101
|
Schwartz JR, Wang S, Ma J, Lamprecht T, Walsh M, Song G, Raimondi SC, Wu G, Walsh MF, McGee RB, Kesserwan C, Nichols KE, Cauff BE, Ribeiro RC, Wlodarski M, Klco JM. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia 2017; 31:1827-1830. [PMID: 28487541 PMCID: PMC5540771 DOI: 10.1038/leu.2017.142] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- J R Schwartz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - S Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - T Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - G Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - S C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - G Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M F Walsh
- Department of Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R B McGee
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C Kesserwan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - K E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - B E Cauff
- Department of Hematology/Oncology, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - R C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - J M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
102
|
Obenauer JC, Kavelaars FG, Sanders MA, de Vries ACH, de Haas V, Beverloo HB, De Moerloose B, Lammens T, Dworzak M, Hoogenboezem RM, Valk PJM, Touw IP, van den Heuvel-Eibrink MM. Recurrently affected genes in juvenile myelomonocytic leukaemia. Br J Haematol 2017; 182:135-138. [DOI: 10.1111/bjh.14737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia C. Obenauer
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
- Department of Paediatric Oncology-Haematology; Erasmus University Medical Centre/Sophia Children's Hospital; Rotterdam the Netherlands
| | - François G. Kavelaars
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Mathijs A. Sanders
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Andrica C. H. de Vries
- Department of Paediatric Oncology-Haematology; Erasmus University Medical Centre/Sophia Children's Hospital; Rotterdam the Netherlands
| | - Valerie de Haas
- Dutch Childhood Oncology Group (DCOG/SKION); The Hague the Netherlands
| | - H. Berna Beverloo
- Department of Clinical Genetics; Erasmus University Medical Centre; Rotterdam the Netherlands
- Dutch Working Group on Haemato-Oncologic Genome Diagnostics; Rotterdam the Netherlands
| | - Barbara De Moerloose
- Department of Paediatric Haematology-Oncology and Stem Cell Transplantation; Ghent University Hospital; Ghent Belgium
| | - Tim Lammens
- Department of Paediatric Haematology-Oncology and Stem Cell Transplantation; Ghent University Hospital; Ghent Belgium
| | - Michael Dworzak
- St Anna Children's Hospital and Children's Cancer Research Institute; Department of Paediatrics; Medical University of Vienna; Vienna Austria
| | - Remco M. Hoogenboezem
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Peter J. M. Valk
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Ivo P. Touw
- Department of Haematology; Erasmus University Medical Centre; Rotterdam the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Department of Paediatric Oncology-Haematology; Erasmus University Medical Centre/Sophia Children's Hospital; Rotterdam the Netherlands
- Princess Màxima Centre for Paediatric Oncology (PMC); Utrecht the Netherlands
| |
Collapse
|
103
|
Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 2017; 105:732-742. [PMID: 28447248 DOI: 10.1007/s12185-017-2241-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
SETBP1 is a SET-binding protein regulating self-renewal potential through HOXA-protein activation. Somatic SETBP1 mutations were identified by whole exome sequencing in several phenotypes of myelodysplastic/myeloproliferative neoplasms (MDS/MPN), including atypical chronic myeloid leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic leukemia as well as in secondary acute myeloid leukemia (sAML). Surprisingly, its recurrent somatic activated mutations are located at the identical positions of germline mutations reported in congenital Schinzel-Giedion syndrome. In general, somatic SETBP1 mutations have a significant clinical impact on the outcome as poor prognostic factor, due to downstream HOXA-pathway as well as associated aggressive types of chromosomal defects (-7/del(7q) and i(17q)), which is consistent with wild-type SETBP1 activation in aggressive types of acute myeloid leukemia and leukemic evolution. Biologically, mutant SETBP1 attenuates RUNX1 and activates MYB. The studies of mouse models confirmed biological significance of SETBP1 mutations in myeloid leukemogenesis, particularly associated with ASXL1 mutations. SETBP1 is a major oncogene in myeloid neoplasms, which cooperates with various genetic events and causes distinct phenotypes of MDS/MPN and sAML.
Collapse
MESH Headings
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/mortality
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Juvenile
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
104
|
Coccaro N, Tota G, Zagaria A, Anelli L, Specchia G, Albano F. SETBP1 dysregulation in congenital disorders and myeloid neoplasms. Oncotarget 2017; 8:51920-51935. [PMID: 28881700 PMCID: PMC5584301 DOI: 10.18632/oncotarget.17231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
Myeloid malignancies are characterized by an extreme molecular heterogeneity, and many efforts have been made in the past decades to clarify the mechanisms underlying their pathogenesis. In this scenario SET binding protein 1 (SETBP1) has attracted a lot of interest as a new oncogene and potential marker, in addition to its involvement in the Schinzel-Giedon syndrome (SGS). Our review starts with the analysis of the structural characteristics of SETBP1, and extends to its corresponding physiological and pathological functions. Next, we describe the prevalence of SETBP1 mutations in congenital diseases and in hematologic malignancies, exploring how its alterations might contribute to tumor development and provoke clinical effects. Finally, we consider to understand how SETBP1 activation could be exploited in molecular medicine to enhance the cure rate.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
105
|
Rocco P, Daniele R, Roberta S, Alessandra P, Luca DS, Pierangelo F, Vera M, Nicoletta C, Nitesh S, Carlo GP. OncoScore: a novel, Internet-based tool to assess the oncogenic potential of genes. Sci Rep 2017; 7:46290. [PMID: 28387367 PMCID: PMC5384236 DOI: 10.1038/srep46290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
The complicated, evolving landscape of cancer mutations poses a formidable challenge to identify cancer genes among the large lists of mutations typically generated in NGS experiments. The ability to prioritize these variants is therefore of paramount importance. To address this issue we developed OncoScore, a text-mining tool that ranks genes according to their association with cancer, based on available biomedical literature. Receiver operating characteristic curve and the area under the curve (AUC) metrics on manually curated datasets confirmed the excellent discriminating capability of OncoScore (OncoScore cut-off threshold = 21.09; AUC = 90.3%, 95% CI: 88.1-92.5%), indicating that OncoScore provides useful results in cases where an efficient prioritization of cancer-associated genes is needed.
