101
|
Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc Natl Acad Sci U S A 2010; 107:11483-8. [PMID: 20534513 DOI: 10.1073/pnas.1004600107] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize approximately 80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 A resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue "specificity loop" on the "hammerhead" subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 A facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.
Collapse
|
102
|
Affiliation(s)
- Joshua S. Klein
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JK); (PB)
| | - Pamela J. Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JK); (PB)
| |
Collapse
|
103
|
Abstract
Licensed vaccines against viral diseases generate antibodies that neutralize the infecting virus and protect against infection or disease. Similarly, an effective vaccine against HIV-1 will likely need to induce antibodies that prevent initial infection of host cells or that limit early events of viral dissemination. Such antibodies must target the surface envelope glycoproteins of HIV-1, which are highly variable in sequence and structure. The first subunit vaccines to enter clinical trails were safe and immunogenic but unable to elicit antibodies that neutralized most circulating strains of HIV-1. However, potent virus neutralizing antibodies (NAbs) can develop during the course of HIV-1 infection, and this is the type of antibody response that researchers seek to generate with a vaccine. Thus, current vaccine design efforts have focused on a more detailed understanding of these broadly neutralizing antibodies and their epitopes to inform the design of improved vaccines.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
104
|
Abstract
Developing an HIV-1 vaccine that can elicit antibodies to prevent infection has been a formidable challenge. Although no single immunogen has generated antibodies that can neutralize diverse isolates, progress has been made in understanding (a) the structure of the HIV-1 envelope glycoprotein, which is targeted by neutralizing antibodies, (b) how HIV-1 evades antibodies made by an infected host, and (c) how rare monoclonal antibodies can exhibit broadly neutralizing activity. Advances in structural and molecular biology coupled with new approaches to isolate neutralizing antibodies from HIV-1-infected individuals are enhancing our understanding of what humoral immune responses will be required for a vaccine. This review summarizes progress in understanding the host antibody response to HIV-1 and current strategies for applying this information to develop an effective vaccine.
Collapse
Affiliation(s)
- James A Hoxie
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
105
|
|
106
|
Lagenaur LA, Villarroel VA, Bundoc V, Dey B, Berger EA. sCD4-17b bifunctional protein: extremely broad and potent neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates. Retrovirology 2010; 7:11. [PMID: 20158904 PMCID: PMC2843639 DOI: 10.1186/1742-4690-7-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 02/16/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND We previously described a potent recombinant HIV-1 neutralizing protein, sCD4-17b, composed of soluble CD4 attached via a flexible polypeptide linker to an SCFv of the 17b human monoclonal antibody directed against the highly conserved CD4-induced bridging sheet of gp120 involved in coreceptor binding. The sCD4 moiety of the bifunctional protein binds to gp120 on free virions, thereby enabling the 17b SCFv moiety to bind and block the gp120/coreceptor interaction required for entry. The previous studies using the MAGI-CCR5 assay system indicated that sCD4-17b (in concentrated cell culture medium, or partially purified) potently neutralized several genetically diverse HIIV-1 primary isolates; however, at the concentrations tested it was ineffective against several other strains despite the conservation of binding sites for both CD4 and 17b. To address this puzzle, we designed variants of sCD4-17b with different linker lengths, and tested the neutralizing activities of the immunoaffinity purified proteins over a broader concentration range against a large number of genetically diverse HIV-1 primary isolates, using the TZM-bl Env pseudotype assay system. We also examined the sCD4-17b sensitivities of isogenic viruses generated from different producer cell types. RESULTS We observed that immunoaffinity purified sCD4-17b effectively neutralized HIV-1 pseudotypes, including those from HIV-1 isolates previously found to be relatively insensitive in the MAGI-CCR5 assay. The potencies were equivalent for the original construct and a variant with a longer linker, as observed with both pseudotype particles and infectious virions; by contrast, a construct with a linker too short to enable simultaneous binding of the sCD4 and 17b SCFv moieties was much less effective. sCD4-17b displayed potent neutralizing activity against 100% of nearly 4 dozen HIV-1 primary isolates from diverse genetic subtypes (clades A, B, C, D, F, and circulating recombinant forms AE and AG). The neutralization breadth and potency were superior to what have been reported for the broadly neutralizing monoclonal antibodies IgG b12, 2G12, 2F5, and 4E10. The activity of sCD4-17b was found to be similar against isogenic virus particles from infectious molecular clones derived either directly from the transfected producer cell line or after a single passage through PBMCs; this contrasted with the monoclonal antibodies, which were less potent against the PMBC-passaged viruses. CONCLUSIONS The results highlight the extremely potent and broad neutralizing activity of sCD4-17b against genetically diverse HIV-1 primary isolates. The bifunctional protein has potential applications for antiviral approaches to combat HIV infection.
