101
|
Chen L, Chen Z, Baker K, Halvorsen EM, da Cunha AP, Flak MB, Gerber G, Huang YH, Hosomi S, Arthur JC, Dery KJ, Nagaishi T, Beauchemin N, Holmes KV, Ho JWK, Shively JE, Jobin C, Onderdonk AB, Bry L, Weiner HL, Higgins DE, Blumberg RS. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction. Immunity 2012; 37:930-46. [PMID: 23123061 DOI: 10.1016/j.immuni.2012.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens.
Collapse
Affiliation(s)
- Lanfen Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Bluestone JA, Bour-Jordan H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 2012; 4:4/11/a007542. [PMID: 23125012 DOI: 10.1101/cshperspect.a007542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases reflect a breakdown in self-tolerance that results from defects in thymic deletion of potentially autoreactive T cells (central tolerance) and in T-cell intrinsic and extrinsic mechanisms that normally control potentially autoreactive T cells in the periphery (peripheral tolerance). The mechanisms leading to autoimmune diseases are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in pathogenic inflammatory responses in peripheral tissues driven by self-antigen-specific T cells. In this article, we describe the different checkpoints of tolerance that are defective in autoimmune diseases as well as specific events in the autoimmune response which represent therapeutic opportunities to restore long-term tolerance in autoimmune diseases. We present evidence for the role of different pathways in animal models and the therapeutic strategies targeting these pathways in clinical trials in autoimmune diseases.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California at San Francisco, 94143, USA.
| | | |
Collapse
|
103
|
Forster K, Goethel A, Chan CWT, Zanello G, Streutker C, Croitoru K. An oral CD3-specific antibody suppresses T-cell-induced colitis and alters cytokine responses to T-cell activation in mice. Gastroenterology 2012; 143:1298-1307. [PMID: 22819863 DOI: 10.1053/j.gastro.2012.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 06/11/2012] [Accepted: 07/13/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS New therapeutic approaches are needed for inflammatory bowel diseases. A monoclonal antibody against CD3 (anti-CD3) suppresses T-cell-mediated autoimmune diseases such as experimental allergic encephalomyelitis. We explored the effects of anti-CD3 in mice with colitis. METHODS Severe combined immunodeficient mice were given injections of CD4(+)CD45RB(high) T cells to induce colitis. Four weeks later, the mice were given 2 or 5 μg/day of anti-CD3 or hamster immunoglobulin (Ig)G (control), via gavage, for 5 or 10 days. The effect of oral anti-CD3 on cytokine responses was studied by activating T cells using intraperitoneal injections of anti-CD3 monoclonal antibody 2 days after oral administration of the antibody. We collected intestine samples for histology analysis and cells were analyzed by flow cytometry. Cytokines in sera were analyzed by cytometric bead array. RESULTS Oral administration of anti-CD3 protected the mice from wasting disease and intestinal inflammation. Analyses of spleen and mesenteric lymph node cells showed no differences in total cell counts, or percentages of CD4(+) and forkhead box P3(+) regulatory T cells, between mice given anti-CD3 or the control immunoglobulin. Colitis therefore was not suppressed by induction of forkhead box P3(+) regulatory T cells, or depletion or limited expansion of T cells. Oral administration of anti-CD3 ameliorated the enteropathy induced by intraperitoneal injection of the antibody. In mice with enteropathy, oral anti-CD3 reduced levels of inflammatory cytokines such as interferon-γ, tumor necrosis factor-α, and interleukin (IL)-6; it also increased levels of the anti-inflammatory cytokines IL-10 and transforming growth factor-β. The effects of oral anti-CD3 required IL-10. CONCLUSIONS Oral administration of anti-CD3 to mice induces changes in the mucosal immune response that prevent colitis, independent of specific antigen, and reduce T-cell activation in an IL-10-dependent manner. Oral anti-CD3 therefore might be developed for the treatment of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Katharina Forster
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh Goethel
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Wing-Tak Chan
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Galliano Zanello
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Streutker
- Surgical Pathology, Department of Pathology and Laboratory Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Center for Digestive Research, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
104
|
Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells. J Autoimmun 2012; 40:45-57. [PMID: 22939403 DOI: 10.1016/j.jaut.2012.07.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022]
Abstract
Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.
Collapse
|
105
|
Huang K, Li SQ, Wang WJ, Liu LS, Jiang YG, Feng PN, Wang YQ, Wang SM. Oral FTY720 administration induces immune tolerance and inhibits early development of atherosclerosis in apolipoprotein E-deficient mice. Int J Immunopathol Pharmacol 2012; 25:397-406. [PMID: 22697071 DOI: 10.1177/039463201202500209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Orally administered immunomodulatory drugs have recently demonstrated the ability to induce an oral tolerance via inhibition of effector T cells and induction of certain subsets of regulatory T cells (Tregs) which have the potential to prevent several autoimmune diseases. In the present study, we hypothesized that short-term, low-dose, oral FTY720 administration may induce latency-associated peptide (LAP) Tregs and CD4(+) Foxp3(+) Tregs in atherogenesis, potentially resulting in remission of early development of atherosclerosis in apolipoprotein E-deficient (APOE(-/-)) mice. FTY720 was orally administered to APOE(-/-) mice 4 weeks of age on a high-cholesterol diet and atherosclerosis was assessed at 8 weeks of age. Oral administration of FTY720 significantly reduced atherosclerotic lesion formation compared with control mice. We observed a significant increase in LAP(+) and Foxp3(+) cells in the CD4+T-cell population of FTY720-treated mice in association with increased production of the anti-inflammatory cytokine transforming growth factor-β (TGF-β) as well as suppressed T-helper type 1 immune responses. Our findings reveal that short-term, low-dose oral FTY720 treatment had great benefits in inhibiting early development of atherosclerosis in mice via induction of a regulatory T-cell response and inhibition of effector T responses. These findings suggest that oral immune modulation may represent an attractive therapeutic approach to atherosclerosis.
Collapse
Affiliation(s)
- K Huang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Duarte J, Carrié N, Oliveira VG, Almeida C, Agua-Doce A, Rodrigues L, Simas JP, Mars LT, Graca L. T cell apoptosis and induction of Foxp3+ regulatory T cells underlie the therapeutic efficacy of CD4 blockade in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1680-8. [PMID: 22802417 DOI: 10.4049/jimmunol.1201269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathogenesis of multiple sclerosis requires the participation of effector neuroantigen-specific T cells. Thus, T cell targeting has been proposed as a promising therapeutic strategy. However, the mechanism underlying effective disease prevention following T cell targeting remains incompletely known. We found, using several TCR-transgenic strains, that CD4 blockade is effective in preventing experimental autoimmune encephalopathy and in treating mice after the disease onset. The mechanism does not rely on direct T cell depletion, but the anti-CD4 mAb prevents the proliferation of naive neuroantigen-specific T cells, as well as acquisition of effector Th1 and Th17 phenotypes. Simultaneously, the mAb favors peripheral conversion of Foxp3(+) regulatory T cells. Pre-existing effector cells, or neuroantigen-specific cells that undergo cell division despite the presence of anti-CD4, are committed to apoptosis. Therefore, protection from experimental autoimmune encephalopathy relies on a combination of dominant mechanisms grounded on regulatory T cell induction and recessive mechanisms based on apoptosis of neuropathogenic cells. We anticipate that the same mechanisms may be implicated in other T cell-mediated autoimmune diseases that can be treated or prevented with Abs targeting T cell molecules, such as CD4 or CD3.
Collapse
Affiliation(s)
- Joana Duarte
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2012; 109:11270-5. [PMID: 22745170 DOI: 10.1073/pnas.1120611109] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.