Collapse
Affiliation(s)
- Piazza Rocco
- University of Milano-Bicocca, Dept. of Medicine and Surgery, Monza, 20900, Italy
| | | | - Spinelli Roberta
- University of Milano-Bicocca, Dept. of Medicine and Surgery, Monza, 20900, Italy
| | | | - De Sano Luca
- University of Milano-Bicocca, Dept. of Informatics, 20125, Milano
| | | | - Magistroni Vera
- University of Milano-Bicocca, Dept. of Medicine and Surgery, Monza, 20900, Italy
| | - Cordani Nicoletta
- University of Milano-Bicocca, Dept. of Medicine and Surgery, Monza, 20900, Italy
| | - Sharma Nitesh
- University of New Mexico, Department of Pediatrics, Albuquerque., USA
| | | |
Collapse
|
106
|
Acuna-Hidalgo R, Deriziotis P, Steehouwer M, Gilissen C, Graham SA, van Dam S, Hoover-Fong J, Telegrafi AB, Destree A, Smigiel R, Lambie LA, Kayserili H, Altunoglu U, Lapi E, Uzielli ML, Aracena M, Nur BG, Mihci E, Moreira LMA, Borges Ferreira V, Horovitz DDG, da Rocha KM, Jezela-Stanek A, Brooks AS, Reutter H, Cohen JS, Fatemi A, Smitka M, Grebe TA, Di Donato N, Deshpande C, Vandersteen A, Marques Lourenço C, Dufke A, Rossier E, Andre G, Baumer A, Spencer C, McGaughran J, Franke L, Veltman JA, De Vries BBA, Schinzel A, Fisher SE, Hoischen A, van Bon BW. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. PLoS Genet 2017; 13:e1006683. [PMID: 28346496 PMCID: PMC5386295 DOI: 10.1371/journal.pgen.1006683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/10/2017] [Accepted: 03/10/2017] [Indexed: 11/18/2022] Open
Abstract
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Child
- Child, Preschool
- Craniofacial Abnormalities/genetics
- Craniofacial Abnormalities/metabolism
- Craniofacial Abnormalities/pathology
- Female
- Gene Expression Profiling
- Genetic Association Studies
- Genetic Predisposition to Disease/genetics
- Germ-Line Mutation
- HEK293 Cells
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/pathology
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Humans
- Infant
- Infant, Newborn
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Male
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/metabolism
- Nails, Malformed/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
Collapse
Affiliation(s)
- Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah A. Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sipko van Dam
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Julie Hoover-Fong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Anne Destree
- Institute of Pathology and Genetics (IPG), Gosselies, Belgium
| | - Robert Smigiel
- Department of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Lindsday A. Lambie
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), İstanbul, Turkey
| | - Umut Altunoglu
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Elisabetta Lapi
- Medical Genetics Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | | | - Mariana Aracena
- División de Pediatría, Pontificia Universidad Católica de Chile and Unidad de Genética, Hospital Dr. Luis Calvo Mackenna, Santiago Chile
| | - Banu G. Nur
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Lilia M. A. Moreira
- Laboratory of Human Genetics, Biology Institute, Federal University of Bahia (UFBA), Bahia, Brazil
| | | | - Dafne D. G. Horovitz
- CERES-Genetica Reference Center and Studies in Medical Genetics and Instituto Fernandes Figueira / Fiocruz, Rio de Janeiro, Brazil
| | - Katia M. da Rocha
- Center for Human Genome Studies, Institute of Biosciences, USP, Sao Paulo, Brazil
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany and Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Julie S. Cohen
- Division of Neurogenetics, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Ali Fatemi
- Division of Neurogenetics, Kennedy Krieger Institute, Departments of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Martin Smitka
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Theresa A. Grebe
- Division of Genetics & Metabolism, Phoenix Children’s Hospital, Phoenix, Arizona, United States of America
| | | | - Charu Deshpande
- Department of Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anthony Vandersteen
- North West Thames Regional Genetics Unit, Kennedy Galton Centre, North West London Hospitals NHS Trust, Northwick Park & St Marks Hospital, Harrow, Middlesex, United Kingdom
| | - Charles Marques Lourenço
- Neurogenetics Unit, Department of Medical Genetics School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva Rossier
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Gwenaelle Andre
- Unité de foetopathologie, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Careni Spencer
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Joris A. Veltman
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bert B. A. De Vries
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail: (BWvB); (AH)
| | - Bregje W. van Bon
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail: (BWvB); (AH)
| |
Collapse
|
107
|
Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, Sakaguchi H, Kawashima N, Wang X, Xu Y, Chiba K, Tanaka H, Hama A, Sanada M, Takahashi Y, Kanno H, Yamaguchi H, Ohga S, Manabe A, Harigae H, Kunishima S, Ishii E, Kobayashi M, Koike K, Watanabe K, Ito E, Takata M, Yabe M, Ogawa S, Miyano S, Kojima S. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med 2017; 19:796-802. [PMID: 28102861 DOI: 10.1038/gim.2016.197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/16/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Precise genetic diagnosis of inherited bone marrow failure syndromes (IBMFS), a heterogeneous group of genetic disorders, is challenging but essential for precise clinical decision making. METHODS We analyzed 121 IBMFS patients using a targeted sequencing covering 184 associated genes and 250 IBMFS patients using whole-exome sequencing (WES). RESULTS We achieved successful genetic diagnoses for 53 of 121 patients (44%) using targeted sequencing and for 68 of 250 patients (27%) using WES. In the majority of cases (targeted sequencing: 45/53, 85%; WES: 63/68, 93%), the detected variants were concordant with, and therefore supported, the clinical diagnoses. However, in the remaining 13 cases (8 patients by target sequencing and 5 patients by WES), the clinical diagnoses were incompatible with the detected variants. CONCLUSION Our approach utilizing targeted sequencing and WES achieved satisfactory diagnostic rates and supported the efficacy of massive parallel sequencing as a diagnostic tool for IBMFS.Genet Med advance online publication 19 January 2017.
Collapse
Affiliation(s)
- Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayoko Doisaki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotoshi Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xinan Wang
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shouichi Ohga
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, Japan
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenichiro Watanabe
- Department of Hematology/Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Miharu Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University Hospital, Isehara, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
108
|
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm with a high prevalence (>80%) of mutations in the colony-stimulating factor 3 receptor (CSF3R). These mutations activate the receptor, leading to the proliferation of neutrophils that are a hallmark of CNL. Recently, the World Health Organization guidelines have been updated to include CSF3R mutations as part of the diagnostic criteria for CNL. Because of the high prevalence of CSF3R mutations in CNL, it is tempting to think of this disease as being solely driven by this genetic lesion. However, recent additional genomic characterization demonstrates that CNL has much in common with other chronic myeloid malignancies at the genetic level, such as the clinically related diagnosis atypical chronic myeloid leukemia. These commonalities include mutations in SETBP1, spliceosome proteins (SRSF2, U2AF1), and epigenetic modifiers (TET2, ASXL1). Some of these same mutations also have been characterized as frequent events in clonal hematopoiesis of indeterminate potential, suggesting a more complex disease evolution than was previously understood and raising the possibility that an age-related clonal process of preleukemic cells could precede the development of CNL. The order of acquisition of CSF3R mutations relative to mutations in SETBP1, epigenetic modifiers, or the spliceosome has been determined only in isolated case reports; thus, further work is needed to understand the impact of mutation chronology on the clonal evolution and progression of CNL. Understanding the complete landscape and chronology of genomic events in CNL will help in the development of improved therapeutic strategies for this patient population.
Collapse
|
109
|
Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ, Turk AT, Dela Cruz FS, Hibshoosh H, Remotti H, Zylber RJ, Pang J, Diolaiti D, Koval C, Andrews SJ, Garvin JH, Yamashiro DJ, Chung WK, Emerson SG, Nagy PL, Mansukhani MM, Kung AL. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 2016; 8:133. [PMID: 28007021 PMCID: PMC5180407 DOI: 10.1186/s13073-016-0389-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular characterization has the potential to advance the management of pediatric cancer and high-risk hematologic disease. The clinical integration of genome sequencing into standard clinical practice has been limited and the potential utility of genome sequencing to identify clinically impactful information beyond targetable alterations has been underestimated. METHODS The Precision in Pediatric Sequencing (PIPseq) Program at Columbia University Medical Center instituted prospective clinical next generation sequencing (NGS) for pediatric cancer and hematologic disorders at risk for treatment failure. We performed cancer whole exome sequencing (WES) of patient-matched tumor-normal samples and RNA sequencing (RNA-seq) of tumor to identify sequence variants, fusion transcripts, relative gene expression, and copy number variation (CNV). A directed cancer gene panel assay was used when sample adequacy was a concern. Constitutional WES of patients and parents was performed when a constitutionally encoded disease was suspected. Results were initially reviewed by a molecular pathologist and subsequently by a multi-disciplinary molecular tumor board. Clinical reports were issued to the ordering physician and posted to the patient's electronic medical record. RESULTS NGS was performed on tumor and/or normal tissue from 101 high-risk pediatric patients. Potentially actionable alterations were identified in 38% of patients, of which only 16% subsequently received matched therapy. In an additional 38% of patients, the genomic data provided clinically relevant information of diagnostic, prognostic, or pharmacogenomic significance. RNA-seq was clinically impactful in 37/65 patients (57%) providing diagnostic and/or prognostic information for 17 patients (26%) and identified therapeutic targets in 15 patients (23%). Known or likely pathogenic germline alterations were discovered in 18/90 patients (20%) with 14% having germline alternations in cancer predisposition genes. American College of Medical Genetics (ACMG) secondary findings were identified in six patients. CONCLUSIONS Our results demonstrate the feasibility of incorporating clinical NGS into pediatric hematology-oncology practice. Beyond the identification of actionable alterations, the ability to avoid ineffective/inappropriate therapies, make a definitive diagnosis, and identify pharmacogenomic modifiers is clinically impactful. Taking a more inclusive view of potential clinical utility, 66% of cases tested through our program had clinically impactful findings and samples interrogated with both WES and RNA-seq resulted in data that impacted clinical decisions in 75% of cases.
