101
|
Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J Immunol Res 2014; 2014:518135. [PMID: 25126584 PMCID: PMC4121106 DOI: 10.1155/2014/518135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Great hopes have been placed on human pluripotent stem (hPS) cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA), the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS) cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.
Collapse
|
102
|
Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 2014; 124:453-62. [PMID: 24891321 DOI: 10.1182/blood-2014-04-567933] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome sequencing has revealed a large number of shared and personal somatic mutations across human cancers. In principle, any genetic alteration affecting a protein-coding region has the potential to generate mutated peptides that are presented by surface HLA class I proteins that might be recognized by cytotoxic T cells. To test this possibility, we implemented a streamlined approach for the prediction and validation of such neoantigens derived from individual tumors and presented by patient-specific HLA alleles. We applied our computational pipeline to 91 chronic lymphocytic leukemias (CLLs) that underwent whole-exome sequencing (WES). We predicted ∼22 mutated HLA-binding peptides per leukemia (derived from ∼16 missense mutations) and experimentally confirmed HLA binding for ∼55% of such peptides. Two CLL patients that achieved long-term remission following allogeneic hematopoietic stem cell transplantation were monitored for CD8(+) T-cell responses against predicted or confirmed HLA-binding peptides. Long-lived cytotoxic T-cell responses were detected against peptides generated from personal tumor mutations in ALMS1, C6ORF89, and FNDC3B presented on tumor cells. Finally, we applied our computational pipeline to WES data (N = 2488 samples) across 13 different cancer types and estimated dozens to thousands of predicted neoantigens per individual tumor, suggesting that neoantigens are frequent in most tumors.
Collapse
|
103
|
Ex vivo detection of CD8 T cells specific for H-Y minor histocompatibility antigens in allogeneic hematopoietic stem cell transplant recipients. Transpl Immunol 2014; 30:128-35. [DOI: 10.1016/j.trim.2014.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
|
104
|
KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol 2014; 93:1579-86. [PMID: 24771045 DOI: 10.1007/s00277-014-2084-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Natural killer (NK)-cell alloreactivity after allogeneic hematopoietic cell transplantation (HCT) is influenced by the interaction of killer-cell immunoglobulin-like receptors (KIRs) on donor NK cells and human leukocyte antigen (HLA) class I ligands on recipient cells. We investigated the influence of donor KIR haplotype and KIR-ligand mismatch (MM) on relapse in 57 patients with hematologic malignancies receiving haploidentical HCT after reduced intensity conditioning and graft CD3/CD19 depletion. Of the 57 donors, 17 had KIR haplotype A (29.8 %) and 40 had KIR haplotype B (70.2 %). A KIR-ligand MM was found in 34 of 57 patients (59.6 %). There was no difference between donor KIR haplotypes in non-relapse mortality (NRM, p = 0.200) but had a significantly reduced incidence of relapse for patients with a haplotype B donor (p = 0.001). In particular, patients in partial remission (PR) benefited more from a haplotype B graft (p = 0.008) than patients in complete remission (CR, p = 0.297). Evaluating KIR-ligand MM cumulative incidences of relapse (p = 0.680) or NRM (p = 0.579), we found no significant difference. In conclusion, in the setting of reduced intensity conditioning (RIC) and CD3/CD19-depleted haploidentical HCT, we could not confirm the positive data with KIR-ligand MM but observed a significant lower risk of relapse with a KIR haplotype B donor.
Collapse
|
105
|
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 2014; 5:3600. [PMID: 24714562 PMCID: PMC3996541 DOI: 10.1038/ncomms4600] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/10/2014] [Indexed: 12/23/2022] Open
Abstract
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). Mass spectrometry (MS) has furthered our understanding of MHC class I-associated peptides (MIPs), but the technique is inadequate for studying MIP-associated polymorphisms. Here, the authors combine high-throughput MS with exome and transcriptome sequencing to identify polymorphic MIPs from two female siblings.
Collapse
|
106
|
Iravani-Saadi M, Karimi MH, Yaghobi R, Geramizadeh B, Ramzi M, Niknam A, Pourfathollah A. Polymorphism of costimulatory molecules (CTLA4, ICOS, PD.1 and CD28) and allogeneic hematopoietic stem cell transplantation in Iranian patients. Immunol Invest 2014; 43:391-404. [DOI: 10.3109/08820139.2013.879594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
107
|
Lehmann FM, Maurberger A, Feicht S, Helm F, Ladinig C, Kieback E, Uckert W, Kammertöns T, Kremmer E, Mautner J, Gerbitz A, Bornkamm GW. Targeting high-grade B cell lymphoma with CD19-specific T cells. Int J Cancer 2014; 135:1153-64. [PMID: 24500882 DOI: 10.1002/ijc.28760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/09/2014] [Indexed: 11/07/2022]
Abstract
Adoptive T cell therapy is an important additional treatment option for malignant diseases resistant to chemotherapy. Using a murine high-grade B cell lymphoma model, we have addressed the question whether the B cell differentiation antigen CD19 can act as rejection antigen. CD19(-/-) mice inoculated with CD19(+) B cell lymphoma cells showed higher survival rates than WT mice and were protected against additional tumor challenge. T cell depletion prior to tumor transfer completely abolished the protective response. By heterotypic vaccination of CD19(-/-) mice against murine CD19, survival after tumor challenge was significantly increased. To define protective epitopes within the CD19 molecule, T cells collected from mice that had survived the tumor transfer were analyzed for IFNγ secretion in response to CD19-derived peptides. The majority of mice exhibited a CD4(+) T cell response to CD19 peptide 27, which was the most dominant epitope after CD19 vaccination. A peptide 27-specific CD4(+) T cell line protected CD19(-/-) mice against challenge with CD19(+) lymphoma and also cured a significant proportion of WT mice from recurrent disease in a model of minimal residual disease after chemotherapy. In conclusion, our data highlight CD19-specific CD4(+) T cells for adoptive T cell therapy of B cell lymphomas.
Collapse
Affiliation(s)
- Frank M Lehmann
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A, Gijsbers R, Van Gool S, Waer M, Billiau AD. Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 2013; 62:1733-44. [PMID: 24081484 PMCID: PMC11028935 DOI: 10.1007/s00262-013-1479-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation and donor leukocyte infusion (DLI) may hold potential as a novel form of immunotherapy for high-risk neuroblastoma. DLI, however, carries the risk of graft-versus-host disease (GvHD). Recipient leukocyte infusion (RLI) induces graft-versus-leukemia responses without GvHD in mice and is currently being explored clinically. Here, we demonstrate that both DLI and RLI, when given to mixed C57BL/6→A/J radiation chimeras carrying subcutaneous Neuro2A neuroblastoma implants, can slow the local growth of such tumors. DLI provoked full donor chimerism and GvHD; RLI produced graft rejection but left mice healthy. Flow cytometric studies showed that the chimerism of intratumoral leukocytes paralleled the systemic chimerism. This was associated with increased CD8/CD4 ratios, CD8+ T-cell IFN-γ expression and NK-cell Granzyme B expression within the tumor, following both DLI and RLI. The clinically safe anti-tumor effect of RLI was further enhanced by adoptively transferred naïve recipient-type NK cells. In models of intravenous Neuro2A tumor challenge, allogeneic chimeras showed superior overall survival over syngeneic chimeras. Bioluminescence imaging in allogeneic chimeras challenged with luciferase-transduced Neuro2A cells showed both DLI and RLI to prolong metastasis-free survival. This is the first experimental evidence that RLI can safely produce a local and systemic anti-tumor effect against a solid tumor. Our data indicate that RLI may provide combined T-cell and NK-cell reactivity effectively targeting Neuro2A neuroblastoma.