Collapse
|
108
|
CD4+LAP + and CD4 +CD25 +Foxp3 + regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J Clin Immunol 2012; 32:1104-17. [PMID: 22552859 DOI: 10.1007/s10875-012-9699-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
Increasing studies have demonstrated that atherosclerosis is a chronic immunoinflammatory disease, and that oxidized low-density lipoprotein (oxLDL)-specific T cells contribute to the autoimmune process in atherosclerosis. Oral administration of oxLDL, which was identified as a candidate autoantigen in atherosclerosis, was shown to induce tolerance and suppress atherogenesis. However, the precise mechanisms of mucosal tolerance induction, in particular nasal tolerance, remain unknown. In this study, we explored the effect of nasal oxLDL on atherosclerosis as well as the cellular and molecular mechanisms leading to atheroprotective responses, and then found that nasal oxLDL drastically ameliorate the initiation (47.6 %, p < 0.001) and progression (21.1 %, p = 0.001) of atherosclerosis. Most importantly, a significant 35.8 % reduction of the progression of atherosclerosis was observed in the enhanced immunization group (p < 0.001). These effects were accompanied by a significant increase in CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) and CD4(+)CD25(+)Foxp3(+) Tregs in spleens and cervical lymph nodes, together with increased transforming growth factor (TGF)-β production and suppressed T-helper cells type 1, 2, and 17 immune responses. Surprisingly, neutralization of TGF-β in vivo partially counteracted the protective effect of nasal oxLDL treatment, indicating that the presence of TGF-β was indispensable to CD4(+)LAP(+) Tregs and CD4(+)CD25(+)Foxp3(+) Tregs to acquire regulatory properties. Our studies suggest that CD4(+)LAP(+) Tregs and CD4(+)CD25(+)Foxp3(+) Tregs induced by nasal delivery of oxLDL can inhibit oxLDL-specific T cells response and ameliorate atherosclerosis process.
Collapse
|
109
|
Sasaki N, Yamashita T, Takeda M, Hirata KI. Regulatory T cells in atherogenesis. J Atheroscler Thromb 2012; 19:503-15. [PMID: 22498766 DOI: 10.5551/jat.10934] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Atherosclerosis is believed to be an inflammatory condition of the arterial wall. It has become apparent that various types of cells of innate and adaptive immunity participate in atherogenesis. T cells are of particular interest because they mediate pathogenic immune responses involved in the acceleration of atherosclerosis. Recent studies from several independent groups indicated that subsets of regulatory T cells (Tregs) actively mediate immunologic tolerance and inhibit atherosclerosis development or progression through the down-regulation of effector T-cell responses. It is likely that there is an imbalance between pathogenic effector T cells and Tregs under atherosclerotic conditions. Recent evidence suggests that in addition to the thymus, gut-associated lymphoid tissues are the main sites for the generation of several subsets of peripherally inducible Tregs. This indicates that intervention in the gut environment to promote an endogenous regulatory immune response may serve as a possible therapeutic approach to suppress atherosclerotic diseases. In this review, we discuss not only the possible role of Tregs in the prevention of atherosclerosis, but also promising strategies to prevent or cure atherosclerotic diseases by promoting an endogenous regulatory immune response, particularly by oral immune modulation.
Collapse
Affiliation(s)
- Naoto Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | |
Collapse
|
110
|
Jin B, Sun T, Yu XH, Yang YX, Yeo AET. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012; 2012:836485. [PMID: 22737174 PMCID: PMC3376488 DOI: 10.1155/2012/836485] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023]
Abstract
Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.
Collapse
Affiliation(s)
- Bo Jin
- 1Department of Gastroenterology, The 309th Hospital of The People's Liberation Army, Beijing 100091, China
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Bo Jin: and
| | - Tao Sun
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Tao Sun:
| | - Xiao-Hong Yu
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | - Ying-Xiang Yang
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | | |
Collapse
|
111
|
Regulatory T cells accumulate in the lung allergic inflammation and efficiently suppress T-cell proliferation but not Th2 cytokine production. Clin Dev Immunol 2011; 2012:721817. [PMID: 22162718 PMCID: PMC3227414 DOI: 10.1155/2012/721817] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/31/2011] [Indexed: 12/12/2022]
Abstract
Foxp3+CD25+CD4+ regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3+CD25+CD4+ T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4highCD62LlowCD44highCD54highCD69+) that distinguished them from naive regulatory T cells (CCR4intCD62LhighCD44intCD54intCD69−). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.
Collapse
|
112
|
Takata K, Kinoshita M, Okuno T, Moriya M, Kohda T, Honorat JA, Sugimoto T, Kumanogoh A, Kayama H, Takeda K, Sakoda S, Nakatsuji Y. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One 2011; 6:e27644. [PMID: 22110705 PMCID: PMC3217013 DOI: 10.1371/journal.pone.0027644] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Certain intestinal microflora are thought to regulate the systemic immune response. Lactic acid bacteria are one of the most studied bacteria in terms of their beneficial effects on health and autoimmune diseases; one of which is Multiple sclerosis (MS) which affects the central nervous system. We investigated whether the lactic acid bacterium Pediococcus acidilactici, which comprises human commensal bacteria, has beneficial effects on experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methodology/Principal Findings P. acidilactici R037 was orally administered to EAE mice to investigate the effects of R037. R037 treatment suppressed clinical EAE severity as prophylaxis and therapy. The antigen-specific production of inflammatory cytokines was inhibited in R037-treated mice. A significant increase in the number of CD4+ Interleukin (IL)-10-producing cells was observed in the mesenteric lymph nodes (MLNs) and spleens isolated from R037-treated naive mice, while no increase was observed in the number of these cells in the lamina propria. Because only a slight increase in the CD4+Foxp3+ cells was observed in MLNs, R037 may primarily induce Foxp3− IL10-producing T regulatory type 1 (Tr1) cells in MLNs, which contribute to the beneficial effect of R037 on EAE. Conclusions/Significance An orally administered single strain of P. acidilactici R037 ameliorates EAE by inducing IL10-producing Tr1 cells. Our findings indicate the therapeutic potential of the oral administration of R037 for treating multiple sclerosis.
Collapse
Affiliation(s)
- Kazushiro Takata
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masayuki Moriya
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tohru Kohda
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Josephe A. Honorat
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoyuki Sugimoto
- Department of Bio-medical statistics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Saburo Sakoda
- Department of Neurology, National Hospital Organization Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
113
|
Induction of immunological tolerance by oral anti-CD3. Clin Dev Immunol 2011; 2012:425021. [PMID: 22162715 PMCID: PMC3227236 DOI: 10.1155/2012/425021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 09/04/2011] [Indexed: 12/11/2022]
Abstract
In recent years, our knowledge about immunoregulation and autoimmunity has significantly advanced, but nontoxic and more effective treatments for different inflammatory and autoimmune diseases are still lacking. Oral tolerance is of unique immunologic importance because it is a continuous natural immunologic event driven by exogenous antigen and is an attractive approach for treatment of these conditions. Parenteral administration of anti-CD3 monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. Orally administered anti-CD3 monoclonal antibody is biologically active in the gut and suppresses experimental models of autoimmune diseases. Orally delivered antibody does not have side effects including cytokine release syndromes, thus oral anti-CD3 antibody is clinically applicable for chronic therapy. Here we review findings that identify a novel and powerful immunologic approach that is widely applicable for the treatment of human autoimmune conditions.
Collapse
|
114
|
Duan W, So T, Mehta AK, Choi H, Croft M. Inducible CD4+LAP+Foxp3- regulatory T cells suppress allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:6499-507. [PMID: 22079987 DOI: 10.4049/jimmunol.1101398] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.
