors that influence the disease course and the challenges that might be encountered when managing patients with MS. The majority of diagnosed patients are women of childbearing age, making pregnancy-related issues a key concern. MS typically stabilizes during pregnancy and evidence suggests that the disease has no impact on the risk of complications or outcomes. However, the effect of disease-modifying therapies on outcomes is less clear, and discontinuation of treatment prior to pregnancy or when breastfeeding is recommended. Awareness of genetic risk factors is important for patients planning a family, as several genes increase the risk of MS. Further aspects that require consideration include infections, vaccinations, environmental factors, surgery and the emergence of osteoporosis. Vaccinations are generally not a risk factor for MS and may be beneficial in terms of protection against infection and reducing the number of relapses. Environmental factors such as vitamin D deficiency, low exposure to sunlight, smoking and Epstein-Barr virus infection can all negatively influence the disease course. Furthermore, osteoporosis is generally higher in patients with MS than the general population, and the risk is increased by the environmental and genetic factors associated with the disease; bone mineral density should be assessed and smoking cessation and correction of serum vitamin D levels are recommended. Finally, as patients with MS are typically young, they are at low risk of surgery-related complications, although they should be carefully monitored postoperatively. Awareness of, and planning around, these factors may minimize the impact of the disease on patients' lifestyle.
Collapse
Affiliation(s)
- Celia Oreja-Guevara
- Department of Neurology, University Hospital San Carlos, IdISCC, Madrid, Spain
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Laura Airas
- Department of Neurology, University of Turku, Turku, Finland
| | | |
Collapse
|
104
|
Kondapalli KC, Prasad H, Rao R. An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 2014; 8:172. [PMID: 25002837 PMCID: PMC4066934 DOI: 10.3389/fncel.2014.00172] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 12/02/2022] Open
Abstract
Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na(+)/H(+) exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na(+), K(+)) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
105
|
Mendez-Huergo SP, Maller SM, Farez MF, Mariño K, Correale J, Rabinovich GA. Integration of lectin–glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev 2014; 25:247-55. [DOI: 10.1016/j.cytogfr.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
|
106
|
Scott DW, Black LL, Vallejo MO, Kabarowski JH, Patel RP. Increased sensitivity of Apolipoprotein E knockout mice to swainsonine dependent immunomodulation. Immunobiology 2014; 219:497-502. [PMID: 24674240 DOI: 10.1016/j.imbio.2014.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
The mechanisms that mediate accelerated atherosclerosis in autoimmune diseases remain unclear. One common mechanism that has been documented in autoimmune diseases and atherosclerosis is formation of hypoglycosyalted N-glycans on the cell surface. In this study we tested the effects of swainsonine, a class II α-mannosidase inhibitor which results in formation of hypoglycosylated N-glycans, on atherogenesis and immune cell dynamics in the atheroprone and hypercholesterolemic ApoE -/- mouse. Wild type or ApoE-/- mice (8 weeks of age) were fed a normal chow diet and administered swainsonine via the drinking water for 8 weeks at which time, atherosclerosis, and systemic markers of markers of inflammation were evaluated. Interestingly, no change in the rate of atherosclerosis development was observed in ApoE -/- mice treated with swainsonine. However, swainsonine significantly increased the number of peripheral blood leukocytes in ApoE -/- mice, with trends toward similar increases in swainsonine treated wild type mice noted. Assessment of leukocyte subsets using specific markers of all major blood lineages indicated that the increase in circulating leukocytes was due to the elevated number of progenitor cells. Consistent with swainsonine having a greater effect in ApoE -/- vs. wild type mice, increases in circulating inflammatory markers (IgA, IgG and chemokines) were observed in the former. Collectively, these data demonstrate that predisposition of ApoE -/- mice to vascular disease is associated with sensitization to the immunomodulatory effects of swainsonine and indicate that changes in N-glycans may provide a mechanism linking autoimmunity to atherogenesis.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Leland L Black
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew O Vallejo
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Janusz H Kabarowski
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rakesh P Patel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
107
|
Liu J, Zhang HX. CTLA-4 gene and the susceptibility of multiple sclerosis: an updated meta-analysis study including 12,916 cases and 15,455 controls. J Neurogenet 2014; 28:153-63. [PMID: 24665874 DOI: 10.3109/01677063.2014.880703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is a cell surface molecule involved in the regulation of T cells. Single-nucleotide polymorphisms (SNPs) of CTLA-4 gene are known to be associated with susceptibility to several autoimmune diseases, including multiple sclerosis (MS). This study aimed to evaluate the association between CTLA-4 and the risk of MS. Comprehensive meta-analysis was applied to case-control studies of the association between MS and CTLA-4 to assess the joint evidence for the association, the influence of individual studies, and evidence for publication bias. The authors searched PubMed, MEDLINE, Cochrane Library, and reference lists of relevant studies to September 2013. In all, the allele or genotype analysis showed no significant association between + 49A/G, - 318C/T, or CT60A/G and MS. And the subgroups of the three polymorphisms divided into Americas, Europe, and Asia showed no significant association with MS. The sensitivity analysis or publication bias analysis showed no significance. In conclusion, this comprehensive meta-analysis suggested that + 49A/G, - 318C/T, or CT60A/G polymorphism, either in total analysis or in subgroup analyses, has no significant association with MS disease.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | | |
Collapse
|
108
|
Family studies of type 1 diabetes reveal additive and epistatic effects between MGAT1 and three other polymorphisms. Genes Immun 2014; 15:218-23. [PMID: 24572742 PMCID: PMC4047175 DOI: 10.1038/gene.2014.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/08/2022]
Abstract
In a recent study on multiple sclerosis (MS), we observed additive effects and epistatic interactions between variants of four genes that converge to induce T-cell hyperactivity by altering Asn-(N)-linked protein glycosylation: namely, the Golgi enzyme MGAT1, cytotoxic T-lymphocyte antigen 4 (CTLA-4), interleukin-2 receptor-α (IL2RA) and interleukin-7 receptor-α (IL7RA). As the CTLA-4, IL2RA and IL7RA variants are associated with type 1 diabetes (T1D), we examined for joint effects in T1D. Employing a novel conditional logistic regression for family-based data sets, epistatic and additive effects were observed using 1423 multiplex families from the Type 1 Diabetes Genetic Consortium data set. The IL2RA and IL7RA variants had univariate association in MS and T1D, whereas the MGAT1 and CTLA-4 variants associated with only MS or T1D, respectively. However, similar to MS, the MGAT1 variant haplotype interacted with CTLA4 (P=0.03), and a combination of IL2RA and IL7RA (P=0.01). The joint effects of MGAT1, CTLA4, IL2RA, IL7RA and the two interactions using a multiple conditional logistic regression were statistically highly significant (P<5 × 10(-10)). The MGAT1-CTLA-4 interaction was replicated (P=0.01) in 179 trio families from the Genetics of Kidneys in Diabetes study. These data are consistent with defective N-glycosylation of T cells contributing to T1D pathogenesis.