Collapse
Affiliation(s)
- Leen Willems
- Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, box 811, 3000, Leuven, Belgium,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Vincent K, Hardy MP, Trofimov A, Laumont CM, Sriranganadane D, Hadj-Mimoune S, Salem Fourati I, Soudeyns H, Thibault P, Perreault C. Rejection of leukemic cells requires antigen-specific T cells with high functional avidity. Biol Blood Marrow Transplant 2013; 20:37-45. [PMID: 24161924 DOI: 10.1016/j.bbmt.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
In a context where injection of antigen (Ag)-specific T cells probably represents the future of leukemia immunotherapy, identification of optimal target Ags is crucial. We therefore sought to discover a reliable marker for selection of the most potent Ags. To this end, (1) we immunized mice against 8 individual Ags: 4 minor histocompatibility Ags (miHAs) and 4 leukemia-associated Ags (LAAs) that were overexpressed on leukemic relative to normal thymocytes; (2) we assessed their ability to reject EL4 leukemic cells; and (3) we correlated the properties of our Ags (and their cognate T cells) with their ability to induce protective antileukemic responses. Overall, individual miHAs instigated more potent antileukemic responses than LAAs. Three features had no influence on the ability of primed T cells to reject leukemic cells: (1) MHC-peptide affinity; (2) the stability of MHC-peptide complexes; and (3) epitope density at the surface of leukemic cells, as assessed using mass spectrometry. The cardinal feature of successful Ags is that they were recognized by high-avidity CD8 T cells that proliferated extensively in vivo. Our work suggests that in vitro evaluation of functional avidity represents the best criterion for selection of Ags, which should be prioritized in clinical trials of leukemia immunotherapy.
Collapse
Affiliation(s)
- Krystel Vincent
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Assya Trofimov
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Dev Sriranganadane
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sarah Hadj-Mimoune
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Insaf Salem Fourati
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Quebec, Canada
| | - Hugo Soudeyns
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
110
|
Human regulatory T cells against minor histocompatibility antigens: ex vivo expansion for prevention of graft-versus-host disease. Blood 2013; 122:2251-61. [PMID: 23908471 DOI: 10.1182/blood-2013-03-492397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alloreactive donor T cells against host minor histocompatibility antigens (mHAs) cause graft-versus-host disease (GVHD) after marrow transplantation from HLA-identical siblings. We sought to identify and expand regulatory CD4 T cells (Tregs) specific for human mHAs in numbers and potency adequate for clinical testing. Purified Tregs from normal donors were stimulated by dendritic cells (DCs) from their HLA-matched siblings in the presence of interleukin 2, interleukin 15, and rapamycin. Male-specific Treg clones against H-Y antigens DBY, UTY, or DFFRY-2 suppressed conventional CD4 T cell (Tconv) response to the specific antigen. In the blood of 16 donors, we found a 24-fold (range, 8-fold to 39-fold) excess Tconvs over Tregs reactive against sibling mHAs. We expanded mHA-specific Tregs from 4 blood samples and 4 leukaphereses by 155- to 405-fold. Cultured Tregs produced allospecific suppression, maintained demethylation of the Treg-specific Foxp3 gene promoter, Foxp3 expression, and transforming growth factor β production. The rare CD4 T conv and CD8 T cells in the end product were anergic. This is the first report of detection and expansion of potent mHA-specific Tregs from HLA-matched siblings in sufficient numbers for application in human transplant trials.
Collapse
|
111
|
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has evolved over the past two decades to become the standard of care for hematologic and lymphoid malignancies. Major ocular complications after allogeneic HSCT have been increasing in number and severity. Graft-versus-host disease (GVHD) remains a major cause of ocular morbidity after allogeneic HSCT. The main objective of this review is to elucidate the ocular complications in patients developing GVHD following HSCT. Ocular complications secondary to GVHD are common and include dry eye syndrome, acquisition of ocular allergy from donors with allergic disorders. Eyelid changes may occur in GVHD leading to scleroderma-like changes. Patients may develop poliosis, madarosis, vitiligo, lagophthalmos, and entropion. The cornea may show filamentary keratitis, superficial punctate keratitis, corneal ulcers, and peripheral corneal melting which may lead to perforation in severe cases. Scleritis may also occur which can be anterior or posterior. Keratoconjunctivis sicca appears to be the most common presentation of GVHD. The lacrimal glands may be involved with mononuclear cell infiltration of both the major and accessory lacrimal glands and decrease in tear production. Severe dry eye syndrome in patients with GVHD may develop conjunctival scarring, keratinization, and cicatrization of the conjunctiva. Therapy of GVHD includes systemic immunosuppression and local therapy. Surgical treatment in refractory cases includes surgical intervention to improve the manifestation of GVHD of the eye. This may include tarsorrhapy, prose lenses, punctal occlusions and corneal transplantation.
Collapse
Affiliation(s)
- Amr Nassar
- Adult Hematology/HSCT, King Faisal Cancer Center, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Khalid F. Tabbara
- The Eye Center and The Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia
| | - Mahmoud Aljurf
- Research Center, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
112
|
Pessach I, Shimoni A, Nagler A. Apoptotic cells in allogeneic hematopoietic stem cell transplantations: "turning trash into gold". Leuk Lymphoma 2013; 53:2130-5. [PMID: 22553946 DOI: 10.3109/10428194.2012.690099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HST) is an important therapeutic option for various malignant and non-malignant conditions. HST during first remission offers the best cure for patients for whom conventional chemotherapy alone is not sufficient. Yet, in spite of the high curative potential and recent advances in this treatment modality, it remains limited by transplant related toxicity and grant-versus-host disease (GVHD). Apoptotic cells, which used to be regarded as immunologically "bland," are now recognized as important modulators of immune responses. Taking into account the immunological properties of apoptotic cells and the nature of the side effects of HST, they have been administered simultaneously with hematopoietic stem cells in experimental transplantation models, in anticipation of improved outcome. Under these conditions, engraftment and full-donor chimerism are facilitated without significant generation of anti-apoptotic cell auto-antibodies. In addition they prevent alloimmunization, up-regulate T regulatory cells and reduce both the frequency and the severity of GVHD. These favorable effects require host macrophages and donor bone marrow plasmatoid dendritic cells, and are associated with tumor growth factor-β (TGF-β) production. To summarize, apoptotic cells can play a crucial role in the setting of transplantations, and may be viewed as "turning trash into gold." Clinical studies are underway.
Collapse
|
113
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
114
|
Donor lymphocyte infusion for relapsed hematological malignancies after allogeneic hematopoietic cell transplantation: prognostic relevance of the initial CD3+ T cell dose. Biol Blood Marrow Transplant 2013; 19:949-57. [PMID: 23523892 DOI: 10.1016/j.bbmt.2013.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/06/2013] [Indexed: 11/20/2022]
Abstract
The impact of donor lymphocyte infusion (DLI) initial cell dose on its outcome is known in patients with chronic myeloid leukemia but limited in patients with other hematological malignancies. In this retrospective study, we evaluated the effect of initial DLI CD3(+) cell dose on graft-versus-host disease (GVHD) and overall survival after DLI given for relapse of any hematological malignancies after allogeneic hematopoietic cell transplantation (HCT) with high- or reduced-intensity conditioning. The cohort included 225 patients. Initial DLI CD3(+) cell dose per kilogram of recipient body weight was ≤ 1 × 10(7) (n = 84; group A), >1.0 to <10 × 10(7) (n = 58; group B), and ≥ 10 × 10(7) (n = 66; group C). The initial cell dose was unknown for the remaining 17 patients. Cumulative incidence rates of GVHD at 12 months after DLI were 21%, 45%, and 55% for groups A, B, and C, respectively. Multivariate analysis showed that initial DLI CD3(+) cell ≥ 10 × 10(7) dose per kilogram is associated with an increased risk of GVHD after DLI (P = .03). Moreover, an initial DLI CD3(+) cell dose of 10 × 10(7) or higher did not decrease the risk of relapse and did not improve overall survival. Thus, these results support the use of less than 10 × 10(7) CD3(+) cell per kilogram as the initial cell dose of DLI for treatment of persistent or recurrent hematological malignancy after HCT.