Collapse
Affiliation(s)
- Wei Duan
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 920370, USA
| | | | | | | | | |
Collapse
|
115
|
Bresson D, Fousteri G, Manenkova Y, Croft M, von Herrath M. Antigen-specific prevention of type 1 diabetes in NOD mice is ameliorated by OX40 agonist treatment. J Autoimmun 2011; 37:342-51. [PMID: 22063316 DOI: 10.1016/j.jaut.2011.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/12/2023]
Abstract
Antigen-specific therapies are possibly the safest approach to prevent type 1 diabetes (T1D). However their clinical translation has yielded poor results and greater efforts need to be put into the development of novel strategies to ameliorate their clinical outcome. OX40 is a costimulatory molecule expressed by T cells after antigen recognition and has been implicated in the control effector but also regulatory T cells (Tregs) function in vivo. The activity of OX40 signal on Tregs function has been controversial. In this context we investigated whether an anti-OX40 agonist antibody treatment can ameliorate antigen-specific immune intervention for the prevention of T1D. We show that treatment of non-obese diabetic (NOD) mice with an OX40 agonistic antibody (OX86) reduced type 1 diabetes (T1D) incidence by inducing both CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)Foxp3(-) T cells expressing the latency-associated peptide (LAP). These OX86-induced CD4(+)Foxp3(-)LAP(+) T cells also demonstrated suppressive activity in vitro. A significant increase in protection was observed when OX86 was combined with insulin B9:23 (insB9:23) peptide immunizations. Synergy resulted from an expansion of IL-10-expressing insB9:23-reactive Tregs which augmented the proportion of CD4(+) T cells with in vivo suppressive activity. Consequently, CD4(+) T cells purified from OX86/insB9:23 combination treatment prevented T1D development when adoptively transferred into recipient mice. These findings suggest that the requirement for OX40 signaling by antigen-induced Tregs can be dominant over its well-documented need for effector memory cell function and may have potentially important implications for improving the clinical translation of antigen-specific prevention of T1D and possibly other autoimmune disorders.
Collapse
Affiliation(s)
- Damien Bresson
- Diabetes Center, Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
116
|
Muller YD, Golshayan D, Ehirchiou D, Wyss JC, Giovannoni L, Meier R, Serre-Beinier V, Puga Yung G, Morel P, Bühler LH, Seebach JD. Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes 2011; 60:2331-40. [PMID: 21752956 PMCID: PMC3161310 DOI: 10.2337/db11-0159] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.
Collapse
Affiliation(s)
- Yannick D Muller
- Department of Internal Medicine, Division of Clinical Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Regateiro FS, Howie D, Cobbold SP, Waldmann H. TGF-β in transplantation tolerance. Curr Opin Immunol 2011; 23:660-9. [PMID: 21839624 DOI: 10.1016/j.coi.2011.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 12/16/2022]
Abstract
TGF-β is a cytokine required for the induction and maintenance of transplantation tolerance in animal models. TGF-β mediates anti-inflammatory effects by acting on many immune cell-types. Central for transplantation tolerance is the role for TGF-β in the induction of Foxp3 and regulatory capacity in CD4(+) T cells. Recently, however, the general anti-inflammatory role of TGF-β in CD4(+) T cell polarization was questioned by the discovery that, in the presence of inflammatory cytokines such as IL-6 or IL-1, TGF-β drives the differentiation of Th17 cells associated with transplant rejection. A better understanding of the factors determining TGF-β production and activation, Foxp3 induction and Treg stability is vital for the development of tolerogenic strategies in transplantation.
Collapse
Affiliation(s)
- Frederico S Regateiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
118
|
Abstract
The gut-associated lymphoid tissue is the largest immune organ in the body and is the primary route by which we are exposed to antigens. Tolerance induction is the default immune pathway in the gut, and the type of tolerance induced relates to the dose of antigen fed: anergy/deletion (high dose) or regulatory T-cell (Treg) induction (low dose). Conditioning of gut dendritic cells (DCs) by gut epithelial cells and the gut flora, which itself has a major influence on gut immunity, induces CD103(+) retinoic acid-dependent DC that induces Tregs. A number of Tregs are induced at mucosal surfaces. Th3 type Tregs are transforming growth factor-β dependent and express latency-associated peptide (LAP) on their surface and were discovered in the context of oral tolerance. Tr1 type Tregs (interleukin-10 dependent) are induced by nasal antigen and forkhead box protein 3(+) iTregs are induced by oral antigen and by oral administration of aryl hydrocarbon receptor ligands. Oral or nasal antigen ameliorates autoimmune and inflammatory diseases in animal models by inducing Tregs. Furthermore, anti-CD3 monoclonal antibody is active at mucosal surfaces and oral or nasal anti-CD3 monoclonal antibody induces LAP(+) Tregs that suppresses animal models (experimental autoimmune encephalitis, type 1 and type 2 diabetes, lupus, arthritis, atherosclerosis) and is being tested in humans. Although there is a large literature on treatment of animal models by mucosal tolerance and some positive results in humans, this approach has yet to be translated to the clinic. The successful translation will require defining responsive patient populations, validating biomarkers to measure immunologic effects, and using combination therapy and immune adjuvants to enhance Treg induction. A major avenue being investigated for the treatment of autoimmunity is the induction of Tregs and mucosal tolerance represents a non-toxic, physiologic approach to reach this goal.
Collapse
Affiliation(s)
- Howard L Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
119
|
Cipolletta D, Kolodin D, Benoist C, Mathis D. Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol 2011; 23:431-7. [PMID: 21724410 DOI: 10.1016/j.smim.2011.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Foxp3+CD4+ regulatory T (T(reg)) cells are a key population in controlling the immune response. Recently, their roles have been expanded to broader, non-immune, contexts, in particular the metabolic consequences downstream of obesity-induced inflammation, e.g. type-2 diabetes and cardiovascular disease. This review highlights the major innate and adaptive immune cell subsets contributing to adipose-tissue inflammation, the key role played by fat-resident T(regs), and the potential of T(reg)-based therapies for treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Cipolletta
- Department of Pathology, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
120
|
Bevier WC, Trujillo AL, Primbs GB, Bradley MK, Jovanovič L. Oral anti-CD3 monoclonal antibody delays diabetes in non-obese diabetic (NOD) mice: effects on pregnancy and offspring--a preliminary report. Diabetes Metab Res Rev 2011; 27:480-7. [PMID: 21484981 DOI: 10.1002/dmrr.1204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The objective was to observe the effect of oral anti-CD3 monoclonal antibody (mAb) on non-obese diabetic mice, pregnancy, and offspring. METHODS Three protocols are classified as: (1) Twenty non-obese diabetic/ShiLtJ female mice were monitored for type 1 diabetes mellitus. If the blood glucose level was ≥ 250 mg/dL, the mice were treated for 8 days with either 50 or 100 µg oral anti-CD3 monoclonal antibody. If the diabetes resolved, the mice were bred. (2) F1 offspring were monitored for diabetes; 15 female mice became diabetic. Non-diabetic F1 female mice were divided into two groups [ten antibody (Ab) and ten control (C)] and bred. Ab female mice were given 100 µg monoclonal antibody before diabetes development and during pregnancy for 6 weeks. (3) Twenty-five F2 Ab and 23 F2 C mice were monitored. At 15-17 weeks, Ab mice, both female and male, were given 100 µg monoclonal antibody for 8 weeks. RESULTS (1) The diabetes in four female mice treated with 50 µg did not resolve; in three of the six diabetic female mice treated with 100 µg, the diabetes resolved and the mice were bred. The remaining ten non-diabetic female mice were given 100 µg oral monoclonal antibody and then bred. No diabetes developed during pregnancy; 13 litters were born. (2) Three diabetic Ab female mice sustained their pregnancies versus one diabetic C female mouse (p ≤ 0.05). (3) At 30 weeks, six Ab female and three Ab male mice and seven C female and three C male mice developed diabetes. The number of diabetic Ab and C mice was not different; diagnosis age was significantly different-Ab 23.3 ± 5.1 and C 18.8 ± 3.7 weeks (p ≤ 0.05). CONCLUSIONS In female non-obese diabetic mice, oral anti-CD3 monoclonal antibody was effective in reversing diabetes and allowing pregnancy and extending longevity, but it did not prevent diabetes in the offspring.