Collapse
Affiliation(s)
- Jennifer A. Oberg
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Maria Luisa Sulis
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Danielle Pendrick
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Anthony N. Sireci
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Susan J. Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew T. Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Rebecca J. Zylber
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Jiuhong Pang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Daniel Diolaiti
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Carrie Koval
- Department of Clinical Genetics, Columbia University Medical Center, New York, NY 10032 USA
| | - Stuart J. Andrews
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - James H. Garvin
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Darrell J. Yamashiro
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Stephen G. Emerson
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Peter L. Nagy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Present address: MNG Laboratories, 5424 Glenridge Drive, Atlanta, GA 30342 USA
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
110
|
Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia. Leukemia 2016; 31:1491-1501. [PMID: 27899802 PMCID: PMC5508072 DOI: 10.1038/leu.2016.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Collapse
|
111
|
When clinical heterogeneity exceeds genetic heterogeneity: thinking outside the genomic box in chronic myelomonocytic leukemia. Blood 2016; 128:2381-2387. [DOI: 10.1182/blood-2016-07-692988] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/25/2016] [Indexed: 12/26/2022] Open
Abstract
Abstract
Exome sequencing studies in chronic myelomonocytic leukemia (CMML) illustrate a mutational landscape characterized by few somatic mutations involving a subset of recurrent gene mutations in ASXL1, SRSF2, and TET2, each approaching 40% in incidence. This has led to the clinical implementation of next-generation sequencing panels that effectively identify clonal monocytosis and complement clinical prognostic scoring systems in most patients. However, most murine models based on single gene mutations fail to recapitulate the CMML phenotype, and many gene mutations are loss of function, making the identification of traditional therapeutic vulnerabilities challenging. Further, as a subtype of the myelodysplastic/myeloproliferative neoplasms, CMML has a complex clinical heterogeneity not reflected by the mutational landscape. In this review, we will discuss the discordance between mutational homogeneity and clinical complexity and highlight novel genomic and nongenomic approaches that offer insight into the underlying clinical characteristics of CMML.
Collapse
|
112
|
Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 2016; 129:38-47. [PMID: 27733357 DOI: 10.1182/blood-2016-04-708560] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
Somatic mutations commonly detected in a variety of myeloid neoplasms have not been systematically investigated in chronic myeloid leukemia (CML). We performed targeted deep sequencing on a total of 300 serial samples from 100 CML patients; 37 patients carried mutations. Sixteen of these had evidence of mutations originating from preleukemic clones. Using unsupervised hierarchical clustering, we identified 5 distinct patterns of mutation dynamics arising following tyrosine kinase inhibitor (TKI) therapy. This study demonstrates that patterns of mutation acquisition, persistence, and clearance vary but have a number of interesting correlations with clinical outcomes. Mutation burden often persisted despite successful TKI response (pattern 1), providing indirect evidence that these mutations also originated from preleukemic mutations, whereas patients exhibiting mutation clearance (pattern 3) showed mixed clinical outcomes. Unsurprisingly, patients acquiring new mutations during treatment failed TKI therapy (pattern 2). These patterns show that CML mutation dynamics following TKI therapy are markedly distinct from other myeloid neoplasms. In summary, clinical implications of mutation profiles and dynamics in CML should be interpreted with caution.
Collapse
|
113
|
Martinez GS, Ross JA, Kirken RA. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors. ACTA ACUST UNITED AC 2016; 3:131-137. [PMID: 29046866 DOI: 10.2174/2212697x03666160610085943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND A medical need exists for successfully treating patients afflicted with leukemia and especially those that relapse and ultimately become refractory to front line chemotherapies. Leukemia cases are particularly high within Hispanic populations where this disease is among the most frequently occurring cancer. A possible cause is somatic mutations in Janus tyrosine kinase (Jak3). Fourteen somatic mutations have been reported in Jak3, including M511I and A573V, from patients with various forms of leukemia. While several of these Jak3 mutations have been shown to possess transforming ability in cell lines, whether these mutations are susceptible to Jak3 selective inhibitors remains less clear. METHODS The IL-3 dependent pro-B cell line Ba/F3 was virally transduced with plasmids encoding GFP and different mutant forms of Jak3, some of which conferred IL-3 independence. Sensitivity to pre-clinical and clinical Jak3 selective inhibitors was assessed for cellular viability and growth. RESULTS Two Jak3 mutations conferred IL-3 independent growth in Ba/F3 cells. However, the level of drug sensitivity varied with respect to Jak3 inhibitors NC1153, CP-690,550, and EP-009. CONCLUSION Jak3 inhibitors CP-690,550 and NC1153 showed efficacy in reducing viability of Ba/F3 cells transformed with mutant forms of Jak3, thus providing new therapeutic strategies to treat these types of cancer.
Collapse
Affiliation(s)
- G Steven Martinez
- Department of Biological Sciences at The University of Texas at El Paso and the Border Biomedical Research Center, USA
| | - Jeremy A Ross
- Department of Biological Sciences at The University of Texas at El Paso and the Border Biomedical Research Center, USA
| | - Robert A Kirken
- Department of Biological Sciences at The University of Texas at El Paso and the Border Biomedical Research Center, USA
| |
Collapse
|
114
|
Kanojia D, Nagata Y, Garg M, Lee DH, Sato A, Yoshida K, Sato Y, Sanada M, Mayakonda A, Bartenhagen C, Klein HU, Doan NB, Said JW, Mohith S, Gunasekar S, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Myklebost O, Yang H, Dugas M, Meza-Zepeda LA, Silberman AW, Forscher C, Tyner JW, Ogawa S, Koeffler HP. Genomic landscape of liposarcoma. Oncotarget 2016; 6:42429-44. [PMID: 26643872 PMCID: PMC4767443 DOI: 10.18632/oncotarget.6464] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manoj Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dhong Hyun Lee
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA
| | - Aiko Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Hans-Ulrich Klein
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, California, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, California, USA
| | - S Mohith
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Swetha Gunasekar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium and Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Molecular Bioscience, University of Oslo, Oslo, Norway
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomics Consortium and Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Allan W Silberman
- Department of Surgery, Cedars Sinai Medical Center, Division of Surgical Oncology, Los Angeles, California, USA
| | - Charles Forscher
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA.,National University Cancer Institute, National University Hospital, Singapore
| |
Collapse
|
115
|
Bagrodia A, Lee BH, Lee W, Cha EK, Sfakianos JP, Iyer G, Pietzak EJ, Gao SP, Zabor EC, Ostrovnaya I, Kaffenberger SD, Syed A, Arcila ME, Chaganti RS, Kundra R, Eng J, Hreiki J, Vacic V, Arora K, Oschwald DM, Berger MF, Bajorin DF, Bains MS, Schultz N, Reuter VE, Sheinfeld J, Bosl GJ, Al-Ahmadie HA, Solit DB, Feldman DR. Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors. J Clin Oncol 2016; 34:4000-4007. [PMID: 27646943 DOI: 10.1200/jco.2016.68.7798] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture-based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease.