Collapse
|
115
|
Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation. Blood 2013; 121:4231-41. [PMID: 23520337 DOI: 10.1182/blood-2012-05-432872] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The graft-versus-tumor (GVT) effect after allogeneic hematopoietic cell transplantation (allo-HCT) represents an effective form of immunotherapy against many malignancies. Meaningful separation of the potentially curative GVT responses from graft-versus-host disease (GVHD), the most serious toxicity following T-cell replete allo-HCT, has been an elusive goal. GVHD is initiated by alloantigens, although both alloantigens and tumor-specific antigens (TSAs) initiate GVT responses. Emerging data have illuminated a role for antigen-presenting cells (APCs) in inducing alloantigen-specific responses. By using multiple clinically relevant murine models, we show that a specific subset of host-derived APCs-CD8(+) dendritic cells (DCs)-enhances TSA responses and is required for optimal induction of GVT. Stimulation of TLR3, which among host hematopoietic APC subsets is predominantly expressed on CD8(+) DCs, enhanced GVT without exacerbating GVHD. Thus, strategies that modulate host APC subsets without direct manipulation of donor T cells could augment GVT responses and enhance the efficacy of allo-HCT.
Collapse
|
116
|
Hassan C, Kester MGD, de Ru AH, Hombrink P, Drijfhout JW, Nijveen H, Leunissen JAM, Heemskerk MHM, Falkenburg JHF, van Veelen PA. The human leukocyte antigen-presented ligandome of B lymphocytes. Mol Cell Proteomics 2013; 12:1829-43. [PMID: 23481700 DOI: 10.1074/mcp.m112.024810] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome.
Collapse
Affiliation(s)
- Chopie Hassan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Mortensen BK, Rasmussen AH, Larsen ME, Larsen MV, Lund O, Braendstrup P, Harndahl M, Rasmussen M, Buus S, Stryhn A, Vindeløv L. Identification of a novel UTY-encoded minor histocompatibility antigen. Scand J Immunol 2012; 76:141-50. [PMID: 22536994 DOI: 10.1111/j.1365-3083.2012.02708.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minor histocompatibility antigens (mHags) encoded by the Y-chromosome (H-Y-mHags) are known to play a pivotal role in allogeneic haematopoietic cell transplantation (HCT) involving female donors and male recipients. We present a new H-Y-mHag, YYNAFHWAI (UTY(139-147)), encoded by the UTY gene and presented by HLA-A*24:02. Briefly, short peptide stretches encompassing multiple putative H-Y-mHags were designed using a bioinformatics predictor of peptide-HLA binding, NetMHCpan. These peptides were used to screen for peptide-specific HLA-restricted T cell responses in peripheral blood mononuclear cells obtained post-HCT from male recipients of female donor grafts. In one of these recipients, a CD8+ T cell response was observed against a peptide stretch encoded by the UTY gene. Another bioinformatics tool, HLArestrictor, was used to identify the optimal peptide and HLA-restriction element. Using peptide/HLA tetramers, the specificity of the CD8+ T cell response was successfully validated as being HLA-A*24:02-restricted and directed against the male UTY(139-147) peptide. Functional analysis of these T cells demonstrated male UTY(139-147) peptide-specific cytokine secretion (IFNγ, TNFα and MIP-1β) and cytotoxic degranulation (CD107a). In contrast, no responses were seen when the T cells were stimulated with patient tumour cells alone. CD8+ T cells specific for this new H-Y-mHag were found in three of five HLA-A*24:02-positive male recipients of female donor HCT grafts available for this study.
Collapse
Affiliation(s)
- B K Mortensen
- Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Antoun A, Vekaria D, Salama RA, Pratt G, Jobson S, Cook M, Briggs D, Moss P. The genotype of RAET1L (ULBP6), a ligand for human NKG2D (KLRK1), markedly influences the clinical outcome of allogeneic stem cell transplantation. Br J Haematol 2012; 159:589-98. [PMID: 23025544 DOI: 10.1111/bjh.12072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/27/2012] [Indexed: 12/01/2022]
Abstract
NKG2D (KLRK1) is an activating receptor on natural killer (NK) and T-cells and binds a diverse panel of polymorphic ligands encoded by the MIC and RAET1 gene families. We studied the clinical importance of retinoic acid early transcript-1 (RAET1) polymorphism in allogeneic stem cell transplantation (SCT) by determining the frequency of 18 single nucleotide polymorphisms (SNPs) and individual RAET1 alleles in 371 patient-donor pairs and relating this to clinical outcome. A strong association was observed between the presence of five SNPs within the patient RAET1L (ULBP6) gene and relapse-free survival and overall survival. Two common alleles of RAET1L were determined and the presence of the protective RAET1L*02 allele in the patient was associated with a relapse-free survival of 44% at 8 years compared with just 25% in patients who lacked a RAET1L*02 allele (P < 0·001). Overall survival at this time was 55% in those with RAET1L*02 allele compared to 39% in patients who lacked a RAET1L*02 allele (P = 0·003). These novel findings indicate a critical role for NKG2D-RAET1L interactions in determining SCT clinical outcome and show RAET1L may have an important influence on regulating the strength of the alloreactive immune response. The data will be of value in guiding the development of future transplant therapy protocols.
Collapse
Affiliation(s)
- Ayman Antoun
- School of Cancer Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Hobo W, Broen K, van der Velden WJFM, Greupink-Draaisma A, Adisty N, Wouters Y, Kester M, Fredrix H, Jansen JH, van der Reijden B, Falkenburg JHF, de Witte T, Preijers F, Schattenberg T, Feuth T, Blijlevens NM, Schaap N, Dolstra H. Association of disparities in known minor histocompatibility antigens with relapse-free survival and graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2012; 19:274-82. [PMID: 23022467 DOI: 10.1016/j.bbmt.2012.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/12/2012] [Indexed: 11/15/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) can induce remission in patients with hematologic malignancies due to graft-versus-tumor (GVT) responses. This immune-mediated antitumor effect is often accompanied by detrimental graft-versus-host disease (GVHD), however. Both GVT and GVHD are mediated by minor histocompatibility antigen (MiHA)-specific T cells recognizing peptide products from polymorphic genes that differ between recipient and donor. In this study, we evaluated whether mismatches in a panel of 17 MiHAs are associated with clinical outcome after partially T cell-depleted allo-SCT. Comprehensive statistical analysis revealed that DNA mismatches for one or more autosomal-encoded MiHAs was associated with increased relapse-free survival in recipients of sibling transplants (P = .04), particularly in those with multiple myeloma (P = .02). Moreover, mismatches for the ubiquitous Y chromosome-derived MiHAs resulted in a higher incidence of acute GVHD grade III-IV (P = .004), whereas autosomal MiHA mismatches, ubiquitous or restricted to hematopoietic cells, were not associated with severe GVHD. Finally, we found considerable differences among MiHAs in their capability of inducing in vivo T cell responses using dual-color tetramer analysis of peripheral blood samples collected after allo-SCT. Importantly, detection of MiHA-specific T cell responses was associated with improved relapse-free survival in recipients of sibling transplants (P = .01). Our findings provide a rationale for further boosting GVT immunity toward autosomal MiHAs with a hematopoietic restriction to improve outcomes after HLA-matched allo-SCT.