Collapse
Affiliation(s)
- Wendy C Bevier
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA.
| | | | | | | | | |
Collapse
|
121
|
Weiss R, Lifshitz V, Frenkel D. TGF-β1 affects endothelial cell interaction with macrophages and T cells leading to the development of cerebrovascular amyloidosis. Brain Behav Immun 2011; 25:1017-24. [PMID: 21112386 DOI: 10.1016/j.bbi.2010.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/19/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022] Open
Abstract
Astrocyte-endothelial cell (EC) interactions play a major role in the function of the neurovascular unit. Dysfunction in these interactions may lead to amyloid accumulation in blood vessels and may cause microhemorrhage and cognitive impairment. Transforming growth factor-β1 (TGF-β1) expression levels positively correlate with the degree of cerebrovascular amyloid in Alzheimer's disease (AD) cases. Furthermore, expression of TGF-β1 driven by the GFAP promoter in mice leads to an age-related deposition of amyloid, such as β-amyloid (Aβ), around cerebral blood vessels. Here, we demonstrate that TGF-β1 affects the cross talk between EC and inflammation, leading to a reduction in macrophage activity as measured by protein levels and migration ability. Changes in EC secreted factors following TGF-β1 stimulation also affect CD4(+) T cell activation, as shown by a reduction in the levels of IFN-γ. Moreover, while medium from EC can stimulate macrophages to clear insoluble cerebrovascular amyloid from an AD mouse brain, pre-incubation of EC with TGF-β1 reduces the ability of EC to affect macrophage activity. Our findings support the importance of cross talk between EC, macrophages and CD4(+) T cells in preventing cerebrovascular amyloid deposition. Understanding EC-immune system interactions may pave the way to new therapeutic approaches for cerebrovascular amyloidosis diseases.
Collapse
Affiliation(s)
- Ronen Weiss
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
122
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Specific immunotherapy and turning off the T cell: how does it work? Ann Allergy Asthma Immunol 2011; 107:381-92. [PMID: 22018608 DOI: 10.1016/j.anai.2011.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/08/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine T-regulatory (Treg) cell functions in allergic immune responses and their roles during allergen specific immunotherapy based on recent developments and current understanding of immune regulation. DATA SOURCES PubMed search of English-language articles regarding Treg cells and allergen specific immunotherapy. STUDY SELECTION Articles on the subject matter were selected and reviewed. RESULTS Allergen specific immunotherapy is the ultimate treatment modality targeting the immunopathogenic mechanisms of allergic disorders. A diminished allergen-specific T-cell proliferation and suppressed secretion of T(H)1- and T(H)2-type cytokines are the characteristic hallmarks. In addition, Treg cells inhibit the development of allergen-specific T(H)2 and T(H)1 cell responses and therefore exert key roles in healthy immune response to allergens. Treg cells potently suppress IgE production and directly or indirectly control the activity of effector cells of allergic inflammation, such as eosinophils, basophils, and mast cells. CONCLUSION As advancements in the field of allergen specific immunotherapy ensue, they may provide novel progression of more rational and safer approaches for the prevention and treatment of allergic disorders. Currently, the Treg cell field is an open research area to increase our understanding in mechanisms of peripheral tolerance to allergens.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | | | | | | |
Collapse
|
123
|
The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med 2011; 17:596-603. [PMID: 21499267 DOI: 10.1038/nm.2356] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/16/2011] [Indexed: 01/10/2023]
Abstract
Individuals with chronic asthma show a progressive decline in lung function that is thought to be due to structural remodeling of the airways characterized by subepithelial fibrosis and smooth muscle hyperplasia. Here we show that the tumor necrosis factor (TNF) family member LIGHT is expressed on lung inflammatory cells after allergen exposure. Pharmacological inhibition of LIGHT using a fusion protein between the IgG Fc domain and lymphotoxin β receptor (LTβR) reduces lung fibrosis, smooth muscle hyperplasia and airway hyperresponsiveness in mouse models of chronic asthma, despite having little effect on airway eosinophilia. LIGHT-deficient mice also show a similar impairment in fibrosis and smooth muscle accumulation. Blockade of LIGHT suppresses expression of lung transforming growth factor-β (TGF-β) and interleukin-13 (IL-13), cytokines implicated in remodeling in humans, whereas exogenous administration of LIGHT to the airways induces fibrosis and smooth muscle hyperplasia, Thus, LIGHT may be targeted to prevent asthma-related airway remodeling.
Collapse
|
124
|
Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011; 121:431-43. [PMID: 21259015 DOI: 10.1007/s00401-011-0801-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/20/2010] [Accepted: 01/15/2011] [Indexed: 01/01/2023]
Abstract
The deposition of amyloid-β (Aβ) peptides in the walls of leptomeningeal and cortical blood vessels as cerebral amyloid angiopathy (CAA) is present in normal ageing and the majority of Alzheimer's disease (AD) brains. The failure of clearance mechanisms to eliminate Aβ from the brain contributes to the development of sporadic CAA and AD. Here, we investigated the effects of CAA and ageing on the pattern of perivascular drainage of solutes in the brains of naïve mice and in the Tg2576 mouse model of AD. We report that drainage of small molecular weight dextran along cerebrovascular basement membranes is impaired in the hippocampal capillaries and arteries of 22-month-old wild-type mice compared to 3- and 7-month-old animals, which was associated with age-dependent changes in capillary density. Age-related alterations in the levels of laminin, fibronectin and perlecan in vascular basement membranes were also noted in wild-type mice. Furthermore, dextran was observed in the walls of veins of Tg2576 mice in the presence of CAA, suggesting that deposition of Aβ in vessel walls disrupts the normal route of elimination of solutes from the brain parenchyma. These data support the hypothesis that perivascular solute drainage from the brain is altered both in the ageing brain and as a consequence of CAA. These findings have implications for the success of therapeutic strategies for the treatment of AD that rely upon the health of the ageing cerebral vasculature.
Collapse
|
125
|
Boswell S, Sharif S, Alisa A, Pereira SP, Williams R, Behboudi S. Induction of latency-associated peptide (transforming growth factor-β(1)) expression on CD4+ T cells reduces Toll-like receptor 4 ligand-induced tumour necrosis factor-α production in a transforming growth factor-β-dependent manner. Immunology 2011; 133:278-87. [PMID: 21426338 DOI: 10.1111/j.1365-2567.2011.03425.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD4(+) T cells expressing the latent form of transforming growth factor-β [latency-associated peptide (LAP) (TGF-β(1))] play an important role in the modulation of immune responses. Here, we identified a novel peptide ligand (GPC(81-95) ) with an intrinsic ability to induce membrane-bound LAP (TGF-β(1)) expression on a subpopulation of human CD4(+) T cells (using flow cytometry; ranging from 0·8% to 2·6%) and stimulate peripheral blood mononuclear cells to release LAP (TGF-β(1) ) (using ELISPOT assay; ranging from 0·03% to 0·16%). In spite of this low percentage of responding cells, GPC(81-95) significantly reduced Toll-like receptor 4 ligand-induced tumour necrosis factor-α production in a TGF-β(1) - and CD4(+) T-cell-dependent manner. The results demonstrate that GPC(81-95) is a useful tool to study the functional properties of a subpopulation of LAP (TGF-β(1))(+) CD4(+) T cells and suggest a pathway that can be exploited to suppress inflammatory response.