Collapse
Affiliation(s)
- Aditya Bagrodia
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Byron H Lee
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - William Lee
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Eugene K Cha
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - John P Sfakianos
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Gopa Iyer
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Eugene J Pietzak
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Sizhi Paul Gao
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Emily C Zabor
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Irina Ostrovnaya
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Samuel D Kaffenberger
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Aijazuddin Syed
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Maria E Arcila
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Raju S Chaganti
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Ritika Kundra
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Jana Eng
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Joseph Hreiki
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Vladimir Vacic
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Kanika Arora
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Dayna M Oschwald
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Michael F Berger
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Dean F Bajorin
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Manjit S Bains
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Nikolaus Schultz
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Victor E Reuter
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Joel Sheinfeld
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - George J Bosl
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Hikmat A Al-Ahmadie
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - David B Solit
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| | - Darren R Feldman
- Aditya Bagrodia, Byron H. Lee, William Lee, Eugene K. Cha, Gopa Iyer, Eugene J. Pietzak, Sizhi Paul Gao, Emily C. Zabor, Irina Ostrovnaya, Samuel D. Kaffenberger, Aijazuddin Syed, Maria E. Arcila, Raju S. Chaganti, Ritika Kundra, Jana Eng, Joseph Hreiki, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Nikolaus Schultz, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Memorial Sloan Kettering Cancer Center; John P. Sfakianos, Icahn School of Medicine at Mount Sinai; Gopa Iyer, Michael F. Berger, Dean F. Bajorin, Manjit S. Bains, Victor E. Reuter, Joel Sheinfeld, George J. Bosl, Hikmat A. Al-Ahmadie, David B. Solit, Darren R. Feldman, Weill Cornell Medical College; and Vladimir Vacic, Kanika Arora, Dayna M. Oschwald, New York Genome Center, New York, NY
| |
Collapse
|
116
|
Sakashita K, Matsuda K, Koike K. Diagnosis and treatment of juvenile myelomonocytic leukemia. Pediatr Int 2016; 58:681-90. [PMID: 27322988 DOI: 10.1111/ped.13068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/25/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative disorder that occurs during infancy and early childhood; this disorder is characterized by hypersensitivity of the myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor in vitro. JMML usually involves somatic and/or germline mutations in the genes of the RAS pathway, including PTPN11, NRAS, KRAS, NF1, and CBL, in the leukemic cells. Almost all patients with JMML experience an aggressive clinical course, and hematopoietic stem cell transplantation (HSCT) is the only curative treatment. A certain proportion of patients with somatic NRAS and germline mutations in CBL, however, have spontaneous resolution. A suitable treatment after diagnosis and conditioning regimen prior to HSCT are yet to be determined, but several clinical trials have been initiated throughout the world to develop suitable pre- or post-allogeneic HSCT treatments and new targeted therapies that are less toxic, to improve patient outcome.
Collapse
Affiliation(s)
- Kazuo Sakashita
- Department of Pediatric Hematology and Oncology, Nagano Children's Hospital, Azumono, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
117
|
Application of extensively targeted next-generation sequencing for the diagnosis of primary immunodeficiencies. J Allergy Clin Immunol 2016; 138:303-305.e3. [DOI: 10.1016/j.jaci.2016.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/26/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
|
118
|
Sochacki AL, Fischer MA, Savona MR. Therapeutic approaches in myelofibrosis and myelodysplastic/myeloproliferative overlap syndromes. Onco Targets Ther 2016; 9:2273-86. [PMID: 27143923 PMCID: PMC4844455 DOI: 10.2147/ott.s83868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The discovery of JAK2 (V617F) a decade ago led to optimism for a rapidly developing treatment revolution in Ph(-) myeloproliferative neoplasms. Unlike BCR-ABL, however, JAK2 was found to have a more heterogeneous role in carcinogenesis. Therefore, for years, development of new therapies was slow, despite standard treatment options that did not address the overwhelming symptom burden in patients with primary myelofibrosis (MF), post-essential thrombocythemia MF, post-polycythemia vera MF, and myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) syndromes. JAK-STAT inhibitors have changed this, drastically ameliorating symptoms and ultimately beginning to show evidence of impact on survival. Now, the genetic foundations of myelofibrosis and MDS/MPN are rapidly being elucidated and contributing to targeted therapy development. This has been empowered through updated response criteria for MDS/MPN and refined prognostic scoring systems in these diseases. The aim of this article is to summarize concisely the current and rationally designed investigational therapeutics directed at JAK-STAT, hedgehog, PI3K-Akt, bone marrow fibrosis, telomerase, and rogue epigenetic signaling. The revolution in immunotherapy and novel treatments aimed at previously untargeted signaling pathways provides hope for considerable advancement in therapy options for those with chronic myeloid disease.
Collapse
Affiliation(s)
- Andrew L Sochacki
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa A Fischer
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
119
|
Mughal TI, Cross NCP, Padron E, Tiu RV, Savona M, Malcovati L, Tibes R, Komrokji RS, Kiladjian JJ, Garcia-Manero G, Orazi A, Mesa R, Maciejewski JP, Fenaux P, Itzykson R, Mufti G, Solary E, List AF. An International MDS/MPN Working Group's perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica 2016; 100:1117-30. [PMID: 26341525 DOI: 10.3324/haematol.2014.114660] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the 2008 WHO classification, chronic myeloid malignancies that share both myelodysplastic and myeloproliferative features define the myelodysplastic/myeloproliferative group, which includes chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, atypical chronic myeloid leukemia, refractory anemia with ring sideroblasts and thrombocytosis, and myelodysplastic/myeloproliferative unclassified. With the notable exception of refractory anemia with ring sideroblasts and thrombocytosis, there is much overlap among the various subtypes at the molecular and clinical levels, and a better definition of these entities, an understanding of their biology and an identification of subtype-specific molecular or cellular markers are needed. To address some of these challenges, a panel comprised of laboratory and clinical experts in myelodysplastic/myeloproliferative was established, and four independent academic MDS/MPN workshops were held on: 9(th) March 2013, in Miami, Florida, USA; 6(th) December 2013, in New Orleans, Louisiana, USA; 13(th) June 2014 in Milan, Italy; and 5(th) December 2014 in San Francisco, USA. During these meetings, the current understanding of these malignancies and matters of biology, diagnosis and management were discussed. This perspective and the recommendations on molecular pathogenesis, diagnosis and clinical characterization for adult onset myelodysplastic/myeloproliferative is the result of a collaborative project endorsed and supported by the MDS Foundation.
Collapse
Affiliation(s)
| | | | - Eric Padron
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ramon V Tiu
- Cleveland Clinic Taussig Cancer Institute, OH, USA
| | - Michael Savona
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luca Malcovati
- University of Pavia Medical School, S. Matteo University Hospital, Pavia, Italy
| | - Raoul Tibes
- Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | | | | | | | | | - Ruben Mesa
- Mayo Clinic Cancer Center, Scottsdale, AZ, USA
| | | | | | | | - Ghulam Mufti
- King's College Hospital, GKT School of Medicine, London, UK
| | | | - Alan F List
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
120
|
Nakazawa Y, Matsuda K, Kurata T, Sueki A, Tanaka M, Sakashita K, Imai C, Wilson MH, Koike K. Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia. J Hematol Oncol 2016; 9:27. [PMID: 26983639 PMCID: PMC4793548 DOI: 10.1186/s13045-016-0256-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/08/2016] [Indexed: 11/17/2022] Open
Abstract
Background Juvenile myelomonocytic leukemia (JMML) is a fatal, myelodysplastic/myeloproliferative neoplasm of early childhood. Patients with JMML have mutually exclusive genetic abnormalities in granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR, CD116) signaling pathway. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option for JMML; however, disease recurrence is a major cause of treatment failure. We investigated adoptive immunotherapy using GMR-targeted chimeric antigen receptor (CAR) for JMML. Methods We constructed a novel CAR capable of binding to GMR via its ligand, GM-CSF, and generated piggyBac transposon-based GMR CAR-modified T cells from three healthy donors and two patients with JMML. We further evaluated the anti-proliferative potential of GMR CAR T cells on leukemic CD34+ cells from six patients with JMML (two NRAS mutations, three PTPN11 mutations, and one monosomy 7), and normal CD34+ cells. Results GMR CAR T cells from healthy donors suppressed the cytokine-dependent growth of MO7e cells, but not the growth of K562 and Daudi cells. Co-culture of healthy GMR CAR T cells with CD34+ cells of five patients with JMML at effector to target ratios of 1:1 and 1:4 for 2 days significantly decreased total colony growth, regardless of genetic abnormality. Furthermore, GMR CAR T cells from a non-transplanted patient and a transplanted patient inhibited the proliferation of respective JMML CD34+ cells at onset to a degree comparable to healthy GMR CAR T cells. Seven-day co-culture of GMR CAR T cells resulted in a marked suppression of JMML CD34+ cell proliferation, particularly CD34+CD38− cell proliferation stimulated with stem cell factor and thrombopoietin on AGM-S3 cells. Meanwhile, GMR CAR T cells exerted no effects on normal CD34+ cell colony growth. Conclusions Ligand-based GMR CAR T cells may have anti-proliferative effects on stem and progenitor cells in JMML. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takashi Kurata
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Akane Sueki
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan.,Division of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
121
|
Adults with germline CBL mutation complicated with juvenile myelomonocytic leukemia at infancy. J Hum Genet 2016; 61:523-6. [DOI: 10.1038/jhg.2016.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 02/01/2023]
|
122
|
Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 2016; 7:10767. [PMID: 26908133 PMCID: PMC4770084 DOI: 10.1038/ncomms10767] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
Abstract
The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.