Collapse
Affiliation(s)
- Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Feldhahn M, Dönnes P, Schubert B, Schilbach K, Rammensee HG, Kohlbacher O. miHA-Match: computational detection of tissue-specific minor histocompatibility antigens. J Immunol Methods 2012; 386:94-100. [PMID: 22985828 DOI: 10.1016/j.jim.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 11/20/2022]
Abstract
Allogenic stem cell transplantation has shown considerable success in a number of hematological malignancies, in particular in leukemia. The beneficial effect is mediated by donor T cells recognizing patient-specific HLA-binding peptides. These peptides are called minor histocompatibility antigens (miHAs) and are typically caused by single nucleotide polymorphisms. Tissue-specific miHAs have successfully been used in anti-tumor therapy without causing unspecific graft-versus-host reactions. However, only a small number of miHAs have been identified to date, limiting the clinical use. Here we present an immunoinformatics pipeline for the identification of miHAs. The pipeline can be applied to large-scale miHA screening, for example, in the development of diagnostic tests. Another interesting application is the design of personalized miHA-based cancer therapies based on patient-donor pair-specific miHAs detected by this pipeline. The suggested method covers various aspects of genetic variant detection, effects of alternative transcripts, and HLA-peptide binding. A comparison of our computational pipeline and experimentally derived datasets shows excellent agreement and coverage of the computationally predicted miHAs.
Collapse
Affiliation(s)
- Magdalena Feldhahn
- University of Tübingen, Center for Bioinformatics, Applied Bioinformatics, Sand 14, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
121
|
Macrophage inflammatory protein-2 (MIP-2)/CXCR2 blockade attenuates acute graft-versus-host disease while preserving graft-versus-leukemia activity. Biochem Biophys Res Commun 2012; 426:558-64. [PMID: 22982307 DOI: 10.1016/j.bbrc.2012.08.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/23/2022]
Abstract
Allogenic bone marrow transplantation (BMT), an important treatment for hematological malignancies, is often complicated by graft-versus-host disease (GVHD). Suppression of GVHD is associated with the unwanted diminishment of the graft-versus-leukemia (GVL) response. The aim of this study was to maintain the benefits of GVL during GVHD suppression through isolated blockade of T-cell migration factors. To this end, we developed a murine model of B-cell leukemia, which was treated with BMT to induce GVHD. Within this model, functional blockade of MIP-2/CXCR2 was analyzed by observing proteomic, histologic and clinical variables of GVHD manifestation. Luminex assay of collected tissue identified several cytokines [granulocyte colony-stimulating factor (G-CSF), keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), and interleukin-23 (IL-23)] that were upregulated during GHVD, but reduced by neutralizing the MIP-2/CXCR2 axis. In addition, donor T-cell blockade of CXCR2 combined with recipient administration of anti-MIP-2 caused a significant decrease in GVHD while preserving the GVL response. We propose that blocking the MIP-2/CXCR2 axis represents a novel strategy to separate the toxicity of GVHD from the beneficial effects of GVL after allogenic BMT.
Collapse
|
122
|
Carli C, Giroux M, Delisle JS. Roles of Transforming Growth Factor-β in Graft-versus-Host and Graft-versus-Tumor Effects. Biol Blood Marrow Transplant 2012; 18:1329-40. [DOI: 10.1016/j.bbmt.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/27/2012] [Indexed: 01/07/2023]
|
123
|
Bleakley M, Turtle CJ, Riddell SR. Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2012; 5:409-25. [PMID: 22992235 PMCID: PMC3590108 DOI: 10.1586/ehm.12.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is currently the standard of care for most patients with high-risk acute leukemias and some other hematologic malignancies. Although HCT can be curative, many patients who undergo allogeneic HCT will later relapse. There is, therefore, a critical need for the development of novel post-HCT therapies for patients who are at high risk for disease recurrence following HCT. One potentially efficacious approach is adoptive T-cell immunotherapy, which is currently undergoing a renaissance that has been inspired by scientific insight into the key issues that impeded its previous clinical application. Translation of the next generation of adoptive T-cell therapies to the allogeneic HCT setting, using donor T cells of defined specificity and function, presents a unique set of challenges and opportunities. The challenges, progress and future of adoptive T-cell therapy following allogeneic HCT are discussed in this review.
Collapse
Affiliation(s)
- Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | |
Collapse
|
124
|
van der Zouwen B, Kruisselbrink AB, Jordanova ES, Rutten CE, von dem Borne PA, Falkenburg JHF, Jedema I. Alloreactive effector T cells require the local formation of a proinflammatory environment to allow crosstalk and high avidity interaction with nonhematopoietic tissues to induce GVHD reactivity. Biol Blood Marrow Transplant 2012; 18:1353-67. [PMID: 22796533 DOI: 10.1016/j.bbmt.2012.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022]
Abstract
Based on clinical observations that donor T cells specific for minor histocompatibility antigens (MiHA) ubiquitously expressed on both hematopoietic and nonhematopoietic cells were detected in patients showing evident graft-versus-leukemia/lymphoma (GVL) reactivity with no or limited coinciding graft-versus-host disease (GVHD), we hypothesized that nonhematopoietic tissues may be relatively unsusceptible to the cytotoxic effect of MiHA-specific T cells under normal, noninflammatory conditions. To test this hypothesis, we investigated the reactivity of alloreactive T cells specific for ubiquitously expressed MiHA against skin-derived primary human fibroblasts. We demonstrated that this reactivity was not merely determined by their antigen-specificity, but was highly dependent on adhesion molecule expression. ICAM-1 expression on the fibroblasts upregulated under proinflammatory conditions and induced during cross-talk with the T cells was demonstrated to be a crucial factor facilitating formation of high avidity interactions with the T cells and subsequent efficient target cell destruction. Furthermore, we provide supporting evidence for the role of ICAM-1 in vivo by demonstrating that ICAM-1 expression on nonhematopoietic target cells was dependent on the presence of infiltrating activated T cells, as was illustrated by restricted ICAM-1 expression at the sites of T cell infiltration in skin biopsies of patients with acute GVHD (aGVHD), by the absence of ICAM-1 expression in the same biopsies in areas without T cell infiltration and by the absence of ICAM-1 expression in biopsies of patients without GVHD independent of the presence of infiltrating nonactivated T cells. In conclusion, under noninflammatory conditions, nonhematopoietic tissues are unsusceptible to the GVHD reactivity of alloreactive T cells due to their inability to establish high avidity interactions.
Collapse
Affiliation(s)
- Boris van der Zouwen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
125
|
Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma. Gene Ther 2012; 20:386-95. [PMID: 22739387 DOI: 10.1038/gt.2012.48] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157-165 in the context of HLA-A*02:01 to re-direct autologous CD8(+) T cells towards NY-ESO-1(+) myeloma cells. These re-directed T cells specifically lysed NY-ESO-1(157-165)/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7(-) re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7(+) memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1(157-165)/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.
Collapse
|
126
|
Hobo W, Norde WJ, Schaap N, Fredrix H, Maas F, Schellens K, Falkenburg JHF, Korman AJ, Olive D, van der Voort R, Dolstra H. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. THE JOURNAL OF IMMUNOLOGY 2012; 189:39-49. [PMID: 22634623 DOI: 10.4049/jimmunol.1102807] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.
Collapse
Affiliation(s)
- Willemijn Hobo
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Ali N, Adil SN, Shaikh MU, Moosajee M, Masood N. Outcome of match related allogeneic stem cell transplantation procedures performed from 2004 till 2011. Exp Hematol Oncol 2012; 1:13. [PMID: 23210643 PMCID: PMC3514083 DOI: 10.1186/2162-3619-1-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022] Open
Abstract
We present our initial experience of allogeneic stem cell transplant procedure performed between April 2004 and August 2011 for various haematological disorders. All patients with non-malignant and malignant haematological disorders with HLA matched donors were selected after pre-transplant workup. Ninety seven patients underwent the procedure. Most common indications for transplant were aplastic anaemia in n = 34 (35%), followed by β-Thalassemia major in n = 21 (21.6%) and chronic myeloid leukemia in n = 11 patients (11.3%). Primary graft failure present was present in 2.06%. Incidence of graft versus host disease (GvHD) in our patients was 34%. After median follow-up of five years the overall survival was 71.3% with a mean survival time of 51.2 ± 3.3 months.