Collapse
|
109
|
Williams R, Ma X, Schott RK, Mohammad N, Ho CY, Li CF, Chang BSW, Demetriou M, Dennis JW. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution. PLoS One 2014; 9:e86088. [PMID: 24475074 PMCID: PMC3901687 DOI: 10.1371/journal.pone.0086088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/10/2013] [Indexed: 12/02/2022] Open
Abstract
Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions) and site multiplicity (backup and status quo) might be revealed by a phylogenic examination of glycoproteins and NXS/T(X≠P) N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A)-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A) content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A) is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A)-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have contributed to the A+T→G+C shift in genome-wide nucleotide composition during metazoan radiation.
Collapse
Affiliation(s)
- Ryan Williams
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Xiangyuan Ma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary, Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Naveed Mohammad
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Yip Ho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carey F. Li
- Department of Neurology, University of California, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
| | - Belinda S. W. Chang
- Department of Ecology & Evolutionary, Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, California, United States of America
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
110
|
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681. [PMID: 24385630 DOI: 10.1126/science.1235681] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation plays a key role in a wide range of biological processes. Specific modification to a glycan's structure can directly modulate its biological function. Glycans are not only essential to glycoprotein folding, cellular homeostasis, and immune regulation but are involved in multiple disease conditions. An increased molecular and structural understanding of the mechanistic role that glycans play in these pathological processes has driven the development of therapeutics and illuminated novel targets for drug design. This knowledge has enabled the treatment of metabolic disorders and the development of antivirals and shaped cancer and viral vaccine strategies. Furthermore, an understanding of glycosylation has led to the development of specific drug glycoforms, for example, monoclonal antibodies, with enhanced potency.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
111
|
Cerosaletti K, Schneider A, Schwedhelm K, Frank I, Tatum M, Wei S, Whalen E, Greenbaum C, Kita M, Buckner J, Long SA. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PLoS One 2013; 8:e83811. [PMID: 24376757 PMCID: PMC3871703 DOI: 10.1371/journal.pone.0083811] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/09/2013] [Indexed: 01/09/2023] Open
Abstract
IL-2 receptor (IL-2R) signaling is essential for optimal stability and function of CD4+CD25hiFOXP3+ regulatory T cells (Treg); a cell type that plays an integral role in maintaining tolerance. Thus, we hypothesized that decreased response to IL-2 may be a common phenotype of subjects who have autoimmune diseases associated with variants in the IL2RA locus, including T1D and MS, particularly in cells expressing the high affinity IL-2R alpha chain (IL-2RA or CD25). To examine this question we used phosphorylation of STAT5 (pSTAT5) as a downstream measure of IL-2R signaling, and found a decreased response to IL-2 in CD4+CD25hi T cells of T1D and MS, but not SLE patients. Since the IL2RArs2104286 haplotype is associated with T1D and MS, we measured pSTAT5 in controls carrying the rs2104286 risk haplotype to test whether this variant contributed to reduced IL-2 responsiveness. Consistent with this, we found decreased pSTAT5 in subjects carrying the rs2104286 risk haplotype. Reduced IL-2R signaling did not result from lower CD25 expression on CD25hi cells; instead we detected increased CD25 expression on naive Treg from controls carrying the rs2104286 risk haplotype, and subjects with T1D and MS. However the rs2104286 risk haplotype correlated with increased soluble IL-2RA levels, suggesting that shedding of the IL-2R may account in part for the reduced IL-2R signaling associated with the rs2104286 risk haplotype. In addition to risk variants in IL2RA, we found that the T1D-associated risk variant of PTPN2rs1893217 independently contributed to diminished IL-2R signaling. However, even when holding genotype constant at IL2RA and PTPN2, we still observed a significant signaling defect in T1D and MS patients. Together, these data suggest that multiple mechanisms converge in disease leading to decreased response to IL-2, a phenotype that may eventually lead to loss of tolerance and autoimmunity.