Collapse
Affiliation(s)
- Sandra Boswell
- The Institute of Hepatology, University College London, UK
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
Evidence has been accumulated to show that the forkhead/winged-helix transcription factor Foxp3 is a good marker for specialized CD4+ T cells that regulate immune responses to self as well as to a variety of foreign antigens including infectious or tumor antigens, alloantigens, allergens, and commensal antigens. It is now well established that CD4+CD25+Foxp3+ regulatory T cells encompass two categories of lymphocytes that are distinct in their origin, antigen specificity, as well as the stimuli driving their differentiation and homeostasis. Natural CD4+CD25+Foxp3+ regulatory T cells are an independent lineage generated in the thymus through major histocompatibility class II molecules-dependent MHC class high avidity interactions with their T cell receptor. They are specific for self-antigens. Adaptive or induced CD4+CD25+Foxp3+ regulatory T cells stem from mature CD4+CD25-Foxp3-precursors at the periphery following adequate stimulation. They have been shown to develop in vivo following suboptimal antigen stimulation, in situations characterized by chronic inflammation (autoimmunity, allergy, immune responses to tumors and transplants) and also as physiological actors of the mucosal immune system. Although major progress has been accomplished over the last years in our understanding of the central role of CD4+CD25+Foxp3+ regulatory T cells in the control of immune responses, major issues are still elusive. In particular, there are still no reliable phenotypic or functional markers that make it possible to distinguish between natural and induced CD25+Foxp3+ regulatory T cells.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Faculté Paris Descartes, INSERM U1013, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
127
|
Xue H, Liang F, Liu N, Song X, Yuan F, Luo Y, Zhao X, Long J, Sun Y, Xi Y. Potent antirheumatic activity of a new DNA vaccine targeted to B7-2/CD28 costimulatory signaling pathway in autoimmune arthritis. Hum Gene Ther 2011; 22:65-76. [PMID: 20695769 DOI: 10.1089/hum.2010.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis is a proinflammatory autoimmune disease attributed to failure of both CD4(+)CD25(+) regulatory T (Tr) and CD8(+)CD28(-) suppressor T (Ts) cells to control autoreactive CD4(+)CD28(+) Th1 (Th1) and autoantibody-producing B cells. Here we show a single intramuscular injection of our novel targeted DNA vaccine encoding Pseudomonas exotoxin A and costimulatory molecule B7-2 without autoantigens in a collagen-induced arthritis model simultaneously increased Tr and Ts cells and selectively decreased autoreactive Th1 cells. The vaccine induced a shift from Th1 to Th2 and Th3 cellular and cytokine profiles and a decrease in CD4(+)/CD8(+) cell ratios. Importantly, the vaccine showed potent antirheumatic activity by clinical and other examinations such as X-ray, histopathology, and anti-type II collagen IgG levels and was comparable to methotrexate, the current "gold standard" treatment. As an effective stimulator of both Tr and Ts cells and a specific suppressor of autoreactive Th1 cells, this vaccine is a promising therapeutic approach for rheumatoid arthritis.
Collapse
Affiliation(s)
- Hong Xue
- Department of Immunology, Beijing 307 Hospital, Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Oida T, Weiner HL. TGF-β induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction. PLoS One 2010; 5:e15523. [PMID: 21124798 PMCID: PMC2991360 DOI: 10.1371/journal.pone.0015523] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022] Open
Abstract
Background It has been reported that human FOXP3+ CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3+ Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs. Methodology/Principal Findings We generated anti-mouse LAP mAbs by immunizing TGF-β−/− animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3+ CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4+CD25− T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4+CD25− T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3+ but also on T cells that remained Foxp3− after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells. Conclusions/Significance Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface.
Collapse
Affiliation(s)
- Takatoku Oida
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
129
|
O'Brien K, Gran B, Rostami A. T-cell based immunotherapy in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunotherapy 2010; 2:99-115. [PMID: 20231863 DOI: 10.2217/imt.09.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the reasons multiple sclerosis (MS) has been considered a T-cell mediated autoimmune disease is that a similar experimental disease can be induced in certain rodents and primates by immunization with myelin antigens, leading to T-cell-mediated inflammatory demyelination in the CNS. In addition, most if not all pharmacological treatments available for MS are biologically active on T cells. In this article we review the principles of T-cell-based immunotherapies and the specific actions of current and novel treatments on T-cell functions, when these are known. For both licensed and innovative agents, we also discuss biological actions on other immune cell types. Finally, we offer a brief perspective on expected changes in the use of MS immunotherapies in the near future.
Collapse
Affiliation(s)
- Kate O'Brien
- Division of Clinical Neurology, University of Nottingham, UK
| | | | | |
Collapse
|
130
|
Zhang JL, Sun DJ, Hou CM, Wei YL, Li XY, Yu ZY, Feng JN, Shen BF, Li Y, Xiao H. CD3 mAb treatment ameliorated the severity of the cGVHD-induced lupus nephritis in mice by up-regulation of Foxp3+ regulatory T cells in the target tissue: kidney. Transpl Immunol 2010; 24:17-25. [PMID: 20850528 DOI: 10.1016/j.trim.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/30/2022]
Abstract
Teff/Treg imbalance orchestrated the onset and the progression of the lupus nephritis in a DBA/2→B6D2F1 murine model with cGVHD. In this paper, we first used 145-2C11 Ab to treat these human SLE-like diseased animals. The results showed that short-term low-dose anti-CD3 antibody treatment induced a significant remission of established proteinuria, production of autoantibodies, immune complex deposition and renal parenchyma lesions in lupus nephritic mice. Of note, we found a robust up-regulation of Foxp3 mRNA expression in the target tissue: kidney from mice with anti-CD3 antibody treatment compared to those with control IgG treatment. Likewise, an increased renal mRNA abundance for IL-10 was also observed in anti-CD3 antibody treated mice. In contrast, genes associated with inflammation and fibrosis as well as cytokines related to effector T cell responses were down-regulated by anti-CD3 mAb treatment. These findings suggested that short-term low-dose anti-CD3 antibody treatment might induced an IL-10-secreting Foxp3(+) regulatory T cells in this cGVHD target tissue: kidney, that suppressed the activation of effector T cells (Th1, Th2 and Th17), thus ameliorating the severity of the lupus nephritis in mice.
Collapse
Affiliation(s)
- Ji-Lu Zhang
- Department of Biomedicine, Institute of Frontier Medical Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Wu HY, Maron R, Tukpah AM, Weiner HL. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. THE JOURNAL OF IMMUNOLOGY 2010; 185:3401-7. [PMID: 20720210 DOI: 10.4049/jimmunol.1000836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mucosal (nasal or oral) administration of anti-CD3 mAb is effective in ameliorating animal models of autoimmunity (experimental autoimmune encephalomyelitis, diabetes, and lupus) by inducing LAP(+) regulatory T cells. We tested this approach in an arthritis model using type II collagen. We found that nasal anti-CD3 was more effective than oral anti-CD3 in attenuating the development of arthritis. Nasal anti-CD3 induced a LAP(+) regulatory T cell that secreted high levels of IL-10 and suppressed collagen-specific T cell proliferation and anti-collagen Ab production. However, neither nasal nor oral anti-CD3 attenuated disease when given to animals with ongoing arthritis, and this was associated with a lack of induction of LAP(+) regulatory T cells. We found, however, that coadministration of a novel emulsome adjuvant, which enhances Th2 responses, resulted in the induction of LAP(+) regulatory T cells and suppression of ongoing arthritis by both nasal and oral anti-CD3. Suppression of arthritis by mucosal anti-CD3 was associated with less joint damage, a decrease of TNF-alpha and IFN-gamma mRNA expression in joints, and a reduction in anti-collagen Abs. These results demonstrate that mucosal anti-CD3 therapy may serve as a therapeutic approach in arthritis and that the biologic effect is enhanced by an emulsome-based adjuvant.