Collapse
Affiliation(s)
- Natasha Ali
- FCPS Haematology, Department of Pathology and Microbiology, The Aga Khan University and Hospital, Karachi, Pakistan.
| | | | | | | | | |
Collapse
|
128
|
Yamamura T, Hikita J, Bleakley M, Hirosawa T, Sato-Otsubo A, Torikai H, Hamajima T, Nannya Y, Demachi-Okamura A, Maruya E, Saji H, Yamamoto Y, Takahashi T, Emi N, Morishima Y, Kodera Y, Kuzushima K, Riddell SR, Ogawa S, Akatsuka Y. HapMap SNP Scanner: an online program to mine SNPs responsible for cell phenotype. ACTA ACUST UNITED AC 2012; 80:119-25. [PMID: 22568758 DOI: 10.1111/j.1399-0039.2012.01883.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Minor histocompatibility (H) antigens are targets of graft-vs-host disease and graft-vs-tumor responses after human leukocyte antigen matched allogeneic hematopoietic stem cell transplantation. Recently, we reported a strategy for genetic mapping of linkage disequilibrium blocks that encoded novel minor H antigens using the large dataset from the International HapMap Project combined with conventional immunologic assays to assess recognition of HapMap B-lymphoid cell line by minor H antigen-specific T cells. In this study, we have constructed and provide an online interactive program and demonstrate its utility for searching for single-nucleotide polymorphisms (SNPs) responsible for minor H antigen generation. The website is available as 'HapMap SNP Scanner', and can incorporate T-cell recognition and other data with genotyping datasets from CEU, JPT, CHB, and YRI to provide a list of candidate SNPs that correlate with observed phenotypes. This method should substantially facilitate discovery of novel SNPs responsible for minor H antigens and be applicable for assaying of other specific cell phenotypes (e.g. drug sensitivity) to identify individuals who may benefit from SNP-based customized therapies.
Collapse
Affiliation(s)
- T Yamamura
- Division of Immunology, Aichi Cancer Center Research Center, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Reddy P, Socié G, Cutler C, Weisdorf D. GVHD prevention: an ounce is better than a pound. Biol Blood Marrow Transplant 2012; 18:S17-26. [PMID: 22226102 DOI: 10.1016/j.bbmt.2011.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pavan Reddy
- Department of Medicine 3312 CCGC, University of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
130
|
A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012; 119:5697-705. [PMID: 22535661 DOI: 10.1182/blood-2012-01-405365] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients. This was achieved by genetically editing CD19-specific CAR(+) T cells to eliminate expression of the endogenous αβ T-cell receptor (TCR) to prevent a graft-versus-host response without compromising CAR-dependent effector functions. Genetically modified T cells were generated using the Sleeping Beauty system to stably introduce the CD19-specific CAR with subsequent permanent deletion of α or β TCR chains with designer zinc finger nucleases. We show that these engineered T cells display the expected property of having redirected specificity for CD19 without responding to TCR stimulation. CAR(+)TCR(neg) T cells of this type may potentially have efficacy as an off-the-shelf therapy for investigational treatment of B-lineage malignancies.
Collapse
|
131
|
Gowdy KM, Cardona DM, Nugent JL, Giamberardino C, Thomas JM, Mukherjee S, Mukherjee S, Martinu T, Foster WM, Plevy SE, Pastva AM, Wright JR, Palmer SM. Novel role for surfactant protein A in gastrointestinal graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2012; 188:4897-905. [PMID: 22508928 DOI: 10.4049/jimmunol.1103558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Graft-versus-host disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal (GI) tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host Ags as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT. C57BL/6 (H2b; WT) and SP-A-deficient mice on a C57BL/6 background (H2b; SP-A(-/-)) mice underwent allogeneic or syngeneic BMT with cells from either C3HeB/FeJ (H2k; SP-A-deficient recipient mice that have undergone an allogeneic BMT [SP-A(-/-)alloBMT] or SP-A-sufficient recipient mice that have undergone an allogeneic BMT) or C57BL/6 (H2b; SP-A-deficient recipient mice that have undergone a syngeneic BMT or SP-A-sufficient recipient mice that have undergone a syngeneic BMT) mice. Five weeks post-BMT, mice were necropsied, and lung and GI tissue were analyzed. SP-A(-/-) alloBMT or SP-A-sufficient recipient mice that have undergone an allogeneic BMT had no significant differences in lung pathology; however, SP-A(-/-)alloBMT mice developed marked features of GI GVHD, including decreased body weight, increased tissue inflammation, and lymphocytic infiltration. SP-A(-/-)alloBMT mice also had increased colon expression of IL-1β, IL-6, TNF-α, and IFN-γ and as well as increased Th17 cells and diminished regulatory T cells. Our results demonstrate the first evidence, to our knowledge, of a critical role for SP-A in modulating GI GVHD. In these studies, we demonstrate that mice deficient in SP-A that have undergone an allogeneic BMT have a greater incidence of GI GVHD that is associated with increased Th17 cells and decreased regulatory T cells. The results of these studies demonstrate that SP-A protects against the development of GI GVHD and establishes a role for SP-A in regulating the immune response in the GI tract.
Collapse
Affiliation(s)
- Kymberly M Gowdy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Jung H, Ki CS, Kim JW, Kang ES. Frequencies of 10 autosomal minor histocompatibility antigens in Korean population and estimated disparities in unrelated hematopoietic stem cell transplantation. ACTA ACUST UNITED AC 2012; 79:42-9. [PMID: 22150369 DOI: 10.1111/j.1399-0039.2011.01810.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disparity of minor histocompatibility antigens (mHAs) is known to induce graft-versus-tumor and graft-versus-host disease reactions in stem cell transplantation. Not much information is available on genotypic and phenotypic distributions of the currently identified mHAs, especially in Korean population. Therefore, we report genotype and phenotype frequency analyses of 10 autosomal mHAs in 329 unrelated healthy Koreans using the Sequenom MassARRAY matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) system and polymerase chain reaction-sequence specific primers (PCR-SSP). Estimates of the probability of immunogenic mismatches between donor/recipient pairs were made from observed phenotypic frequencies. HA-1 was the most favorable mHA for clinical application with the highest disparity of 7.0%. Similar results were obtained in ACC-1. The Korean population can benefit the most in a setting of matched major histocompatibility complex (MHC)-restricted mHAs-mismatched unrelated hematopoietic stem cell transplantations with the disparity rate of 27.5% with eight hematopoietic mHAs. This is the first comprehensive report on the genotypic and phenotypic frequency distributions of human mHAs in the Korean population. It can contribute to not only donor selection before transplantation but also therapeutic approaches after transplantation. It is expected that mHA-based immunotherapy will lead to a new treatment modality tailored for patients at high risk of relapse following allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- H Jung
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
133
|
Cell-autonomous role of TGFβ and IL-2 receptors in CD4+ and CD8+ inducible regulatory T-cell generation during GVHD. Blood 2012; 119:5575-83. [PMID: 22496155 DOI: 10.1182/blood-2011-07-367987] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FoxP3(+) regulatory T cells (Tregs) suppress GVHD while preserving graft-versus-tumor effects, making them an attractive target for GVHD therapy. The donor-derived Treg pool can potentially be derived from the expansion of preexisting natural Tregs (nTregs) or from de novo generation of inducible Tregs (iTregs) from donor Tconvs in the transplantation recipient. Using an MHC-mismatched model of acute GVHD, in the present study we found that the Treg pool was comprised equally of donor-derived nTregs and iTregs. Experiments using various combinations of T cells from wild-type and FoxP3-deficient mice suggested that both preexisting donor nTregs and the generation of iTregs in the recipient mice contribute to protection against GVHD. Surprisingly, CD8(+)FoxP3(+) T cells represented approximately 70% of the iTreg pool. These CD8(+)FoxP3(+) T cells shared phenotypic markers with their CD4(+) counterparts and displayed suppressive activity, suggesting that they were bona fide iTregs. Both CD4(+) and CD8(+) Tregs appeared to be protective against GVHD-induced lethality and required IL-2 and TGFβ receptor expression for their generation. These data illustrate the complex makeup of the donor-derived FoxP3(+) Treg pool in allogeneic recipients and their potential role in protection against GVHD.