Collapse
Affiliation(s)
- Karen Cerosaletti
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Anya Schneider
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Katharine Schwedhelm
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Ian Frank
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Megan Tatum
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Shan Wei
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Elizabeth Whalen
- Bioinformatics, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Carla Greenbaum
- Diabetes Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Mariko Kita
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Jane Buckner
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - S. Alice Long
- Translational Research, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
112
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
113
|
Dias AM, Dourado J, Lago P, Cabral J, Marcos-Pinto R, Salgueiro P, Almeida CR, Carvalho S, Fonseca S, Lima M, Vilanova M, Dinis-Ribeiro M, Reis CA, Pinho SS. Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum Mol Genet 2013; 23:2416-27. [PMID: 24334766 DOI: 10.1093/hmg/ddt632] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The incidence of inflammatory bowel disease is increasing worldwide and the underlying molecular mechanisms are far from being fully elucidated. Herein, we evaluated the role of N-glycosylation dysregulation in T cells as a key mechanism in the ulcerative colitis (UC) pathogenesis. The evaluation of the branched N-glycosylation levels and profile of intestinal T cell receptor (TCR) were assessed in colonic biopsies from UC patients and healthy controls. Expression alterations of the glycosyltransferase gene MGAT5 were also evaluated. We demonstrated that UC patients exhibit a dysregulation of TCR branched N-glycosylation on lamina propria T lymphocytes. Patients with severe UC showed the most pronounced defect on N-glycan branching in T cells. Moreover, UC patients showed a significant reduction of MGAT5 gene transcription in T lymphocytes. In this study, we disclose for the first time that a deficiency in branched N-glycosylation on TCR due to a reduced MGAT5 gene expression is a new molecular mechanism underlying UC pathogenesis, being a potential novel biomarker with promising clinical and therapeutic applications.
Collapse
Affiliation(s)
- Ana M Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
McKay FC, Hoe E, Parnell G, Gatt P, Schibeci SD, Stewart GJ, Booth DR. IL7Rα expression and upregulation by IFNβ in dendritic cell subsets is haplotype-dependent. PLoS One 2013; 8:e77508. [PMID: 24147013 PMCID: PMC3797747 DOI: 10.1371/journal.pone.0077508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
The IL7Rα gene is unequivocally associated with susceptibility to multiple sclerosis (MS). Haplotype 2 (Hap 2) confers protection from MS, and T cells and dendritic cells (DCs) of Hap 2 exhibit reduced splicing of exon 6, resulting in production of relatively less soluble receptor, and potentially more response to ligand. We have previously shown in CD4 T cells that IL7Rα haplotypes 1 and 2, but not 4, respond to interferon beta (IFNβ), the most commonly used immunomodulatory drug in MS, and that haplotype 4 (Hap 4) homozygotes have the highest risk of developing MS. We now show that IL7R expression increases in myeloid cells in response to IFNβ, but that the response is haplotype-dependent, with cells from homozygotes for Hap 4 again showing no response. This was shown using freshly derived monocytes, in vitro cultured immature and mature monocyte-derived dendritic cells, and by comparing homozygotes for the common haplotypes, and relative expression of alleles in heterozygotes (Hap 4 vs not Hap 4). As for T cells, in all myeloid cell subsets examined, Hap 2 homozygotes showed a trend for reduced splicing of exon 6 compared to the other haplotypes, significantly so in most conditions. These data are consistent with increased signaling being protective from MS, constitutively and in response to IFNβ. We also demonstrate significant regulation of immune response, chemokine activity and cytokine biosynthesis pathways by IL7Rα signaling in IFNβ -treated myeloid subsets. IFNβ-responsive genes are over-represented amongst genes associated with MS susceptibility. IL7Rα haplotype may contribute to MS susceptibility through reduced capacity for IL7Rα signalling in myeloid cells, especially in the presence of IFNβ, and is currently under investigation as a predictor of therapeutic response.
Collapse
Affiliation(s)
- Fiona C. McKay
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
| | - Edwin Hoe
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
| | - Grant Parnell
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
| | - Prudence Gatt
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
| | - Stephen D. Schibeci
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
| | - Graeme J. Stewart
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
- * E-mail: (GJS); (DRB)
| | - David R. Booth
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Whales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Whales, Australia
- * E-mail: (GJS); (DRB)
| |
Collapse
|
115
|
One calcitriol dose transiently increases Helios+FoxP3+ T cells and ameliorates autoimmune demyelinating disease. J Neuroimmunol 2013; 263:64-74. [DOI: 10.1016/j.jneuroim.2013.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
|
116
|
Scott DW, Vallejo MO, Patel RP. Heterogenic endothelial responses to inflammation: role for differential N-glycosylation and vascular bed of origin. J Am Heart Assoc 2013; 2:e000263. [PMID: 23900214 PMCID: PMC3828811 DOI: 10.1161/jaha.113.000263] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial cell responses during inflammation are heterogeneous and key for selectivity in how leukocytes hone in on specific sites and why vascular diseases are highly bed specific. However, mechanisms for this specificity remain unclear. METHODS AND RESULTS Here, we exposed human endothelial cells isolated from 5 systemic arterial beds from 1 donor (to overcome donor-to-donor genetic/epigenetic differences), the umbilical vein, and pulmonary microvasculature to TNF-α, LPS, and IL-1β and assessed acute (ERK1/2 and p65) and chronic (ICAM-1, VCAM-1 total and surface expression) signaling responses and assessed changes in surface N-glycans and monocyte adhesion. Significant diversity in responses was evident by disparate changes in ERK1/2 and p65 NF-κB phosphorylation, which varied up to 5-fold between different cells and in temporal and magnitude differences in ICAM-1 and VCAM-1 expression (maximal VCAM-1 induction typically being observed by 4 hours, whereas ICAM-1 expression was increased further at 24 hours relative to 4 hours). N-glycan profiles both basally and with stimulation were also bed specific, with hypoglycosylated N-glycans correlating with increased THP-1 monocyte adhesion. Differences in surface N-glycan expression tracked with dynamic up- or downregulation of α-mannosidase activity during inflammation. CONCLUSIONS These results demonstrate a critical role for the vascular bed of origin in controlling endothelial responses and function to inflammatory stimuli and suggest that bed-specific expression of N-linked sugars may provide a signature for select leukocyte recruitment.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
117
|
Yu Z, Gillen D, Li CF, Demetriou M. Incorporating parental information into family-based association tests. Biostatistics 2013; 14:556-72. [PMID: 23266418 PMCID: PMC3732025 DOI: 10.1093/biostatistics/kxs048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Assumptions regarding the true underlying genetic model, or mode of inheritance, are necessary when quantifying genetic associations with disease phenotypes. Here we propose new methods to ascertain the underlying genetic model from parental data in family-based association studies. Specifically, for parental mating-type data, we propose a novel statistic to test whether the underlying genetic model is additive, dominant, or recessive; for parental genotype-phenotype data, we propose three strategies to determine the true mode of inheritance. We illustrate how to incorporate the information gleaned from these strategies into family-based association tests. Because family-based association tests are conducted conditional on parental genotypes, the type I error rate of these procedures is not inflated by the information learned from parental data. This result holds even if such information is weak or when the assumption of Hardy-Weinberg equilibrium is violated. Our simulations demonstrate that incorporating parental data into family-based association tests can improve power under common inheritance models. The application of our proposed methods to a candidate-gene study of type 1 diabetes successfully detects a recessive effect in MGAT5 that would otherwise be missed by conventional family-based association tests.