Collapse
Affiliation(s)
- Laurel A Lagenaur
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim A Villarroel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Virgilio Bundoc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barna Dey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
107
|
Kraus MH, Parrish NF, Shaw KS, Decker JM, Keele BF, Salazar-Gonzalez JF, Grayson T, McPherson DT, Ping LH, Anderson JA, Swanstrom R, Williamson C, Shaw GM, Hahn BH. A rev1-vpu polymorphism unique to HIV-1 subtype A and C strains impairs envelope glycoprotein expression from rev-vpu-env cassettes and reduces virion infectivity in pseudotyping assays. Virology 2009; 397:346-57. [PMID: 20003995 DOI: 10.1016/j.virol.2009.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Functional studies of HIV-1 envelope glycoproteins (Envs) commonly include the generation of pseudoviruses, which are produced by co-transfection of rev-vpu-env cassettes with an env-deficient provirus. Here, we describe six Env constructs from transmitted/founder HIV-1 that were defective in the pseudotyping assay, although two produced infectious virions when expressed from their cognate proviruses. All of these constructs exhibited an unusual gene arrangement in which the first exon of rev (rev1) and vpu were in the same reading frame without an intervening stop codon. Disruption of the rev1-vpu fusion gene by frameshift mutation, stop codon, or abrogation of the rev initiation codon restored pseudovirion infectivity. Introduction of the fusion gene into wildtype Env cassettes severely compromised their function. The defect was not due to altered env and rev transcription or a dominant negative effect of the expressed fusion protein, but seemed to be caused by inefficient translation at the env initiation codon. Although the rev1-vpu polymorphism affects Env expression only in vitro, it can cause problems in studies requiring Env complementation, such as analyses of co-receptor usage and neutralization properties, since 3% of subtype A, 20% of subtype C and 5% of CRF01_A/E viruses encode the fusion gene. A solution is to eliminate the rev initiation codon when amplifying rev-vpu-env cassettes since this increases Env expression irrespective of the presence of the polymorphism.
Collapse
Affiliation(s)
- Matthias H Kraus
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Clark KR, Walsh STR. Crystal structure of a 3B3 variant--a broadly neutralizing HIV-1 scFv antibody. Protein Sci 2009; 18:2429-41. [PMID: 19785005 PMCID: PMC2821263 DOI: 10.1002/pro.255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We present the crystal structure determination of an anti-HIV-1 gp120 single-chain variable fragment antibody variant, 3B3, at 2.5 A resolution. This 3B3 variant was derived from the b12 antibody, using phage display and site-directed mutagenesis of the variable heavy chain (V(H)) complementary-determining regions (CDRs). 3B3 exhibits enhanced binding affinity and neutralization activity against several cross-clade primary isolates of HIV-1 by interaction with the recessed CD4-binding site on the gp120 envelope protein. Comparison with the structures of the unbound and bound forms of b12, the 3B3 structure closely resembles these structures with minimal differences with two notable exceptions. First, there is a reorientation of the CDR-H3 of the V(H) domain where the primary sequences evolved from b12 to 3B3. The structural changes in CDR-H3 of 3B3, in light of the b12-gp120 complex structure, allow for positioning an additional Trp side chain in the binding interface with gp120. Finally, the second region of structural change involves two peptide bond flips in CDR-L3 of the variable light (V(L)) domain triggered by a point mutation in CDR-H3 of Q100eY resulting in changes in the intramolecular hydrogen bonding patterning between the V(L) and V(H) domains. Thus, the enhanced binding affinities and neutralization capabilities of 3B3 relative to b12 probably result from higher hydrophobic driving potential by burying more aromatic residues at the 3B3-gp120 interface and by indirect stabilization of intramolecular contacts of the core framework residues between the V(L) and V(H) domains possibly through more favorable entropic effect through the expulsion of water.