Collapse
|
134
|
Simpson AA, Mohammed F, Salim M, Tranter A, Rickinson AB, Stauss HJ, Moss PAH, Steven NM, Willcox BE. Structural and energetic evidence for highly peptide-specific tumor antigen targeting via allo-MHC restriction. Proc Natl Acad Sci U S A 2011; 108:21176-81. [PMID: 22160697 PMCID: PMC3248497 DOI: 10.1073/pnas.1108422109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immunotherapies targeting peptides presented by allogeneic MHC molecules offer the prospect of circumventing tolerance to key tumor-associated self-antigens. However, the degree of antigen specificity mediated by alloreactive T cells, and their ability to discriminate normal tissues from transformed cells presenting elevated antigen levels, is poorly understood. We examined allorecognition of an HLA-A2-restricted Hodgkin's lymphoma-associated antigen and were able to isolate functionally antigen-specific allo-HLA-A2-restricted T cells from multiple donors. Binding and structural studies, focused on a prototypic allo-HLA-A2-restricted T-cell receptor (TCR) termed NB20 derived from an HLA-A3 homozygote, suggested highly peptide-specific allorecognition that was energetically focused on antigen, involving direct recognition of a distinct allopeptide presented within a conserved MHC recognition surface. Although NB20/HLA-A2 affinity was unremarkable, TCR/MHC complexes were very short-lived, consistent with suboptimal TCR triggering and tolerance to low antigen levels. These data provide strong molecular evidence that within the functionally heterogeneous alloreactive repertoire, there is the potential for highly antigen-specific "allo-MHC-restricted" recognition and suggest a kinetic mechanism whereby allo-MHC-restricted T cells may discriminate normal from transformed tissue, thereby outlining a suitable basis for broad-based therapeutic targeting of tolerizing tumor antigens.
Collapse
Affiliation(s)
- Amy A. Simpson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Fiyaz Mohammed
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Mahboob Salim
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Amy Tranter
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Alan B. Rickinson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Hans J. Stauss
- Division of Infection and Immunity, Department of Immunology, University College London, Royal Free Hospital, London NW3 2PF, United Kingdom
| | - Paul A. H. Moss
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Neil M. Steven
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Benjamin E. Willcox
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| |
Collapse
|
135
|
Abstract
Organ transplantation has evolved rapidly and there is now widespread use of donated organs for the treatment of end-stage organ failure. Although the therapeutic options achieving long-term graft survival have improved, acute and chronic rejections are still a major problem. Studies to identify noninvasive biomarkers for rejection and underlying molecular events have increased significantly in the past decade, but a major breakthrough is still missing. The recent discovery of small regulatory RNA molecules (microRNAs) resulted in a new and improved understanding of the mechanisms of gene regulation and also led to the development of the first new microRNA (miRNA)-based therapies. miRNAs are endogenous, single-stranded RNAs consisting of about 19-25 noncoding nucleotides, which have an important role in regulating gene expression. Additionally, circulating miRNAs that might be useful as novel disease biomarkers were detected. Here, we summarise current knowledge about the role of miRNAs in immunology and transplantation medicine and their role as potential biomarkers. We also focus on the molecular mechanisms and therapeutic implications of the use of miRNA-based therapeutic strategies to improve long-term allograft survival.
Collapse
|
136
|
Choi S, Reddy P. Donor Tregs suppress the good with the bad after allogeneic BMT. Leuk Res 2011; 35:1541-2. [DOI: 10.1016/j.leukres.2011.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 01/23/2023]
|
137
|
Yang J, Fan H, Hao J, Ren Y, Chen L, Li G, Xie R, Yang Y, Qian K, Liu M. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion 2011; 52:1333-47. [PMID: 22098312 DOI: 10.1111/j.1537-2995.2011.03448.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human cord blood (CB) is a superior source of regulatory T cells (Tregs) compared with peripheral blood. Initial studies have shown that CB-derived Tregs can be effectively expanded ex vivo. However, in vitro suppressor activity of expanded CB-Tregs and their efficacy in the prevention of acute graft-versus-host disease (aGVHD) in vivo are poorly understood. STUDY DESIGN AND METHODS In vitro, human CB CD4+CD25+ T cells expanded with anti-CD3/CD28 beads plus interleukin (IL)-2 and the phenotypes, expression of cytokines, and suppression of expanded cells were analyzed after two cycles of stimulation. In vivo, the addition of human CB-Tregs was transferred in the major histocompatibility complex-mismatched aGVHD mouse model. Survival, body weight, GVHD scoring, histopathologic specimens, serum cytokines, and Th subsets were analyzed in CB-Treg-treated mice and untreated controls. RESULTS After being expanded ex vivo, human CB-derived Tregs with potent suppressor function could meet clinical demands. Up to 85% of mice with CB-Tregs treatment survived beyond Day 63 after bone marrow transplantation; however, all aGVHD mice died within 18 days. In the serum of the CB-Treg-treated mice, the production of transforming growth factor-β increased continuously, as opposed to IL-17, which decreased quickly. Consistent with the changes of cytokines, the percentage of mouse CD4+ forkhead box protein 3+ Tregs increased while that of Th17 cells decreased. CONCLUSION Ex vivo expanded human CB-Tregs significantly prevented allogeneic aGVHD in vivo by modulating various cytokine secretion and polarizing the Treg/Th17 balance toward Treg, which suggests the potential use of expanded CB-Tregs as a therapeutic approach for GVHD.
Collapse
Affiliation(s)
- Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Memory T cells from minor histocompatibility antigen-vaccinated and virus-immune donors improve GVL and immune reconstitution. Blood 2011; 118:5965-76. [PMID: 21917752 DOI: 10.1182/blood-2011-07-367011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Donor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (T(M)) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host tissues. One approach to augmenting GVL has been to infuse ex vivo-generated T cells with defined specificities; however, this requires expertise that is not widely available. In the present study, we tested an alternative approach, adoptive immunotherapy with CD8+ T(M) from donors vaccinated against a single minor histocompatibility antigen (miHA) expressed by leukemia cells. Vaccination against the miHA H60 greatly augmented T(M)-mediated GVL against mouse chronic-phase (CP-CML) and blast crisis chronic myeloid leukemia (BC-CML). T(M)-mediated GVL was antigen specific and was optimal when H60 expression was hematopoietically restricted. Even when H60 was ubiquitous, donor H60 vaccination had a minimal impact on GVHD. T(M) from lymphocytic choriomeningitis virus (LCMV)-immune and H60-vaccinated donors augmented GVL and protected recipients from LCMV. These data establish a strategy for augmenting GVL and immune reconstitution without elaborate T-cell manipulation.