Collapse
|
123
|
Abstract
Our ability to interrogate a broad array of genetic alterations in myeloid neoplasm has increased significantly with the advance in next-generation sequencing (NGS). In addition to morphologic examination, flow cytometry, and cytogenetics, NGS-based testing can add additional information to the diagnostic workup. More than a dozen myeloid-focused NGS-based panels are now available from commercial and academic laboratories. In this review, we examine the content of these panels in the context of our current understanding of driver alterations in myeloid neoplasms. With improved turnaround time, decreasing costs, and an expanding knowledge of the therapeutic and prognostic significance of the detected variants, NGS-based panel testing is likely to play a major role in the management of patients with myeloid neoplasm in the coming decade.
Collapse
|
124
|
KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun 2016; 7:10647. [PMID: 26854029 PMCID: PMC4748120 DOI: 10.1038/ncomms10647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-Ras(G60_A66dup) and K-Ras(E62_A66dup) proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications.
Collapse
|
125
|
Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy. Blood 2016; 127:1912-22. [PMID: 26764354 DOI: 10.1182/blood-2015-05-646216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/04/2016] [Indexed: 12/24/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage-colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1,but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway.
Collapse
|
126
|
Clara JA, Sallman DA, Padron E. Clinical management of myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes. Cancer Biol Med 2016; 13:360-372. [PMID: 27807503 PMCID: PMC5069836 DOI: 10.20892/j.issn.2095-3941.2016.0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are a unique group of hematologic malignancies characterized by concomitant myelodysplastic and myeloproliferative features. According to the 2008 WHO classification, the category includes atypical chronic myeloid leukemia (aCML), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), MDS/MPN-unclassifiable (MDS/MPN-U), and the provisional entity refractory anemia with ring sideroblasts and thrombocytosis (RARS-T). Although diagnosis currently remains based on clinicopathologic features, the incorporation of next-generation platforms has allowed for the recent molecular characterization of these diseases which has revealed unique and complex mutational profiles that support their distinct biology and is anticipated to soon play an integral role in diagnosis, prognostication, and treatment. Future goals of research should include the development of disease-modifying therapies, and further genetic understanding of the category will likely form the foundation of these efforts.
Collapse
Affiliation(s)
- Joseph A Clara
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33606, USA
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
127
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
128
|
Sakaguchi H, Muramatsu H, Okuno Y, Makishima H, Xu Y, Furukawa-Hibi Y, Wang X, Narita A, Yoshida K, Shiraishi Y, Doisaki S, Yoshida N, Hama A, Takahashi Y, Yamada K, Miyano S, Ogawa S, Maciejewski JP, Kojima S. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia. PLoS One 2015; 10:e0145394. [PMID: 26720758 PMCID: PMC4697810 DOI: 10.1371/journal.pone.0145394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options.
Collapse
Affiliation(s)
- Hirotoshi Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hematology and Oncology, Children’s Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Furukawa-Hibi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xinan Wang
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayoko Doisaki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children’s Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
129
|
Abstract
Abstract
The myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) lie at the interphase of phenotypically opposing bone marrow malignancies. They are characterized by concomitant features of bone marrow failure and myeloproliferation and are generally associated with a poor prognosis. Although much is unknown with respect to the clinical course and molecular biology of MDS/MPNs, emerging research is beginning to uncover the key defining characteristics of this designation. In this review, we will discuss the features of MDS/MPN diseases that unify there clinical and molecular course and those that define distinct disease entities. We will discuss advances in genetics and MDS/MPN modeling, as well as translational discoveries that are anticipated to inform the diagnosis, prognostication, and treatment of MDS/MPNs in the near future.
Collapse
|
130
|
Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, Esquivel E, Yu A, Seepo S, Olsen S, Rosenberg M, Archambeault SL, Abusin G, Beckman K, Brown PA, Briones M, Carcamo B, Cooper T, Dahl GV, Emanuel PD, Fluchel MN, Goyal RK, Hayashi RJ, Hitzler J, Hugge C, Liu YL, Messinger YH, Mahoney DH, Monteleone P, Nemecek ER, Roehrs PA, Schore RJ, Stine KC, Takemoto CM, Toretsky JA, Costello JF, Olshen AB, Stewart C, Li Y, Ma J, Gerbing RB, Alonzo TA, Getz G, Gruber T, Golub T, Stegmaier K, Loh ML. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet 2015; 47:1326-1333. [PMID: 26457647 PMCID: PMC4626387 DOI: 10.1038/ng.3400] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 or CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and could therefore be candidates for experimental therapies. In addition, few molecular pathways aside from the RAS-MAPK pathway have been identified that could serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia to expand knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, splicing, Polycomb repressive complex 2 (PRC2) and transcription. Notably, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | | | - Tiffany Y. Chang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Laura C. Gelston
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tali Mazor
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Emilio Esquivel
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Ariel Yu
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Sara Seepo
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Scott Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Sophie L. Archambeault
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Ghada Abusin
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kyle Beckman
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | - Patrick A. Brown
- Department of Pediatrics, The Johns Hopkins Hospital, Baltimore, MA
| | - Michael Briones
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer and Blood Disorder Center, Atlanta, GA
| | | | - Todd Cooper
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Gary V. Dahl
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA
| | - Peter D. Emanuel
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Mark N. Fluchel
- Department of Pediatric Hematology Oncology, University of Utah, Salt Lake City, UT
| | - Rakesh K. Goyal
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Robert J. Hayashi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher Hugge
- Pediatric Hematology Oncology, SSM Cardinal Glennon Children's Medical Center, Saint Louis, MO
| | - Y. Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yoav H. Messinger
- Division of Pediatric Hematology Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Donald H. Mahoney
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Philip Monteleone
- Pediatric Hematology Oncology, Pediatric Specialists of Lehigh Valley Hospital, Bethlehem, PA
| | - Eneida R. Nemecek
- Pediatric Bone Marrow Transplant Program, Oregon Health & Science University, Portland, OR
| | - Philip A. Roehrs
- Department of Pediatrics, University of North Carolina at Chapel Hill, NC
| | - Reuven J. Schore
- Division of Pediatric Oncology, Children's National Medical Center, Washington, DC
| | - Kimo C. Stine
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Jeffrey A. Toretsky
- Department of Pediatrics, Georgetown University, Washington, DC
- Department of Oncology, Georgetown University, Washington, DC
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Tanja Gruber
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd Golub
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Kimberly Stegmaier
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
131
|
Niemeyer CM, Loh ML, Cseh A, Cooper T, Dvorak CC, Chan R, Xicoy B, Germing U, Kojima S, Manabe A, Dworzak M, De Moerloose B, Starý J, Smith OP, Masetti R, Catala A, Bergstraesser E, Ussowicz M, Fabri O, Baruchel A, Cavé H, Zwaan M, Locatelli F, Hasle H, van den Heuvel-Eibrink MM, Flotho C, Yoshimi A. Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia. Haematologica 2015; 100:17-22. [PMID: 25552679 DOI: 10.3324/haematol.2014.109892] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Juvenile myelomonocytic leukemia is a rare myeloproliferative disease in young children. While hematopoietic stem cell transplantation remains the only curative therapeutic option for most patients, children with juvenile myelomonocytic leukemia increasingly receive novel agents in phase I-II clinical trials as pre-transplant therapy or therapy for relapse after transplantation. However, response criteria or definitions of outcome for standardized evaluation of treatment effect in patients with juvenile myelomonocytic leukemia are currently lacking. Here we propose criteria to evaluate the response to the non-transplant therapy and definitions of remission status after hematopoietic stem cell transplantation. For the evaluation of non-transplant therapy, we defined 6 clinical variables (white blood cell count, platelet count, hematopoietic precursors and blasts in peripheral blood, bone marrow blast percentage, spleen size and extramedullary disease) and 3 genetic variables (cytogenetic, molecular and chimerism response) which serve to describe the heterogeneous picture of response to therapy in each individual case. It is hoped that these criteria will facilitate the comparison of results between clinical trials in juvenile myelomonocytic leukemia.