Collapse
Affiliation(s)
- Henry Yim Wu
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
132
|
Oida T, Weiner HL. Overexpression of TGF-ß 1 gene induces cell surface localized glucose-regulated protein 78-associated latency-associated peptide/TGF-ß. THE JOURNAL OF IMMUNOLOGY 2010; 185:3529-35. [PMID: 20720212 DOI: 10.4049/jimmunol.0904121] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta plays a crucial role in immune regulation. It has been reported that pro-TGF-beta, latency-associated peptide (LAP), latent TGF-beta and/or active TGF-beta (LAP/TGF-beta) is localized on the cell surface of Foxp3(+) regulatory T cells. However, the molecular mechanism(s) of how LAP/TGF-beta is anchored on the cell membrane is unknown. In this study, we show that forced expression of human TGF-beta(1) gene by retrovirus transduction into P3U1 mouse myeloma cells, and other cell types including murine CD4(+)CD25(-) T cells, makes these cells surface LAP/TGF-beta-positive. The surface LAP/TGF-beta contains high-glycosylated, furin-processed latent TGF-beta, which is different from the low-glycosylated, furin-unprocessed intracellular form or the high-glycosylated, furin-unprocessed secreted form. Furthermore, surface LAP/TGF-beta forms a complex with the molecular chaperone glucose-regulated protein 78 (GRP78, also known as BiP), and knockdown of GRP78 reduced the expression levels of surface LAP/TGF-beta. GRP78, however, is not involved in GARP-mediated surface LAP/TGF-beta. Our results suggest that GRP78 provides an additional surface localization mechanism for LAP/TGF-beta, which may play an important role in controlling TGF-beta activity.
Collapse
Affiliation(s)
- Takatoku Oida
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
133
|
Zhou X, Kong N, Zou H, Brand D, Li X, Liu Z, Zheng SG. Therapeutic potential of TGF-β-induced CD4(+) Foxp3(+) regulatory T cells in autoimmune diseases. Autoimmunity 2010; 44:43-50. [PMID: 20670119 DOI: 10.3109/08916931003782163] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Foxp3(+) T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis against self-antigens. The lack or dysfunction of these cells contributes to the pathogenesis and development of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach to treat autoimmune diseases. In this review, we provide current opinions concerning the classification, developmental, and functional characterization of Treg subsets. Particular emphasis will be focused on the therapeutic role of TGF-β-induced CD4M(+) Foxp3(+) cells (iTregs) in established autoimmune disease. Moreover, the similarity and diversity of iTregs and naturally occurring, thymus-derived CD4(+) CD25(+) Foxp3(+) regulatory T cells (nTregs) will be discussed, including the finding that the pro-inflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, whereas iTregs induced by TGF-β are resistant to the effects of this cytokine. Understanding these aspects may help to determine how Tregs can be used in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Division of Rheumatology and Immunology, Department of Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A 2010; 107:9765-70. [PMID: 20445103 DOI: 10.1073/pnas.0908771107] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leptin-deficient ob/ob mice are overweight, develop insulin resistance, and serve as a model for type 2 diabetes (T2D). Studies suggest that inflammatory pathways are linked to the development of insulin resistance and T2D both in animals and humans. We asked whether the induction of regulatory T cells (Tregs) could alleviate the pathological and metabolic abnormalities in ob/ob mice. We induced TGF-beta-dependent CD4(+) latency-associated peptide (LAP)-positive Tregs by oral administration of anti-CD3 antibody plus beta-glucosylceramide. We found a decrease in pancreatic islet cell hyperplasia, fat accumulation in the liver, and inflammation in adipose tissue, accompanied by lower blood glucose and liver enzymes. In addition, treated animals had decreased CD11b(+)F4/80(+) macrophages and TNF-alpha in adipose tissue. Adoptive transfer of orally induced CD4(+)LAP(+) Tregs ameliorated metabolic and cytokine abnormalities. Our results demonstrate the importance of inflammation in T2D and identify a unique immunological approach for treatment of T2D by the induction of Tregs.
Collapse
|
135
|
Gandhi R, Farez MF, Wang Y, Kozoriz D, Quintana FJ, Weiner HL. Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset. THE JOURNAL OF IMMUNOLOGY 2010; 184:4620-4. [PMID: 20368276 DOI: 10.4049/jimmunol.0903329] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulatory T cells (Tregs) play an important role in the maintenance of peripheral tolerance. Several molecules including TGF-beta have been linked to the function and differentiation of Tregs. In this study, we describe a unique population of T cells expressing a membrane bound form of TGF-beta, the latency-associated peptide (LAP), and having regulatory properties in human peripheral blood. These CD4(+)LAP(+) T cells lack Foxp3 but express TGF-betaR type II and the activation marker CD69. CD4(+)LAP(+) T cells are hypoproliferative compared with CD4(+)LAP(-) T cells, secrete IL-8, IL-9, IL-10, IFN-gamma, and TGF-beta upon activation, and exhibit TGF-beta- and IL-10-dependent suppressive activity in vitro. The in vitro activation of CD4(+)LAP(-) T cells results in the generation of LAP(+) Tregs, which is further amplified by IL-8. In conclusion, we have characterized a novel population of human LAP(+) Tregs that is different from classic CD4(+)Foxp3(+)CD25(high) natural Tregs.
Collapse
Affiliation(s)
- Roopali Gandhi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
Type 1 diabetes mellitus (T1DM) is a prototypic organ-specific autoimmune disease that results from selective destruction of insulin-secreting beta-cells by immune-mediated inflammation (insulitis), that is, the infiltration of pancreatic islets by autoreactive CD4(+) and CD8(+) T lymphocytes. Current treatment is substitutive-chronic use of exogenous insulin-which, in spite of considerable advances, is still associated with constraints and lack of effectiveness over the long-term in relation to the prevention of vascular and neurological complications. Finding a cure for T1DM is an important medical health challenge, as the disease's incidence is steadily increasing in industrialized countries and projections of future prevalence are alarming. Crucially, as T1DM mainly affects children and young adults, any candidate immune therapy must be safe and avoid chronic use of immunosuppressants that promote sustained depression of immune responses. The ideal approach would, therefore, involve induction or, in the case of established T1DM, restoration of immune tolerance to target autoantigens. This Review presents, in particular, two strategies that are still in clinical development but hold great promise. These strategies are focused on the use of candidate autoantigens and anti-CD3 monoclonal antibodies.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, INSERM U1013, Hôpital Necker Enfants Malades, 161 Rue de Sèvres, Paris 75015, France.
| |
Collapse
|
137
|
A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 2010; 5:e9009. [PMID: 20126401 PMCID: PMC2814855 DOI: 10.1371/journal.pone.0009009] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/04/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). One potential therapeutic strategy for MS is to induce regulatory cells that mediate immunological tolerance. Probiotics, including lactobacilli, are known to induce immunomodulatory activity with promising effects in inflammatory diseases. We tested the potential of various strains of lactobacilli for suppression of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. METHODOLOGY/PRINCIPAL FINDINGS The preventive effects of five daily-administered strains of lactobacilli were investigated in mice developing EAE. After a primary screening, three Lactobacillus strains, L. paracasei DSM 13434, L. plantarum DSM 15312 and DSM 15313 that reduced inflammation in CNS and autoreactive T cell responses were chosen. L. paracasei and L. plantarum DSM 15312 induced CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) and enhanced production of serum TGF-beta1, while L. plantarum DSM 15313 increased serum IL-27 levels. Further screening of the chosen strains showed that each monostrain probiotic failed to be therapeutic in diseased mice, while a mixture of the three lactobacilli strains suppressed the progression and reversed the clinical and histological signs of EAE. The suppressive activity correlated with attenuation of pro-inflammatory Th1 and Th17 cytokines followed by IL-10 induction in MLNs, spleen and blood. Additional adoptive transfer studies demonstrated that IL-10 producing CD4(+)CD25(+) Tregs are involved in the suppressive effect induced by the lactobacilli mixture. CONCLUSIONS/SIGNIFICANCE Our data provide evidence showing that the therapeutic effect of the chosen mixture of probiotic lactobacilli was associated with induction of transferable tolerogenic Tregs in MLNs, but also in the periphery and the CNS, mediated through an IL-10-dependent mechanism. Our findings indicate a therapeutic potential of oral administration of a combination of probiotics and provide a more complete understanding of the host-commensal interactions that contribute to beneficial effects in autoimmune diseases.