Collapse
|
139
|
HU STEPHANIEW, COTLIAR JONATHAN. Acute graft-versus-host disease following hematopoietic stem-cell transplantation. Dermatol Ther 2011; 24:411-23. [DOI: 10.1111/j.1529-8019.2011.01436.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
140
|
Cho BS, Lim JY, Yahng SA, Lee SE, Eom KS, Kim YJ, Chung NG, Jeong DC, Lee S, Kim HJ, Cho SG, Kim DW, Lee JW, Min WS, Park CW, Min CK. Circulating IL-17 levels during the peri-transplant period as a predictor for early leukemia relapse after myeloablative allogeneic stem cell transplantation. Ann Hematol 2011; 91:439-48. [PMID: 21894475 DOI: 10.1007/s00277-011-1318-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022]
Abstract
IL-17 is involved in inducing and mediating pro-inflammatory responses. The association of IL-17 with tumor growth or graft-versus-host disease (GVHD) has become a subject of controversy. We hypothesized that serum IL-17 (sIL-17) levels during the peri-transplant period may affect alloreactive responses after allogeneic stem cell transplantation (SCT). sIL-17 levels of 95 patients with leukemia who had undergone myeloablative allogeneic SCT were measured using ELISA before conditioning and on day 0, +7, and +14 after transplantation. With a median follow-up of 17 months, the overall survival, disease-free survival, non-relapse mortality, and relapse incidence were 70.9%, 66.3%, 10.3%, and 23.4%, respectively. Ten patients relapsed within 180 days (early relapse, 10.5%) post-transplant. The cumulative incidence of acute GVHD over grade II and chronic GVHD was 55.8% and 69.0%, respectively. Analyses using repeated measures of ANOVA and mean values of sIL-17 revealed that patients relapsed within 180 days had higher sIL-17 levels, whereas no association existed between sIL-17 levels and other clinical outcomes, including acute GVHD. Receiver operating characteristic curve analyses also revealed that sIL-17 levels were available for the prediction of early relapse and that patients with higher sIL-17 levels at each time point had a significantly higher early relapse. Multivariate analyses and subgroup analyses with only standard disease status suggest the association of sIL-17 levels with subsequent early relapse independent of disease status at transplantation. This study is the first one demonstrating the early change in sIL-17 during the peri-transplant period and the association with early relapse in humans.
Collapse
Affiliation(s)
- Byung-Sik Cho
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 2011; 4:318-33. [PMID: 21558065 PMCID: PMC3097454 DOI: 10.1242/dmm.006668] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The limiting factor for successful hematopoietic stem cell transplantation (HSCT) is graft-versus-host disease (GvHD), a post-transplant disorder that results from immune-mediated attack of recipient tissue by donor T cells contained in the transplant. Mouse models of GvHD have provided important insights into the pathophysiology of this disease, which have helped to improve the success rate of HSCT in humans. The kinetics with which GvHD develops distinguishes acute from chronic GvHD, and it is clear from studies of mouse models of GvHD (and studies of human HSCT) that the pathophysiology of these two forms is also distinct. Mouse models also further the basic understanding of the immunological responses involved in GvHD pathology, such as antigen recognition and presentation, the involvement of the thymus and immune reconstitution after transplantation. In this Perspective, we provide an overview of currently available mouse models of acute and chronic GvHD, highlighting their benefits and limitations, and discuss research and clinical opportunities for the future.
Collapse
Affiliation(s)
- Mark A Schroeder
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
142
|
Abstract
Analogous to T cells, Natural Killer (NK) cells may facilitate engraftment, combat infection, and control cancer in bone marrow or haematopoietic stem cell transplantation (HSCT); however, NK cells do not cause graft-versus-host disease. Killer immunoglobulin-like receptors (KIRs) regulate NK cell function, and recent data suggest that KIR is as important as its ligand (human leucocyte antigen; HLA) in HSCT for both malignant and non-malignant conditions. Because there is substantial variability in KIR gene content, allelic polymorphism, and cell-surface expression among people, careful selection of donors based on HLA and KIR is essential to optimize HSCT outcomes. Furthermore, NK cells may be used for adoptive immunotherapy after HSCT in place of conventional donor lymphocyte infusion, as part of pre-transplant cytoreductive therapy, or as an independent therapeutic agent in high-risk leukaemia in place of sibling donor HSCT.
Collapse
Affiliation(s)
- Wing Leung
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 26 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
143
|
Matte-Martone C, Venkatesan S, Tan HS, Athanasiadis I, Chang J, Pavisic J, Shlomchik WD. Graft-versus-leukemia (GVL) against mouse blast-crisis chronic myelogenous leukemia (BC-CML) and chronic-phase chronic myelogenous leukemia (CP-CML): shared mechanisms of T cell killing, but programmed death ligands render CP-CML and not BC-CML GVL resistant. THE JOURNAL OF IMMUNOLOGY 2011; 187:1653-63. [PMID: 21768400 DOI: 10.4049/jimmunol.1100311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graft-versus-leukemia (GVL) against chronic-phase chronic myelogenous leukemia (CP-CML) is potent, but it is less efficacious against acute leukemias and blast-crisis chronic myelogenous leukemia (BC-CML). The mechanisms underlying GVL resistance are unknown. Previously, we found that alloreactive T cell targeting of GVL-sensitive bcr-abl-induced mouse CP-CML (mCP-CML) required TCR-MHC interactions and that multiple and redundant killing mechanisms were in play. To better understand why BC-CML is resistant to GVL, we performed a comprehensive analysis of GVL against mouse BC-CML (mBC-CML) induced by the retroviral transfer of the bcr-abl and NUP98/HOXA9 fusion cDNAs. Like human BC-CML, mBC-CML was GVL resistant, and this was not due to accelerated kinetics or a greater leukemia burden. To study T cell recognition and killing mechanisms, we generated a panel of gene-deficient leukemias by transducing bone marrow from gene-deficient mice. T cell target recognition absolutely required that mBC-CML cells express MHC molecules. GVL against both mCP-CML and mBC-CML required leukemia expression of ICAM-1. We hypothesized that mBC-CML would be resistant to some of the killing mechanisms sufficient to eliminate mCP-CML, but we found instead that the same mechanisms were effective against both types of leukemia, because GVL was similar against wild-type or mBC-CML genetically lacking Fas, TRAIL-R, Fas/TRAIL-R, or TNFR1/R2 or when donor T cells were perforin(-/-). However, mCP-CML, but not mBC-CML, relied on expression of programmed death-1 ligands 1 and 2 (PD-L1/L2) to resist T cell killing, because only GVL against mCP-CML was augmented when leukemias lacked PD-L1/L2. Thus, mBC-CML cells have cell-intrinsic mechanisms, distinct from mCP-CML cells, which protect them from T cell killing.
Collapse
Affiliation(s)
- Catherine Matte-Martone
- Department of Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Allogeneic hematopoietic cell transplantation led to the discovery of the allogeneic GVL effect, which remains the most convincing evidence that immune cells can cure cancer in humans. However, despite its great paradigmatic and clinical relevance, induction of GVL by conventional allogeneic hematopoietic cell transplantation remains a quite rudimentary form of leukemia immunotherapy. It is toxic and its efficacy is far from optimal. It is therefore sobering that since the discovery of the GVL effect 3 decades ago, the way GVL is induced and manipulated has practically not changed. Preclinical and clinical studies suggest that injection of T cells primed against a single Ag present on neoplastic cells could enhance the GVL effect without causing any GVHD. We therefore contend that Ag-targeted adoptive T-cell immunotherapy represents the future of leukemia immunotherapy, and we discuss the specific strategies that ought to be evaluated to reach this goal. Differences between these strategies hinge on 2 key elements: the nature of the target Ag and the type of Ag receptor expressed on T cells.