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Mignon L Loh
- Department of Pediatrics and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Annamaria Cseh
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Todd Cooper
- Aflac Cancer and Blood Disorders Center/Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rebecca Chan
- Department of Pediatrics, The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Blanca Xicoy
- Department of Hematology, Hospital Germans Trias i Pujol and Institut Català d'Oncologia-José Carreras Leukemia Research Institute, Badalona, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Michael Dworzak
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Austria
| | | | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Czech Pediatric Hematology Working Group, Prague, Czech Republic
| | - Owen P Smith
- Pediatric Oncology and Hematology, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Riccardo Masetti
- Department of Pediatric Oncology and Hematology, University of Bologna, Italy
| | - Albert Catala
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Eva Bergstraesser
- Department of Hematology and Oncology, University Children's Hospital, Zurich, Switzerland
| | - Marek Ussowicz
- Department of Pediatric Oncology, Hematology and BMT, Wroclaw Medical University, Poland
| | - Oskana Fabri
- Department of Hematology and Transfusiology, Comenius University, Bratislava, Slovakia
| | - André Baruchel
- Department of Pediatric Hematology of Robert Debré Hospital and Paris Diderot University, Paris, France
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré, and Paris Diderot University, Paris, France
| | - Michel Zwaan
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and the Netherlands and ITCC
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, University of Pavia, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Marry M van den Heuvel-Eibrink
- ErasmusMC-Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, and Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology University of Freiburg, Germany
| |
Collapse
|
132
|
Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 2015; 47:1334-40. [DOI: 10.1038/ng.3420] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
|
133
|
Losdyck E, Hornakova T, Springuel L, Degryse S, Gielen O, Cools J, Constantinescu SN, Flex E, Tartaglia M, Renauld JC, Knoops L. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities. J Biol Chem 2015; 290:29022-34. [PMID: 26446793 DOI: 10.1074/jbc.m115.670224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/22/2023] Open
Abstract
JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3(V674A) and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3(L857P) was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3(L857P) activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3(L857P) was observed for homologous Leu(857) mutations of JAK1 and JAK2 and for JAK3(L875H). This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3(V674A) led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3(L857P) induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3(V674A), yet proved much less potent on cells expressing JAK3(L857P). These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.
Collapse
Affiliation(s)
- Elisabeth Losdyck
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Tekla Hornakova
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Lorraine Springuel
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sandrine Degryse
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Olga Gielen
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Jan Cools
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Stefan N Constantinescu
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | - Marco Tartaglia
- the Genetic Disorders and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesu' IRCCS, Viale di San Paolo 15, 00146 Rome, Italy
| | - Jean-Christophe Renauld
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Knoops
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium, the Hematology Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium, and
| |
Collapse
|
134
|
Paroxysmal nocturnal hemoglobinuria induced by the occurrence of BCR-ABL in a PIGA mutant hematopoietic progenitor cell. Leukemia 2015; 30:1208-10. [PMID: 26437783 DOI: 10.1038/leu.2015.268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Springuel L, Renauld JC, Knoops L. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 2015; 100:1240-53. [PMID: 26432382 PMCID: PMC4591756 DOI: 10.3324/haematol.2015.132142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Constitutive JAK-STAT pathway activation occurs in most myeloproliferative neoplasms as well as in a significant proportion of other hematologic malignancies, and is frequently a marker of poor prognosis. The underlying molecular alterations are heterogeneous as they include activating mutations in distinct components (cytokine receptor, JAK, STAT), overexpression (cytokine receptor, JAK) or rare JAK2 fusion proteins. In some cases, concomitant loss of negative regulators contributes to pathogenesis by further boosting the activation of the cascade. Exploiting the signaling bottleneck provided by the limited number of JAK kinases is an attractive therapeutic strategy for hematologic neoplasms driven by constitutive JAK-STAT pathway activation. However, given the conserved nature of the kinase domain among family members and the interrelated roles of JAK kinases in many physiological processes, including hematopoiesis and immunity, broad usage of JAK inhibitors in hematology is challenged by their narrow therapeutic window. Novel therapies are, therefore, needed. The development of more selective inhibitors is a questionable strategy as such inhibitors might abrogate the beneficial contribution of alleviating the cancer-related pro-inflammatory microenvironment and raise selective pressure to a threshold that allows the emergence of malignant subclones harboring drug-resistant mutations. In contrast, synergistic combinations of JAK inhibitors with drugs targeting cascades that work in concert with JAK-STAT pathway appear to be promising therapeutic alternatives to JAK inhibitors as monotherapies.
Collapse
Affiliation(s)
- Lorraine Springuel
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Jean-Christophe Renauld
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Laurent Knoops
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium Hematology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
136
|
Abstract
Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation.
Collapse
|
137
|
Abstract
RAS genes encode a family of 21 kDa proteins that are an essential hub for a number of survival, proliferation, differentiation and senescence pathways. Signaling of the RAS-GTPases through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade is essential in development. A group of genetic syndromes, named "RASopathies", had been identified which are caused by heterozygosity for germline mutations in genes that encode protein components of the RAS/MAPK pathway. Several of these clinically overlapping disorders, including Noonan syndrome, Noonan-like CBL syndrome, Costello syndrome, cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type I, and Legius syndrome, predispose to cancer and abnormal myelopoiesis in infancy. This review focuses on juvenile myelomonocytic leukemia (JMML), a malignancy of early childhood characterized by initiating germline and/or somatic mutations in five genes of the RAS/MAPK pathway: PTPN11, CBL, NF-1, KRAS and NRAS. Natural courses of these five subtypes differ, although hematopoietic stem cell transplantation remains the only curative therapy option for most children with JMML. With whole-exome sequencing studies revealing few secondary lesions it will be crucial to better understand the RAS/MAPK signaling network with its crosstalks and feed-back loops to carefully design early clinical trials with novel pharmacological agents in this still puzzling leukemia.
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatric Hematology and Oncology, Universitätsklinikum Freiburg, Germany
| |
Collapse
|
138
|
Hu W, Wang X, Yang R, Xie Y, Zhang Z, Lu H, Wu L, Lai M, Yu K. A novel mutation of SETBP1 in atypical chronic myeloid leukemia transformed from acute myelomonocytic leukemia. Clin Case Rep 2015; 3:448-52. [PMID: 26185647 PMCID: PMC4498861 DOI: 10.1002/ccr3.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/10/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022] Open
Abstract
To investigate an oncogenic mutation of SETBP1 in the evolution from acute myelomonocytic leukemia (M4) to secondary aCML. Clinical data and molecular studies were analyzed of paired aCML and 'normal'DNA from a case with M4. We identified a mutation in SETBP1 (encoding a p.Asp868Ala alteration). The analysis of paired sample indicated that SETBP1 mutation was acquired during leukemic evolution.