Collapse
Affiliation(s)
- K Reed Clark
- Center for Gene Therapy, Nationwide Children's HospitalColumbus, Ohio 43205,Department of Pediatrics, College of Medicine, The Ohio State UniversityColumbus, Ohio 43210
| | - Scott T R Walsh
- W. M. Keck Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology InstituteRockville, Maryland 20850,*Correspondence to: Scott T. R. Walsh, Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850. E-mail:
| |
Collapse
|
109
|
Dimitrov JD, Roumenina LT, Andre S, Repesse Y, Atanasov BP, Jacquemin M, Saint-Remy JM, Bayry J, Kaveri SV, Lacroix-Desmazes S. Kinetics and thermodynamics of interaction of coagulation factor VIII with a pathogenic human antibody. Mol Immunol 2009; 47:290-7. [DOI: 10.1016/j.molimm.2009.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/06/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
|
110
|
Burke V, Williams C, Sukumaran M, Kim SS, Li H, Wang XH, Gorny MK, Zolla-Pazner S, Kong XP. Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens. Structure 2009; 17:1538-46. [PMID: 19913488 PMCID: PMC3683248 DOI: 10.1016/j.str.2009.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/26/2009] [Accepted: 09/15/2009] [Indexed: 01/07/2023]
Abstract
Human monoclonal antibodies 447-52D and 537-10D, both coded by the VH3 gene and specific for the third variable region (V3) of the HIV-1 gp120, were found to share antigen-binding structural elements including an elongated CDR H3 forming main-chain interactions with the N terminus of the V3 crown. However, water-mediated hydrogen bonds and a unique cation-pi sandwich stacking allow 447-52D to be broadly reactive with V3 containing both the GPGR and GPGQ crown motifs, while the deeper binding pocket and a buried Glu in the binding site of 537-10D limit its reactivity to only V3 containing the GPGR motif. Our results suggest that the design of immunogens for anti-V3 antibodies should avoid the Arg at the V3 crown, as GPGR-containing epitopes appear to select for B cells making antibodies of narrower specificity than V3 that carry Gln at this position.
Collapse
Affiliation(s)
- Valicia Burke
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Constance Williams
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Madhav Sukumaran
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Seung-Sup Kim
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Huiguang Li
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, NY, 10016
,Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
111
|
Gach JS, Furtmüller PG, Quendler H, Messner P, Wagner R, Katinger H, Kunert R. Proline is not uniquely capable of providing the pivot point for domain swapping in 2G12, a broadly neutralizing antibody against HIV-1. J Biol Chem 2009; 285:1122-7. [PMID: 19903812 DOI: 10.1074/jbc.m109.058792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human monoclonal antibody 2G12 is a member of a small group of broadly neutralizing antibodies against human immunodeficiency virus type 1. 2G12 adopts a unique variable heavy domain-exchanged dimeric configuration that results in an extensive multivalent binding surface and the ability to bind with high affinity to densely clustered high mannose oligosaccharides on the "silent" face of the gp120 envelope glycoprotein. Here, we further define the amino acids responsible for this extraordinary domain-swapping event in 2G12.
Collapse
Affiliation(s)
- Johannes S Gach
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, 1190 Vienna, Austria. jgach@scripps-edu
| | | | | | | | | | | | | |
Collapse
|