Collapse
|
145
|
A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR. PLoS One 2011; 6:e21699. [PMID: 21738768 PMCID: PMC3125305 DOI: 10.1371/journal.pone.0021699] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/05/2011] [Indexed: 01/12/2023] Open
Abstract
Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission in patients with renal cell carcinoma (RCC), but this graft-versus-tumor (GVT) effect is often accompanied by graft-versus-host disease (GVHD). Here, we evaluated minor histocompatibility antigen (MiHA)-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI). One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT.
Collapse
|
146
|
Norde WJ, Maas F, Hobo W, Korman A, Quigley M, Kester MGD, Hebeda K, Falkenburg JHF, Schaap N, de Witte TM, van der Voort R, Dolstra H. PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res 2011; 71:5111-22. [PMID: 21659460 DOI: 10.1158/0008-5472.can-11-0108] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor relapses remain a serious problem after allogeneic stem cell transplantation (alloSCT), despite the long-term persistence of minor histocompatibility antigen (MiHA)-specific memory CD8(+) T cells specific for the tumor. We hypothesized that these memory T cells may lose their function over time in transplanted patients. Here, we offer functional and mechanistic support for this hypothesis, based on immune inhibition by programmed death-1 (PD-1) expressed on MiHA-specific CD8(+) T cells and the associated role of the PD-1 ligand PD-L1 on myeloid leukemia cells, especially under inflammatory conditions. PD-L1 was highly upregulated on immature human leukemic progenitor cells, whereas costimulatory molecules such as CD80 and CD86 were not expressed. Thus, immature leukemic progenitor cells seemed to evade the immune system by inhibiting T-cell function via the PD-1/PD-L1 pathway. Blocking PD-1 signaling using human antibodies led to elevated proliferation and IFN-γ production of MiHA-specific T cells cocultured with PD-L1-expressing leukemia cells. Moreover, patients with relapsed leukemia after initial MiHA-specific T-cell responses displayed high PD-L1 expression on CD34(+) leukemia cells and increased PD-1 levels on MiHA-specific CD8(+) T cells. Importantly, blocking PD-1/PD-L1 interactions augment proliferation of MiHA-specific CD8(+) memory T cells from relapsed patients. Taken together, our findings indicate that the PD-1/PD-L pathway can be hijacked as an immune escape mechanism in hematological malignancies. Furthermore, they suggest that blocking the PD-1 immune checkpoint offers an appealing immunotherapeutic strategy following alloSCT in patients with recurrent or relapsed disease.
Collapse
Affiliation(s)
- Wieger J Norde
- Departments of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Smits ELJ, Lee C, Hardwick N, Brooks S, Van Tendeloo VFI, Orchard K, Guinn BA. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol Immunother 2011; 60:757-69. [PMID: 21519825 PMCID: PMC11029703 DOI: 10.1007/s00262-011-1022-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/08/2011] [Indexed: 02/07/2023]
Abstract
Immunotherapy is currently under active investigation as an adjuvant therapy to improve the overall survival of patients with acute myeloid leukaemia (AML) by eliminating residual leukaemic cells following standard therapy. The graft-versus-leukaemia effect observed following allogeneic haematopoietic stem cell transplantation has already demonstrated the significant role of immune cells in controlling AML, paving the way to further exploitation of this effect in optimized immunotherapy protocols. In this review, we discuss the current state of cellular immunotherapy as adjuvant therapy for AML, with a particular focus on new strategies and recently published results of preclinical and clinical studies. Therapeutic vaccines that are being tested in AML include whole tumour cells as an autologous source of multiple leukaemia-associated antigens (LAA) and autologous dendritic cells loaded with LAA as effective antigen-presenting cells. Furthermore, adoptive transfer of cytotoxic T cells or natural killer cells is under active investigation. Results from phase I and II trials are promising and support further investigation into the potential of cellular immunotherapeutic strategies to prevent or fight relapse in AML patients.
Collapse
Affiliation(s)
- Evelien L J Smits
- Laboratory of Experimental Haematology, Vaccine and Infectious Disease Institute, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Peripheral blood stem cell transplantation (PBSCT) is the most common transplantation procedure performed in medicine. Its clinical introduction in 1986 replaced BM as a stem-cell source to approximately 100% in the autologous and to approximately 75% in the allogeneic transplantation setting. This historical overview provides a brief insight into the discovery of circulating hematopoietic stem cells in the early 1960s, the development of apheresis technology, the discovery of hematopoietic growth factors and small molecule CXCR4 antagonist for stem- cell mobilization, and in vivo experimental transplantation studies that eventually led to clinical PBSCT. Also mentioned are the controversies surrounding the engraftment potential of circulating stem cells before acceptance as a clinical modality. Clinical trials comparing the outcome of PBSCT with BM transplantation, registry data analyses, and the role of the National Marrow Donor Program (NMDP) in promoting unrelated blood stem-cell donation are addressed.
Collapse
|
149
|
Khouri IF, Bassett R, Poindexter N, O'Brien S, Bueso-Ramos CE, Hsu Y, Ferrajoli A, Keating MJ, Champlin R, Fernandez-Vina M. Nonmyeloablative allogeneic stem cell transplantation in relapsed/refractory chronic lymphocytic leukemia: long-term follow-up, prognostic factors, and effect of human leukocyte histocompatibility antigen subtype on outcome. Cancer 2011; 117:4679-88. [PMID: 21455998 DOI: 10.1002/cncr.26091] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/23/2011] [Accepted: 02/10/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND The role of nonmyeloablative allogeneic stem cell transplantation (NST) in the treatment of chronic lymphocytic leukemia (CLL) is not well established. The authors report on long-term experience with NST in relapsed/refractory CLL and define prognostic factors associated with outcome. METHODS The authors reviewed the outcome of 86 patients with relapsed/relapsed CLL enrolled in sequential NST protocols. RESULTS The median patient age was 58 years. Patients were heavily pretreated before transplantation, and 43 required immunomanipulation after NST for persistent or recurrent disease. Immunomanipulation included withdrawal of immunosuppression, rituximab, and step-wise donor lymphocyte infusions. Of 43 patients receiving immunomanipulation, 20 (47%) experienced a complete remission. Patients with human leukocyte antigen (HLA) genotype A1(+) /A2(-) /B44(-) were more likely to experience a complete remission (P = .0009), with rates of 9%, 36%, 50%, and 91%, respectively, for 0, 1, 2, and 3 of these HLA factors. This resulted in significant improvement in progression-free-survival rates of 68.2% at 5 years for patients with all 3 HLA factors. Overall, the estimated 5-year survival rate was 51%. In a multivariate model, a CD4 count of <100/mm(3) and a below normal serum immunoglobulin G level at study entry were associated with a short survival duration (P < .0001). CONCLUSIONS These results confirm the potential cure of relapsed/refractory CLL with NST and provide the first evidence that immunoglobulin G and CD4 levels are predictive of overall survival after NST in CLL and that human leukocyte antigen alleles predict response to immunomanipulation.
Collapse
Affiliation(s)
- Issa F Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Hudecek M, Anderson LD, Nishida T, Riddell SR. Adoptive T-cell therapy for B-cell malignancies. Expert Rev Hematol 2011; 2:517-32. [PMID: 21083018 DOI: 10.1586/ehm.09.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of allogeneic hematopoietic cell transplantation (HCT) for B-cell malignancies is evidence that these tumors can be eliminated by T lymphocytes. This has encouraged the development of specific adoptive T-cell therapy, both for augmenting the anti-tumor effect of HCT and for patients not undergoing HCT. T cells that are capable of recognizing antigens expressed on malignant B cells may be recruited from the endogenous repertoire or engineered to express tumor-targeting receptors. Critical insights into the qualities of T cells that enable their persistence and function in vivo have been derived, and obstacles to effective T-cell-mediated tumor eradication are being elucidated. These advances provide the tools to translate adoptive T-cell transfer into reliable clinical therapies.
Collapse
Affiliation(s)
- Michael Hudecek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | |
Collapse
|