Collapse
Affiliation(s)
- Zhaoxia Yu
- Department of Statistics, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
118
|
Scott DW, Dunn TS, Ballestas ME, Litovsky SH, Patel RP. Identification of a high-mannose ICAM-1 glycoform: effects of ICAM-1 hypoglycosylation on monocyte adhesion and outside in signaling. Am J Physiol Cell Physiol 2013; 305:C228-37. [PMID: 23703526 DOI: 10.1152/ajpcell.00116.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial adhesion molecules are critical effectors of inflammation ensuring coordinated interactions that allow leukocytes to home to sites of injury. These adhesion molecules are often extensively modified posttranslationaly by the addition of N-glycans, but if, or how, these modifications contribute to the protein function remains poorly understood. Herein we show that activated endothelial cells express two distinct N-glycoforms of intercellular adhesion molecule 1 (ICAM-1) that comprise a complex N-glycoform with α-2,6 sialic acid present at relatively high levels and a second, less abundant and previously undescribed high-mannose glycoform (HM-ICAM-1). This novel HM-ICAM-1 glycoform was also detected in human coronary artery specimens and moreover appeared to be the dominant glycoform in vivo. Production of exclusively HM-ICAM-1 in cells by α-mannosidase inhibition increased monocyte rolling and adhesion compared with mature ICAM-1 consistent with high-mannose epitopes providing leukocyte ligands. Cross-linking of ICAM-1 transmits outside-in signals that affect endothelial permeability and survival. Interestingly, cell signaling (assessed using ERK, VE-cadherin, and Akt phosphorylation) was maintained after cross-linking of HM-ICAM-1 compared with mature ICAM-1; however, interactions with the actin cytoskeleton were lost with HM-ICAM-1. These findings suggest that specific ICAM-1 N-glycoforms modulate distinct aspects of the inflammatory response and identify HM-ICAM-1 as a new therapeutic target for controlling leukocyte trafficking and endothelial inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
119
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
120
|
The regulatory power of glycans and their binding partners in immunity. Trends Immunol 2013; 34:290-8. [PMID: 23485517 DOI: 10.1016/j.it.2013.01.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Glycans and glycan-binding proteins are central to a properly functioning immune system. Perhaps the best known example of this is the selectin family of surface proteins that are primarily found on leukocytes, and which bind to endothelial glycans near sites of infection or inflammation and enable extravasation into tissues. In the past decade, however, several other immune pathways that are dependent on or sensitive to changes in glycan-mediated mechanisms have been revealed. These include antibody function, apoptosis, T helper (Th)1 versus Th2 skewing, T cell receptor signaling, and MHC class II antigen presentation. Here, we highlight how regulated changes in protein glycosylation both at the cell surface and on secreted glycoproteins can positively and negatively modulate the immune response.
Collapse
|
121
|
Dennis JW, Brewer CF. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Mol Cell Proteomics 2013; 12:913-20. [PMID: 23378517 DOI: 10.1074/mcp.r112.026989] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mice with null mutations in specific Golgi glycosyltransferases show evidence of glycan compensation where missing carbohydrate epitopes are found on biosynthetically related structures. Repetitive saccharide sequences within the larger glycan structures are functional epitopes recognized by animal lectins. These studies provide the first in vivo support for the existence of a feedback system that maintains and regulates glycan epitope density in cells. Receptor regulation by lectin-glycan interactions and the Golgi provides a mechanism for the adaptation of cell surface receptors and solute transporters in response to environmental cues and intracellular signaling. We suggest that other posttranslational modification systems might have similar conditional features regulated by density-dependent ligand-epitope interactions.
Collapse
Affiliation(s)
- James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
122
|
Li CF, Zhou RW, Mkhikian H, Newton BL, Yu Z, Demetriou M. Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants. J Neuroimmunol 2013; 256:71-6. [PMID: 23351704 DOI: 10.1016/j.jneuroim.2012.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Abstract
Deficiency of the Golgi N-glycan branching enzyme Mgat5 in mice promotes T cell hyperactivity, endocytosis of CTLA-4 and autoimmunity, including a spontaneous multiple sclerosis (MS)-like disease. Multiple genetic and environmental MS risk factors lower N-glycan branching in T cells. These include variants in interleukin-2 receptor-α (IL2RA), interleukin-7 receptor-α (IL7RA), and MGAT1, a Golgi branching enzyme upstream of MGAT5, as well as vitamin D3 deficiency and Golgi substrate metabolism. Here we describe linked intronic variants of MGAT5 that are associated with reduced N-glycan branching, CTLA-4 surface expression and MS (p=5.79×10(-9), n=7,741), the latter additive with the MGAT1, IL2RA and IL7RA MS risk variants (p=1.76×10(-9), OR=0.67-1.83, n=3,518).