Collapse
Affiliation(s)
- WangQiang Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - XiaoXia Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - RongRong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - YaoSheng Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Zhuo Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - LianFeng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - MeiMei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| |
Collapse
|
139
|
Gondek LP, DeZern AE. I walk the line: how to tell MDS from other bone marrow failure conditions. Curr Hematol Malig Rep 2015; 9:389-99. [PMID: 25079655 DOI: 10.1007/s11899-014-0224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by peripheral cytopenias and ineffective hematopoiesis. MDS is an example of an age-related malignancy and its increasing prevalence and incidence can be attributed to a greater life expectancy in developed countries. Although frequently encountered in hematology/oncology clinics, MDS may constitute a diagnostic challenge especially with equivocal bone marrow morphology. Certain syndromes of bone marrow failure (BMF) may mimic MDS and formulating a correct diagnosis is vital for adequate prognostication as well as therapeutic approaches. Metaphase karyotyping (MK) is a very important diagnostic tool and marker of prognosis and can be an indicator of response to certain therapies. Unfortunately, chromosomal abnormalities may only be found in approximately 50 % of patients with MDS. In this review, we discuss the diagnostic approaches to patients with pancytopenia with a particular focus on the growing number of somatic mutations through new molecular testing.
Collapse
Affiliation(s)
- Lukasz P Gondek
- Department of Oncology, Division of Hematological Malignancies, Johns Hopkins University, 1650 Orleans St, CRB1-290, Baltimore, MD, 21231, USA,
| | | |
Collapse
|
140
|
|
141
|
Miyake F, Kuroda Y, Naruto T, Ohashi I, Takano K, Kurosawa K. West syndrome in a patient with Schinzel-Giedion syndrome. J Child Neurol 2015; 30:932-6. [PMID: 25028416 DOI: 10.1177/0883073814541468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/01/2014] [Indexed: 11/16/2022]
Abstract
Schinzel-Giedion syndrome is a rare recognizable malformation syndrome defined by characteristic facial features, profound developmental delay, severe growth failure, and multiple congenital anomalies. The causative gene of Schinzel-Giedion syndrome, SETBP1, has been identified, but limited cases have been confirmed by molecular analysis. We present a 9-month-old girl affected by West syndrome with Schinzel-Giedion syndrome. Congenital severe hydronephrosis, typical facial features, and multiple anomalies suggested a clinical diagnosis of Schinzel-Giedion syndrome. Hypsarrhythmia occurred at 7 months of age and was temporarily controlled by adrenocorticotropic hormone (ACTH) therapy during 5 weeks. SETBP1 mutational analysis showed the presence of a recurrent mutation, p.Ile871Thr. The implications in management of Schinzel-Giedion syndrome are discussed.
Collapse
Affiliation(s)
- Fuyu Miyake
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Ikuko Ohashi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kyoko Takano
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
142
|
Wang X, Muramatsu H, Okuno Y, Sakaguchi H, Yoshida K, Kawashima N, Xu Y, Shiraishi Y, Chiba K, Tanaka H, Saito S, Nakazawa Y, Masunari T, Hirose T, Elmahdi S, Narita A, Doisaki S, Ismael O, Makishima H, Hama A, Miyano S, Takahashi Y, Ogawa S, Kojima S. GATA2 and secondary mutations in familial myelodysplastic syndromes and pediatric myeloid malignancies. Haematologica 2015; 100:e398-401. [PMID: 26022708 DOI: 10.3324/haematol.2015.127092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xinan Wang
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotoshi Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taro Masunari
- Department of Hematology, Chugoku Central Hospital, Fukuyama, Japan
| | - Tadashi Hirose
- Department of Hematology, Kawasaki Medical School, Okayama, Japan
| | - Shaimaa Elmahdi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayoko Doisaki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Olfat Ismael
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
143
|
Shiota M, Yang X, Kubokawa M, Morishima T, Tanaka K, Mikami M, Yoshida K, Kikuchi M, Izawa K, Nishikomori R, Okuno Y, Wang X, Sakaguchi H, Muramatsu H, Kojima S, Miyano S, Ogawa S, Takagi M, Hata D, Kanegane H. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J Clin Immunol 2015; 35:454-8. [PMID: 25896945 DOI: 10.1007/s10875-015-0163-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/06/2015] [Indexed: 01/01/2023]
Abstract
RAS-associated leukoproliferative disease (RALD) is a newly classified disease; thus its clinical features and management are not fully understood. The cases of two patients with characteristic features of RALD are described herein. Patient 1 was a 5-month-old female with clinical features typical of autoimmune lymphoproliferative syndrome (ALPS) and markedly elevated TCRαβ(+)CD4(-)CD8(-) T cell numbers. Genetic analyses failed to detect an ALPS-related gene mutation; however, whole exome sequencing and other genetic analyses revealed somatic mosaicism for the G13D NRAS mutation. These data were indivative of NRAS-associated RALD with highly elevated αβ-double-negative T cells. Patient 2 was a 12-month-old girl with recurrent fever who clearly met the diagnostic criteria for juvenile myelomonocytic leukemia (JMML). Genetic analyses revealed somatic mosaicism, again for the G13D NRAS mutation, suggesting RALD associated with somatic NRAS mosaicism. Notably, unlike most JMML cases, Patient 2 did not require steroids or hematopoietic stem cell transplantation. Genetic analysis of RAS should be performed in patients fulfilling the diagnostic criteria for ALPS in the absence of ALPS-related gene mutations if the patients have elevated αβ-double-negative-T cells and in JMML patients if autoimmunity is detected. These clinical and experimental data increase our understanding of RALD, ALPS, and JMML.
Collapse
Affiliation(s)
- Mitsutaka Shiota
- Department of Pediatrics, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Zhang J, Barbaro P, Guo Y, Alodaib A, Li J, Gold W, Adès L, Keating BJ, Xu X, Teo J, Hakonarson H, Christodoulou J. Utility of next-generation sequencing technologies for the efficient genetic resolution of haematological disorders. Clin Genet 2015; 89:163-72. [PMID: 25703294 DOI: 10.1111/cge.12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/01/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing (NGS) has now evolved to be a relatively affordable and efficient means of detecting genetic mutations. Whole genome sequencing (WGS) or whole exome sequencing (WES) offers the opportunity for rapid diagnosis in many paediatric haematological conditions, where phenotypes are variable and either a large number of genes are involved, or the genes are large making sanger sequencing expensive and labour-intensive. NGS offers the potential for gene discovery in patients who do not have mutations in currently known genes. This report shows how WES was used in the diagnosis of six paediatric haematology cases. In four cases (Diamond-Blackfan anaemia, congenital neutropenia (n = 2), and Fanconi anaemia), the diagnosis was suspected based on classical phenotype, and NGS confirmed those suspicions. Mutations in RPS19, ELANE and FANCD2 were found. The final two cases (MYH9 associated macrothrombocytopenia associated with multiple congenital anomalies; atypical juvenile myelomonocytic leukaemia associated with a KRAS mutation) highlight the utility of NGS where the diagnosis is less certain, or where there is an unusual phenotype. We discuss the advantages and limitations of NGS in the setting of these cases, and in haematological conditions more broadly, and discuss where NGS is most efficiently used.