Collapse
|
138
|
Israeli E, Ilan Y. Oral administration of Alequel, a mixture of autologous colon-extracted proteins for the treatment of Crohn's disease. Therap Adv Gastroenterol 2010; 3:23-30. [PMID: 21180587 PMCID: PMC3002565 DOI: 10.1177/1756283x09351733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of Crohn's disease involves an immune-mediated damage to the gut mucosa. Current developed therapies are based on the use of immunosuppressive drugs that can lead to significant drug-related adverse responses. There is a need for a therapeutic strategy that is more specific and less global in its effect on the immune system. Oral tolerance is an active process wherein oral administration of antigens is associated with the induction of regulatory cells and the suppression of effector cells directed toward specific and nonspecific antigens. Studies in animal models of experimental colitis suggest that oral administration of proteins extracted from the gut can induce tolerance and alleviate the disease symptoms. Recent clinical trials showed that oral administration of Alequel, an autologous protein-containing colon extract, to patients with Crohn's disease is safe and may be effective as a therapeutic modality for treating the disease. This treatment was associated with disease-associated antigen alterations of the immune response in the patients. Oral administration of Alequel could provide a patient-tailored approach that is side-effect-free for the treatment of patients with Crohn's disease.
Collapse
Affiliation(s)
- Eran Israeli
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
139
|
Abstract
Regulatory T cells (Treg cells) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4(+)CD25(+) Treg cells, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been studied intensively because their deficiency abrogates self-tolerance and causes autoimmune disease. However, several lines of evidence suggest that additional important mechanisms other than the Foxp3 system are required to enforce immunological self-tolerance in the periphery. Interleukin-10 (IL-10) is a regulatory cytokine that plays a central role in controlling inflammatory processes, and IL-10-secreting T cells may constitute an additional mechanism that are responsible for peripheral tolerance. Type-1 T regulatory (Tr1) cells, CD46-stimulated IL-10-secreting T cells, and IL-10-secreting T cells induced by vitamin D3 (VitD3) and dexamethasone (Dex) are induced populations with significant regulatory activities. However, assessing the detailed physiological function of these cells is difficult, because of the lack of specific markers that can reliably differentiate the population of IL-10-secreting Treg cells from other T cells. Recently, CD4(+)CD25(-)LAP(+) T cells, CD4(+)NKG2D(+) T cells, CD4(+)IL-7R(-) T cells, and CD4(+)CD25(-)LAG3(+) T cells have been reported as naturally present IL-10-secreting Treg cells. Although the relationship between these induced and naturally present IL-10-secreting Treg cells is unclear, elucidation of their respective roles in modulating immune responses is crucial to understand T cell-mediated tolerance. Furthermore, the identification of specific markers and molecular signatures will enable the purification or induction of IL-10-secreting Treg cells for the treatment of patients having inflammatory diseases.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
140
|
Steward-Tharp SM, Song YJ, Siegel RM, O'Shea JJ. New insights into T cell biology and T cell-directed therapy for autoimmunity, inflammation, and immunosuppression. Ann N Y Acad Sci 2010; 1183:123-48. [PMID: 20146712 PMCID: PMC2950114 DOI: 10.1111/j.1749-6632.2009.05124.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T cell-directed therapies have become mainstays in the management of various autoimmune diseases and organ transplantation. The understanding of T cell biology has expanded greatly since the development of most agents currently in use. Here we discuss important recent discoveries pertaining to T helper cell differentiation, lineage commitment, and function. Within this context, we examine existing T cell-directed therapies, including new agents being evaluated in clinical and preclinical studies. We also use recent findings to speculate on novel targets.
Collapse
Affiliation(s)
- Scott M Steward-Tharp
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Shuji SUMITOMO
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo
| | - Kazuhiko YAMAMOTO
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo
| |
Collapse
|
142
|
Chen ML, Yan BS, Kozoriz D, Weiner HL. Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms. Eur J Immunol 2009; 39:3423-35. [PMID: 19768696 PMCID: PMC2814307 DOI: 10.1002/eji.200939441] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although CD8+ Treg-mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency-associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP- counterparts. In addition to TGF-beta, CD8+LAP+ cells produce IFN-gamma, and these cells suppress EAE that is dependent on both TGF-beta and IFN-gamma. In an adoptive co-transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)-specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN-gamma production in vivo. Furthermore, in vivo neutralization of IFN-gamma and studies with IFN-gamma-deficient mice demonstrate an important role for IFN-gamma production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes.
Collapse
MESH Headings
- Adoptive Transfer
- Analysis of Variance
- Animals
- CD8 Antigens/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Forkhead Transcription Factors/metabolism
- Glycoproteins/immunology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Myelin Proteins
- Myelin-Associated Glycoprotein/chemistry
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Mei-Ling Chen
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
143
|
Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata KI. Oral Anti-CD3 Antibody Treatment Induces Regulatory T Cells and Inhibits the Development of Atherosclerosis in Mice. Circulation 2009; 120:1996-2005. [DOI: 10.1161/circulationaha.109.863431] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Naoto Sasaki
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Tomoya Yamashita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Masafumi Takeda
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Masakazu Shinohara
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Kenji Nakajima
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Hideto Tawa
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Takashi Usui
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| | - Ken-ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (N.S., T.Y., M.T., M.S., K.N., H.T., K.H.), and Integrated Center for Mass Spectrometry (M.S.), Kobe University Graduate School of Medicine, Kobe, Japan; and Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan (T.U.)
| |
Collapse
|
144
|
Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. J Clin Immunol 2009; 30:167-77. [PMID: 19756989 DOI: 10.1007/s10875-009-9323-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/06/2009] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Parenteral OKT3 is used to treat transplant rejection and a humanized anti-CD3 Mab has shown positive clinical effects in new onset diabetes. Oral administration of anti-CD3 has not been tested in humans, but suppresses autoimmunity in animal models. Beta-glucosylceramide enhances NKT cell and regulatory T cell activity and enhances the effects of oral anti-CD3 in animals. MATERIALS AND METHODS Fifteen healthy volunteers (three per group) received orally administered OKT3 over a dose range of 0.2 to 5.0 mg daily with or without beta-glucosylceramide 7.5 mg for 5 days. Safety and immune parameters were measured on days 5, 10, and 30. RESULTS AND DISCUSSION Oral OKT3 enhanced T cell proliferation, suppressed Th1 and Th17 responses by 43% and 41%, respectively, increased TGF-beta/IL-10 expression and decreased IL-23/IL-6 expression by dendritic cells, and affected the IgG repertoire as measured by antigen arrays. Co-administration of oral beta-glucosylceramide induced similar effects. No side effects were observed and no subjects developed human anti-mouse antibodies. CONCLUSION These findings demonstrate that oral anti-CD3 monoclonal antibody is safe and biologically active in humans and presents a new avenue for the treatment of autoimmune diseases.
Collapse
|
145
|
Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto K. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A 2009; 106:13974-9. [PMID: 19666526 PMCID: PMC2729005 DOI: 10.1073/pnas.0906872106] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs) are engaged in the maintenance of immunological self-tolerance and immune homeostasis. IL-10 has an important role in maintaining the normal immune state. Here, we show that IL-10-secreting Tregs can be delineated in normal mice as CD4(+)CD25(-)Foxp3(-) T cells that express lymphocyte activation gene 3 (LAG-3), an MHC-class-II-binding CD4 homolog. Although approximately 2% of the CD4(+)CD25(-) T cell population consisted of CD4(+)CD25(-)LAG3(+) T cells in the spleen, CD4(+)CD25(-)LAG3(+) T cells are enriched to approximately 8% in the Peyer's patch. They are hypoproliferative upon in vitro antigenic stimulation and suppress in vivo development of colitis. Gene expression analysis reveals that CD4(+)CD25(-)LAG3(+) Tregs characteristically express early growth response gene 2 (Egr-2), a key molecule for anergy induction. Retroviral gene transfer of Egr-2 converts naïve CD4(+) T cells into the IL-10-secreting and LAG-3-expressing phenotype, and Egr-2-transduced CD4(+) T cells exhibit antigen-specific immunosuppressive capacity in vivo. Unlike Foxp3(+) natural Tregs, high-affinity interactions with selecting peptide/MHC ligands expressed in the thymus do not induce the development of CD4(+)CD25(-)LAG3(+) Tregs. In contrast, the number of CD4(+)CD25(-)LAG3(+) Tregs is influenced by the presence of environmental microbiota. Thus, IL-10-secreting Egr-2(+)LAG3(+)CD4(+) Tregs can be exploited for the control of peripheral immunity.