Collapse
Affiliation(s)
- Carey F Li
- Department of Neurology, University of California, Irvine, CA 92869, USA
| | | | | | | | | | | |
Collapse
|
123
|
Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev 2012. [PMID: 22725956 DOI: 10.1111/j.1600-065x.2012.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is a prevalent inflammatory disease of the central nervous system that often leads to disability in young adults. Treatment options are limited and often only partly effective. The disease is likely caused by a complex interaction between multiple genes and environmental factors, leading to inflammatory-mediated central nervous system deterioration. A series of genomic studies have confirmed a central role for the immune system in the development of MS, including genetic association studies that have now dramatically expanded the roster of MS susceptibility genes beyond the longstanding human leukocyte antigen (HLA) association in MS first identified nearly 40 years ago. Advances in technology together with novel models for collaboration across research groups have enabled the discovery of more than 50 non-HLA genetic risk factors associated with MS. However, with a large proportion of the disease heritability still unaccounted for, current studies are now geared towards identification of causal alleles, associated pathways, epigenetic mechanisms, and gene-environment interactions. This article reviews recent efforts in addressing the genetics of MS and the challenges posed by an ever increasing amount of analyzable data, which is spearheading development of novel statistical methods necessary to cope with such complexity.
Collapse
Affiliation(s)
- Pierre-Antoine Gourraud
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143-0435, USA
| | | | | | | |
Collapse
|
124
|
Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 2012; 75:5123-39. [DOI: 10.1016/j.jprot.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
125
|
Abstract
Multiple sclerosis (MS) is a prevalent inflammatory disease of the central nervous system that often leads to disability in young adults. Treatment options are limited and often only partly effective. The disease is likely caused by a complex interaction between multiple genes and environmental factors, leading to inflammatory-mediated central nervous system deterioration. A series of genomic studies have confirmed a central role for the immune system in the development of MS, including genetic association studies that have now dramatically expanded the roster of MS susceptibility genes beyond the longstanding human leukocyte antigen (HLA) association in MS first identified nearly 40 years ago. Advances in technology together with novel models for collaboration across research groups have enabled the discovery of more than 50 non-HLA genetic risk factors associated with MS. However, with a large proportion of the disease heritability still unaccounted for, current studies are now geared towards identification of causal alleles, associated pathways, epigenetic mechanisms, and gene-environment interactions. This article reviews recent efforts in addressing the genetics of MS and the challenges posed by an ever increasing amount of analyzable data, which is spearheading development of novel statistical methods necessary to cope with such complexity.
Collapse
Affiliation(s)
- Pierre-Antoine Gourraud
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| | - Hanne F. Harbo
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stephen L. Hauser
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| | - Sergio E. Baranzini
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| |
Collapse
|
126
|
Scott DW, Chen J, Chacko BK, Traylor JG, Orr AW, Patel RP. Role of endothelial N-glycan mannose residues in monocyte recruitment during atherogenesis. Arterioscler Thromb Vasc Biol 2012; 32:e51-9. [PMID: 22723438 DOI: 10.1161/atvbaha.112.253203] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Upregulated expression of endothelial adhesion molecules and subsequent binding to cognate monocytic receptors are established paradigms in atherosclerosis. However, these proteins are the scaffolds, with their posttranslational modification with sugars providing the actual ligands. We recently showed that tumor necrosis factor-α increased hypoglycosylated (mannose-rich) N-glycans on the endothelial surface. In the present study, our aim was to determine whether (1) hypoglycosylated N-glycans are upregulated by proatherogenic stimuli (oscillatory flow) in vitro and in vivo, and (2) mannose residues on hypoglycosylated endothelial N-glycans mediate monocyte rolling and adhesion. METHODS AND RESULTS Staining with the mannose-specific lectins concanavalin A and lens culinaris agglutinin was increased in human aortic endothelial cells exposed to oscillatory shear or tumor necrosis factor-α and at sites of plaque development and progression in both mice and human vessels. Increasing surface N-linked mannose by inhibiting N-glycan processing potentiated monocyte adhesion under flow during tumor necrosis factor-α stimulation. Conversely, enzymatic removal of high-mannose N-glycans, or masking mannose residues with lectins, significantly decreased monocyte adhesion under flow. These effects occurred without altering induced expression of adhesion molecule proteins. CONCLUSIONS Hypoglycosylated (high mannose) N-glycans are present on the endothelial cell surface at sites of early human lesion development and are novel effectors of monocyte adhesion during atherogenesis.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, University of Alabama at Birmingham, 901 19th St S, BMRII 532, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
Congenital disorders of glycosylation comprise most of the nearly 70 genetic disorders known to be caused by impaired synthesis of glycoconjugates. The effects are expressed in most organ systems, and most involve the nervous system. Typical manifestations include structural abnormalities (eg, rapidly progressive cerebellar atrophy), myopathies (including congenital muscular dystrophies and limb-girdle dystrophies), strokes and stroke-like episodes, epileptic seizures, developmental delay, and demyelinating neuropathy. Patients can also have neurological symptoms associated with coagulopathies, immune dysfunction with or without infections, and cardiac, renal, or hepatic failure, which are common features of glycosylation disorders. The diagnosis of congenital disorder of glycosylation should be considered for any patient with multisystem disease and in those with more specific phenotypic features. Measurement of concentrations of selected glycoconjugates can be used to screen for many of these disorders, and molecular diagnosis is becoming more widely available in clinical practice. Disease-modifying treatments are available for only a few disorders, but all affected individuals benefit from early diagnosis and aggressive management.