Collapse
Affiliation(s)
- J Zhang
- T-Life Research Center, Fudan University, Shanghai, 200433, China.,Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - P Barbaro
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia.,Cancer Research Unit, Children's Medical Research Institute, Westmead, Australia
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Alodaib
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - J Li
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - W Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - L Adès
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Clinical Genetics Department, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - B J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Xu
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Key Laboratory of Genomics, Shenzhen, China.,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, China
| | - J Teo
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia
| | - H Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
145
|
Sakashita K, Kato I, Daifu T, Saida S, Hiramatsu H, Nishinaka Y, Ebihara Y, Ma F, Matsuda K, Saito S, Hirabayashi K, Kurata T, Uyen LTN, Nakazawa Y, Tsuji K, Heike T, Nakahata T, Koike K. In vitro expansion of CD34(+)CD38(-) cells under stimulation with hematopoietic growth factors on AGM-S3 cells in juvenile myelomonocytic leukemia. Leukemia 2015; 29:606-14. [PMID: 25102944 DOI: 10.1038/leu.2014.239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 07/09/2013] [Accepted: 07/24/2014] [Indexed: 12/11/2022]
Abstract
Using serum-containing culture, we examined whether AGM-S3 stromal cells, alone or in combination with hematopoietic growth factor(s), stimulated the proliferation of CD34(+) cells from patients with juvenile myelomonocytic leukemia (JMML). AGM-S3 cells in concert with stem cell factor plus thrombopoietin increased the numbers of peripheral blood CD34(+) cells to approximately 20-fold of the input value after 2 weeks in nine JMML patients with either PTPN11 mutations or RAS mutations, who received allogeneic hematopoietic transplantation. Granulocyte-macrophage colony-stimulating factor (GM-CSF) also augmented the proliferation of JMML CD34(+) cells on AGM-S3 cells. The expansion potential of CD34(+) cells was markedly low in four patients who achieved spontaneous hematological improvement. A large proportion of day-14-cultured CD34(+) cells were negative for CD38 and cryopreservable. Cultured JMML CD34(+)CD38(-) cells expressed CD117, CD116, c-mpl, CD123, CD90, but not CXCR4, and formed GM and erythroid colonies. Day-7-cultured CD34(+) cells from two of three JMML patients injected intrafemorally into immunodeficient mice stimulated with human GM-CSF after transplantation displayed significant hematopoietic reconstitution. The abilities of OP9 cells and MS-5 cells were one-third and one-tenth, respectively, of the value obtained with AGM-S3 cells. Our culture system may provide a useful tool for elucidating leukemogenesis and for therapeutic approaches in JMML.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- Adolescent
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Cell Proliferation/drug effects
- Clone Cells
- Coculture Techniques
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/pathology
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Gene Expression Regulation, Leukemic
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutation
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/transplantation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins p21(ras)
- Signal Transduction
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- K Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - I Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Daifu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Nishinaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Y Ebihara
- 1] Department of Pediatric Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Minato-ku, Japan [2] Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - F Ma
- 1] Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Japan [2] Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - K Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - S Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - K Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - T Kurata
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - L T N Uyen
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Y Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - K Tsuji
- 1] Department of Pediatric Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Minato-ku, Japan [2] Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Japan [3] Department of Pediatrics, Shinshu Ueda Medical Center, National Hospital Organization, Ueda, Japan
| | - T Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - K Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
146
|
Hyakuna N, Muramatsu H, Higa T, Chinen Y, Wang X, Kojima S. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer 2015; 62:542-4. [PMID: 25283271 DOI: 10.1002/pbc.25271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/20/2014] [Indexed: 02/03/2023]
Abstract
Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development.
Collapse
Affiliation(s)
- Nobuyuki Hyakuna
- Center of Bone Marrow Transplantation, Hospital of University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | |
Collapse
|
147
|
JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood 2015; 125:2753-8. [PMID: 25691160 DOI: 10.1182/blood-2014-11-567917] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Ras-associated autoimmune leukoproliferative disorder (RALD) is a chronic, nonmalignant condition that presents with persistent monocytosis and is often associated with leukocytosis, lymphoproliferation, and autoimmune phenomena. RALD has clinical and laboratory features that overlap with those of juvenile myelomonocytic leukemia (JMML) and chronic myelomonocytic leukemia (CMML), including identical somatic mutations in KRAS or NRAS genes noted in peripheral blood mononuclear cells. Long-term follow-up of these patients suggests that RALD has an indolent clinical course whereas JMML is fatal if left untreated. Immunophenotyping peripheral blood from RALD patients shows characteristic circulating activated monocytes and polyclonal CD10(+) B cells. Distinguishing RALD from JMML and CMML has implications for clinical care and prognosis.
Collapse
|
148
|
Abstract
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique, aggressive hematopoietic disorder of infancy/early childhood caused by excessive proliferation of cells of monocytic and granulocytic lineages. Approximately 90% of patients carry either somatic or germline mutations of PTPN-11, K-RAS, N-RAS, CBL, or NF1 in their leukemic cells. These genetic aberrations are largely mutually exclusive and activate the Ras/mitogen-activated protein kinase pathway. Allogeneic hematopoietic stem cell transplantation (HSCT) remains the therapy of choice for most patients with JMML, curing more than 50% of affected children. We recommend that this option be promptly offered to any child with PTPN-11-, K-RAS-, or NF1-mutated JMML and to the majority of those with N-RAS mutations. Because children with CBL mutations and few of those with N-RAS mutations may have spontaneous resolution of hematologic abnormalities, the decision to proceed to transplantation in these patients must be weighed carefully. Disease recurrence remains the main cause of treatment failure after HSCT. A second allograft is recommended if overt JMML relapse occurs after transplantation. Recently, azacytidine, a hypomethylating agent, was reported to induce hematologic/molecular remissions in some children with JMML, and its role in both reducing leukemia burden before HSCT and in nontransplant settings requires further studies.
Collapse
|
149
|
An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood 2015; 125:1857-65. [PMID: 25624319 DOI: 10.1182/blood-2014-10-607341] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) are hematologically diverse stem cell malignancies sharing phenotypic features of both myelodysplastic syndromes and myeloproliferative neoplasms. There are currently no standard treatment recommendations for most adult patients with MDS/MPN. To optimize efforts to improve the management and disease outcomes, it is essential to identify meaningful clinical and biologic end points and standardized response criteria for clinical trials. The dual dysplastic and proliferative features in these stem cell malignancies define their uniqueness and challenges. We propose response assessment guidelines to harmonize future clinical trials with the principal objective of establishing suitable treatment algorithms. An international panel comprising laboratory and clinical experts in MDS/MPN was established involving 3 independent academic MDS/MPN workshops (March 2013, December 2013, and June 2014). These recommendations are the result of this collaborative project sponsored by the MDS Foundation.
Collapse
|
150
|
Odenike O, Onida F, Padron E. Myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms: an update on risk stratification, molecular genetics, and therapeutic approaches including allogeneic hematopoietic stem cell transplantation. Am Soc Clin Oncol Educ Book 2015:e398-e412. [PMID: 25993202 DOI: 10.14694/edbook_am.2015.35.e398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myelodysplastic syndromes are a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, peripheral cytopenias, and a variable propensity for leukemic transformation. In recent years there has been an explosion of information on the molecular genetic changes underlying these disorders. This information has substantial prognostic implications, and the influence on therapeutic approaches and the treatment of patients is evolving. Allogeneic hematopoietic stem cell transplantation (alloSCT) is the only known cure for these diseases, but appropriate patient selection is of utmost importance from a risk-benefit perspective. This review focuses on the factors influencing risk stratification in MDS and optimal choice of front-line therapy in the current era, including the interplay of clinical factors and molecular genetic factors, and factors that determine eligibility for alloSCT. The myelodysplastic/myeloproliferative diseases also will be discussed, including the increasing effort to understand the molecular genetics and natural history of these disorders and treatment approaches.
Collapse
Affiliation(s)
- Olatoyosi Odenike
- From the Section of Hematology/Oncology, and the Comprehensive Cancer Center, The University of Chicago, Chicago, IL; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Moffitt Cancer Center, Tampa, FL
| | - Francesco Onida
- From the Section of Hematology/Oncology, and the Comprehensive Cancer Center, The University of Chicago, Chicago, IL; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Moffitt Cancer Center, Tampa, FL
| | - Eric Padron
- From the Section of Hematology/Oncology, and the Comprehensive Cancer Center, The University of Chicago, Chicago, IL; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; Moffitt Cancer Center, Tampa, FL
| |
Collapse
|