Collapse
Affiliation(s)
- Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Mihoko Shibuya
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; and
| |
Collapse
|
146
|
Perruche S, Zhang P, Maruyama T, Bluestone JA, Saas P, Chen W. Lethal effect of CD3-specific antibody in mice deficient in TGF-beta1 by uncontrolled flu-like syndrome. THE JOURNAL OF IMMUNOLOGY 2009; 183:953-61. [PMID: 19561097 DOI: 10.4049/jimmunol.0804076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD3-specific Ab therapy results in a transient, self-limiting, cytokine-associated, flu-like syndrome in experimental animals and in patients, but the underlying mechanism for this spontaneous resolution remains elusive. By using an in vivo model of CD3-specific Ab-induced flu-like syndrome, we show in this paper that a single injection of sublethal dose of the Ab killed all TGF-beta1(-/-) mice. The death of TGF-beta1(-/-) mice was associated with occurrence of this uncontrolled flu-like syndrome, as demonstrated by a sustained storm of systemic inflammatory TNF and IFN-gamma cytokines. We present evidence that deficiency of professional phagocytes to produce TGF-beta1 after apoptotic T cell clearance may be responsible, together with hypersensitivity of T cells to both activation and apoptosis, for the uncontrolled inflammation. These findings indicate a key role for TGF-beta1 and phagocytes in protecting the recipients from lethal inflammation and resolving the flu-like syndrome after CD3-specific Ab treatment. The study may also provide a novel molecular mechanism explaining the early death in TGF-beta1(-/-) mice.
Collapse
Affiliation(s)
- Sylvain Perruche
- Mucosal Immunology Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
147
|
Oral tolerance: can we make it work? Hum Immunol 2009; 70:768-76. [PMID: 19559742 DOI: 10.1016/j.humimm.2009.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/13/2022]
Abstract
Mucosal tolerance remains an attractive approach for the treatment of autoimmune and inflammatory diseases. The agents used in these treatments lack toxicity, can be easily administered, and enable the promotion of antigen-specific immune responses. The limited success of clinical trials over the past 2 decades has led to the fear that the beneficial effect observed in animal models cannot be repeated in humans. Successful application of mucosal tolerance for the treatment of human diseases will depend on strategies that target the correct cells in the gut-liver axis, improve antigen presentation, alter the administered dose and formulations, utilize potent mucosal adjuvants, develop immune biomarkers enabling follow-up of the effect, utilize combination therapies with other immune modulatory agents, and target the right patient populations. Here, we discuss 12 of the major questions related to oral tolerance and its clinical application to humans with immune-mediated disorders.
Collapse
|
148
|
Wu HY, Center EM, Tsokos GC, Weiner HL. Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus 2009; 18:586-96. [PMID: 19433458 PMCID: PMC2753460 DOI: 10.1177/0961203308100511] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lupus is an antibody-mediated autoimmune disease. The production of pathogenic, class switched and affinity maturated autoantibodies in lupus is dependent on T cell help. A potential mechanism of disease pathogenesis is a lack of control of pathogenic T helper cells by regulatory T cells in lupus. It has been repeatedly shown that the naturally occurring CD4+CD25+ regulatory T cells in lupus prone mice and patients with SLE are defective both in frequency and function. Thus, the generation of inducible regulatory T cells that can control T cell help for autoantibody production is a potential avenue for the treatment of SLE. We have found that oral administration of anti-CD3 monoclonal antibody attenuated lupus development and arrested on-going disease in lupus prone SNF1 mice. Oral anti-CD3 induces a CD4+CD25-LAP+ regulatory T cell that secrets high levels of TGF-beta and suppresses in vitro in TFG-beta-dependent fashion. Animals treated with oral anti-CD3 had less glomerulonephritis and diminished levels of anti-dsDNA autoantibodies. Oral anti-CD3 led to a downregulation of IL-17+CD4+ICOS-CXCR5+ follicular helper T cells, CD138+ plasma cells and CD73+ mature memory B cells. Our results show that oral anti-CD3 induces CD4+CD25-LAP+ regulatory T cells that suppress lupus in mice and is associated with downregulation of T cell help for autoantibody production.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies/administration & dosage
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Autoantibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CD3 Complex/immunology
- Cell Proliferation
- DNA/immunology
- Disease Models, Animal
- Female
- Glomerulonephritis/prevention & control
- Interleukin-17/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Kidney/pathology
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Male
- Mice
- Mice, Inbred NZB
- Spleen/pathology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- H Y Wu
- Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
149
|
DiNunzio JC, Williams RO. CNS disorders--current treatment options and the prospects for advanced therapies. Drug Dev Ind Pharm 2009; 34:1141-67. [PMID: 18720140 DOI: 10.1080/03639040802020536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of new pharmaceutical products has successfully addressed a multitude of disease states; however, new product development for treating disorders of the central nervous system (CNS) has lagged behind other therapeutic areas. This is due to several factors including the complexity of the diseases and the lack of technologies for delivery through the blood-brain barrier (BBB). This article examines the current state of six major CNS disease states: depression, epilepsy, multiple sclerosis (MS), neurodegenerative diseases (specifically Alzheimer's disease [AD]), neuropathic pain, and schizophrenia. Discussion topics include analysis of the biological mechanisms underlying each disease, currently approved products, and available animal models for development of new therapeutic agents. Analysis of currently approved therapies shows that all products depend on the molecular properties of the drug or prodrug to penetrate the BBB. Novel technologies, capable of enhancing BBB permeation, are also discussed relative to improving CNS therapies for these disease states.
Collapse
Affiliation(s)
- James C DiNunzio
- Division of Pharmaceutics, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
150
|
Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol 2009; 65:239-48. [PMID: 19334069 DOI: 10.1002/ana.21640] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis is (MS) a T-cell autoimmune disease characterized by a relapsing-remitting followed by a progressive phase. Relapses are driven by the adaptive immune system and involve waves of T helper cell 1 (Th1), Th17, and CD8 cells that infiltrate the nervous system and provoke a attack. These cells are modulated by regulatory T and B cells. Infiltration of T cells into the nervous system initiates a complex immunological cascade consisting of epitope spreading, which triggers new attacks, and activation of the innate immune system (microglia, dendritic cells, astrocytes, B cells), which leads to chronic inflammation. The secondary progressive phase is due to neurodegeneration triggered by inflammation and is driven by the innate immune system. Why a shift to the progressive stage occurs and how to prevent it is a central question in MS. Effective treatment of MS must affect multiple disease pathways: suppression of proinflammatory T cells, induction of regulatory T cells, altering traffic of cells into the nervous system, protecting axons and myelin, and controlling innate immune responses. Without biomarkers, the clinical and pathological heterogeneity of MS makes treatment difficult. Treatment is further hampered by untoward adverse effects caused by immune suppression. Nonetheless, major progress has been made in the understanding and treatment of MS. There are three definitions of cure as it applies to MS: (1) halt progression of disease, (2) reverse neurological deficits, and (3) prevent MS. Although the pathways to each of these cures are linked, each requires a unique strategy.
Collapse
Affiliation(s)
- Howard L Weiner
- Partners Multiple Sclerosis Center, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|