Collapse
Affiliation(s)
- Hudson H Freeze
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
128
|
|
129
|
Rabinovich GA, Croci DO. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 2012; 36:322-35. [PMID: 22444630 DOI: 10.1016/j.immuni.2012.03.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 01/01/2023]
Abstract
Numerous regulatory programs have been identified that contribute to the restoration of homeostasis at the conclusion of immune responses and to safeguarding against the detrimental effects of chronic inflammation and autoimmune pathology. Malignant cells may usurp these pathways to create immunosuppressive networks that thwart antitumor responses. Herein we review the role of endogenous lectins (C-type lectins, siglecs, and galectins) and specific N- and O-glycans generated by the coordinated action of glycosyltransferases and glycosidases that together promote regulatory signals that control immune cell homeostasis. We also discuss the mechanisms by which glycan-dependent regulatory programs integrate into canonical circuits that amplify or silence immune responses related to autoimmunity and neoplastic disease.
Collapse
Affiliation(s)
- Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, C1428 Buenos Aires, Argentina.
| | | |
Collapse
|
130
|
Mazumder R, Morampudi KS, Motwani M, Vasudevan S, Goldman R. Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes. PLoS One 2012; 7:e36212. [PMID: 22586465 PMCID: PMC3346765 DOI: 10.1371/journal.pone.0036212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/28/2012] [Indexed: 11/22/2022] Open
Abstract
N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs.
Collapse
Affiliation(s)
- Raja Mazumder
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
131
|
Grigorian A, Mkhikian H, Li CF, Newton BL, Zhou RW, Demetriou M. Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation. Semin Immunopathol 2012; 34:415-24. [PMID: 22488447 DOI: 10.1007/s00281-012-0307-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 03/02/2012] [Indexed: 12/18/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) result from complex and poorly understood interactions of genetic and environmental factors. A central role for T cells in MS is supported by mouse models, association of the major histocompatibility complex region, and association of critical T cell growth regulator genes such as interleukin-2 receptor (IL-2RA) and interleukin-7 receptor (IL-7RA). Multiple environmental factors (vitamin D(3) deficiency and metabolism) converge with multiple genetic variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation in MS, resulting in T cell hyperactivity, loss of self-tolerance and in mice, a spontaneous MS-like disease with neurodegeneration. Here, we review the genetic and biological interactions that regulate MS pathogenesis through dysregulation of N-glycosylation and how this may enable individualized therapeutic approaches.
Collapse
Affiliation(s)
- Ani Grigorian
- Institute for Immunology, Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
132
|
Kreisman LS, Cobb BA. Infection, inflammation and host carbohydrates: a Glyco-Evasion Hypothesis. Glycobiology 2012; 22:1019-30. [PMID: 22492234 DOI: 10.1093/glycob/cws070] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microbial immune evasion can be achieved through the expression, or mimicry, of host-like carbohydrates on the microbial cell surface to hide from detection. However, disparate reports collectively suggest that evasion could also be accomplished through the modulation of the host glycosylation pathways, a mechanism that we call the "Glyco-Evasion Hypothesis". Here, we will summarize the evidence in support of this paradigm by reviewing three separate bodies of work present in the literature. We review how infection and inflammation can lead to host glycosylation changes, how host glycosylation changes can increase susceptibility to infection and inflammation and how glycosylation impacts molecular and cellular function. Then, using these data as a foundation, we propose a unifying hypothesis in which microbial products can hijack host glycosylation to manipulate the immune response to the advantage of the pathogen. This model reveals areas of research that we believe could significantly improve our fight against infectious disease.
Collapse
Affiliation(s)
- Lori Sc Kreisman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
133
|
Ryan SO, Cobb BA. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 2012; 34:425-41. [PMID: 22461020 DOI: 10.1007/s00281-012-0309-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
134
|
Roshanisefat H, Bahmanyar S, Hillert J, Olsson T, Montgomery S. Shared genetic factors may not explain the raised risk of comorbid inflammatory diseases in multiple sclerosis. Mult Scler 2012; 18:1430-6. [PMID: 22419672 DOI: 10.1177/1352458512438240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Comorbid inflammatory conditions in multiple sclerosis (MS) patients suggest shared risks with MS. OBJECTIVE To estimate if the risk of immune-mediated disease in MS patients and their parents is increased. METHODS Swedish register data were analysed using Cox regression to estimate immune-mediated disease risk among 11284 fathers and 12006 mothers of MS patients, compared with 123158 fathers and 129409 mothers of index subjects without MS. Similar analyses were conducted among 20276 index subjects with MS and 203951 without. RESULTS Parents of patients with MS did not have a significantly altered immune-mediated disease risk. Patients with MS had a consistently raised risk for several immune-mediated diseases: ulcerative colitis, Crohn's disease, type 1 diabetes, psoriasis, polyarthritis nodosa and pemphigoid. The risk was more pronounced for diseases diagnosed subsequent to MS onset. CONCLUSION The increased occurrence of other immune-mediated diseases in MS patients may not be due to shared genetic factors and surveillance bias is likely to be the main or possibly the entire explanation. If not entirely explained by surveillance bias, a modestly raised occurrence of comorbid diseases may be due to shared environmental risks or factors related to MS disease characteristics.
Collapse
Affiliation(s)
- H Roshanisefat
- Department of Neurology, Karolinska University Hospital Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
135
|
Pompach P, Chandler KB, Lan R, Edwards N, Goldman R. Semi-automated identification of N-Glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J Proteome Res 2012; 11:1728-40. [PMID: 22239659 DOI: 10.1021/pr201183w] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycoproteins fulfill many indispensable biological functions, and changes in protein glycosylation have been observed in various diseases. Improved analytical methods are needed to allow a complete characterization of this complex and common post-translational modification. In this study, we present a workflow for the analysis of the microheterogeneity of N-glycoproteins that couples hydrophilic interaction and nanoreverse-phase C18 chromatography to tandem QTOF mass spectrometric analysis. A glycan database search program, GlycoPeptideSearch, was developed to match N-glycopeptide MS/MS spectra with the glycopeptides comprised of a glycan drawn from the GlycomeDB glycan structure database and a peptide from a user-specified set of potentially glycosylated peptides. Application of the workflow to human haptoglobin and hemopexin, two microheterogeneous N-glycoproteins, identified a total of 57 distinct site-specific glycoforms in the case of haptoglobin and 14 site-specific glycoforms of hemopexin. Using glycan oxonium ions and peptide-characteristic glycopeptide fragment ions and by collapsing topologically redundant glycans, the search software was able to make unique N-glycopeptide assignments for 51% of assigned spectra, with the remaining assignments primarily representing isobaric topological rearrangements. The optimized workflow, coupled with GlycoPeptideSearch, is expected to make high-throughput semiautomated glycopeptide identification feasible for a wide range of users.
Collapse
Affiliation(s)
- Petr Pompach
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University , 3970 Reservoir Road NW, Washington, DC 20057-1465, United States
| | | | | | | | | |
Collapse
|
136
|
Grigorian A, Mkhikian H, Demetriou M. Interleukin-2, Interleukin-7, T cell-mediated autoimmunity, and N-glycosylation. Ann N Y Acad Sci 2012; 1253:49-57. [PMID: 22288682 DOI: 10.1111/j.1749-6632.2011.06391.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T cell activation and self-tolerance are tightly regulated to provide effective host defense against foreign pathogens while deflecting inappropriate autoimmune responses. Golgi Asn (N)-linked protein glycosylation coregulates homeostatic set points for T cell growth, differentiation, and self-tolerance to influence risk of autoimmune disorders such as multiple sclerosis (MS). Human autoimmunity is a complex trait that develops from intricate and poorly understood interactions between an individual's genetics and their environmental exposures. Recent evidence from our group suggests that in MS, additive and/or epistatic interactions between multiple genetic and environmental risk factors combine to dysregulate a common biochemical pathway, namely Golgi N-glycosylation. Here, we review the multiple regulatory mechanisms controlling N-glycan branching in T cells and autoimmunity, focusing on recent data implicating a critical role for interleukin-2 (IL-2) and IL-7 signaling.
Collapse
Affiliation(s)
- Ani Grigorian
- Department of Neurology, University of California, Irvine, USA
| | | | | |
Collapse
|
137
|
Varadé J, Comabella M, Ortiz MA, Arroyo R, Fernández O, Pinto-Medel MJ, Fedetz M, Izquierdo G, Lucas M, Gómez CL, Rabasa AC, Alcina A, Matesanz F, Alloza I, Antigüedad A, García-Barcina M, Otaegui D, Olascoaga J, Saiz A, Blanco Y, Montalbán X, Vandenbroeck K, Urcelay E. Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CBLB [correction of CLBL] genes. Mult Scler 2011; 18:959-65. [PMID: 22194214 DOI: 10.1177/1352458511432741] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Ten genes previously showing different evidence of association with multiple sclerosis have been selected to validate. METHODS Eleven polymorphisms were genotyped with the iPLEX™ Sequenom in a well-powered collection of Spanish origin including 2863 multiple sclerosis cases and 2930 controls. RESULTS Replication extended to the following polymorphisms: PKN2 (rs305217), GTF2B (rs7538427), EPHA4 (rs1517440), YTHDF3 (rs12115114), ANKFN1 (rs17758761) and PTPRM (rs4798571), which did not reach the threshold of significance in a follow-up of the first genome-wide association study (GWAS) conducted in multiple sclerosis; TMEM39A (rs1132200), which appeared as a newly identified susceptibility gene in the same study; a gene previously reaching GWAS significance in Italy, CBLB (rs9657904); IL12B (rs6887695, rs10045431), a susceptibility gene shared by diverse autoimmune diseases and, finally, another gene showing inconclusive association with multiple sclerosis, CNR1 (rs1049353). CONCLUSIONS Pooled analysis corroborated the effect on MS predisposition of three genes: TMEM39A [rs1132200: p(M-H)=0.001; OR(M-H) (95% CI)= 0.84 (0.75-0.93)], IL12B [rs6887695: p(M-H)=0.03; OR(M-H) (95% CI)= 1.09 (1.01-1.17)] and CBLB [rs9657904: p(M-H)=0.01; OR(M-H) (95% CI)= 0.89 (0.81-0.97)].
Collapse
Affiliation(s)
- Jezabel Varadé
- Immunology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Grigorian A, Araujo L, Naidu NN, Place DJ, Choudhury B, Demetriou M. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J Biol Chem 2011; 286:40133-41. [PMID: 21965673 PMCID: PMC3220534 DOI: 10.1074/jbc.m111.277814] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/26/2011] [Indexed: 01/25/2023] Open
Abstract
Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease.
Collapse
Affiliation(s)
- Ani Grigorian
- From the Departments of Neurology and
- Institute for Immunology, University of California, Irvine, California 92697 and
| | | | - Nandita N. Naidu
- Glycotechnology Core Resource, University of California at San Diego, La Jolla, California 92093
| | | | - Biswa Choudhury
- Glycotechnology Core Resource, University of California at San Diego, La Jolla, California 92093
| | - Michael Demetriou
- From the Departments of Neurology and
- Microbiology and Molecular Genetics
- Institute for Immunology, University of California, Irvine, California 92697 and
| |
Collapse
|
139
|
Bahaie NS, Kang BN, Frenzel EM, Hosseinkhani MR, Ge XN, Greenberg Y, Ha SG, Demetriou M, Rao SP, Sriramarao P. N-Glycans differentially regulate eosinophil and neutrophil recruitment during allergic airway inflammation. J Biol Chem 2011; 286:38231-38241. [PMID: 21911487 DOI: 10.1074/jbc.m111.279554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation. Here, the involvement of UDP-N-acetylglucosamine:α-6-D-mannoside β1,6-N-acetylglucosaminyltransferase V (MGAT5)-modified N-glycans in eosinophil and neutrophil recruitment during allergic airway inflammation was investigated. Allergen-challenged Mgat5-deficient (Mgat5(-/-)) mice exhibited significantly attenuated airway eosinophilia and inflammation (decreased Th2 cytokines, mucus production) compared with WT counterparts, attributable to decreased rolling, adhesion, and survival of Mgat5(-/-) eosinophils. Interestingly, allergen-challenged Mgat5(-/-) mice developed airway neutrophilia and increased airway reactivity with persistent elevated levels of proinflammatory cytokines (IL-17A, TNFα, IFNγ)). This increased neutrophil recruitment was also observed in LPS- and thioglycollate (TG)-induced inflammation in Mgat5(-/-) mice. Furthermore, there was significantly increased recruitment of infused Mgat5(-/-) neutrophils compared with WT neutrophils in the peritoneal cavity of TG-exposed WT mice. Mgat5(-/-) neutrophils demonstrated enhanced adhesion to P-selectin as well as increased migration toward keratinocyte-derived chemokine compared with WT neutrophils in vitro along with increased calcium mobilization upon activation and expression of elevated levels of CXCR2, which may contribute to the increased neutrophil recruitment. These data indicate an important role for MGAT5-modified N-glycans in differential regulation of eosinophil and neutrophil recruitment during allergic airway inflammation.
Collapse
Affiliation(s)
- Nooshin S Bahaie
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Bit Na Kang
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Elizabeth M Frenzel
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - M Reza Hosseinkhani
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Xiao Na Ge
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Yana Greenberg
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Sung Gil Ha
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael Demetriou
- Department of Neurology, Microbiology and Molecular Genetics, Institute for Immunology, University of California, Irvine, California 92697
| | - Savita P Rao
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108
| | - P Sriramarao
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108; Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
140
|
Grigorian A, Demetriou M. Mgat5 deficiency in T cells and experimental autoimmune encephalomyelitis. ISRN NEUROLOGY 2011; 2011:374314. [PMID: 22389815 PMCID: PMC3263545 DOI: 10.5402/2011/374314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 04/30/2011] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease initiated by autoreactive T cells. Mgat5, a gene in the Asn (N-) linked protein glycosylation pathway, associates with MS severity and negatively regulates experimental autoimmune encephalomyelitis (EAE) and spontaneous inflammatory demyelination in mice. N-glycan branching by Mgat5 regulates interaction of surface glycoproteins with galectins, forming a molecular lattice that differentially controls the concentration of surface glycoproteins. T-cell receptor signaling, T-cell proliferation, TH1 differentiation, and CTLA-4 endocytosis are inhibited by Mgat5 branching. Non-T cells also contribute to MS pathogenesis and express abundant Mgat5 branched N-glycans. Here we explore whether Mgat5 deficiency in myelin-reactive T cells is sufficient to promote demyelinating disease. Adoptive transfer of myelin-reactive Mgat5−/− T cells into Mgat5+/+ versus Mgat5−/− recipients revealed more severe EAE in the latter, suggesting that Mgat5 branching deficiency in recipient naive T cells and/or non-T cells contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ani Grigorian
- Department of Neurology, University of California, Irvine, CA 92868-4280, USA
| | | |
Collapse
|
141
|
Terao M, Ishikawa A, Nakahara S, Kimura A, Kato A, Moriwaki K, Kamada Y, Murota H, Taniguchi N, Katayama I, Miyoshi E. Enhanced epithelial-mesenchymal transition-like phenotype in N-acetylglucosaminyltransferase V transgenic mouse skin promotes wound healing. J Biol Chem 2011; 286:28303-11. [PMID: 21697088 DOI: 10.1074/jbc.m111.220376] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
N-Acetylglucosaminyltransferase V (GnT-V) catalyzes the β1,6 branching of N-acetylglucosamine on N-glycans. GnT-V expression is elevated during malignant transformation in various types of cancer. However, the mechanism by which GnT-V promotes cancer progression is unclear. To characterize the biological significance of GnT-V, we established GnT-V transgenic (Tg) mice, in which GnT-V is regulated by a β-actin promoter. No spontaneous cancer was detected in any organs of the GnT-V Tg mice. However, GnT-V expression was up-regulated in GnT-V Tg mouse skin, and cultured keratinocytes derived from these mice showed enhanced migration, which was associated with changes in E-cadherin localization and epithelial-mesenchymal transition (EMT). Further, EMT-associated factors snail, twist, and N-cadherin were up-regulated, and cutaneous wound healing was accelerated in vivo. We further investigated the detailed mechanisms of EMT by assessing EGF signaling and found up-regulated EGF receptor signaling in GnT-V Tg mouse keratinocytes. These findings indicate that GnT-V overexpression promotes EMT and keratinocyte migration in part through enhanced EGF receptor signaling.
Collapse
Affiliation(s)
- Mika Terao
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|