101
|
Siering PL, Wolfe GV, Wilson MS, Yip AN, Carey CM, Wardman CD, Shapiro RS, Stedman KM, Kyle J, Yuan T, Van Nostrand JD, He Z, Zhou J. Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic, oligotrophic, low-pH geothermal ecosystem. GEOBIOLOGY 2013; 11:356-376. [PMID: 23679065 DOI: 10.1111/gbi.12041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Boiling Springs Lake (BSL) in Lassen Volcanic National Park, California, is North America's largest hot spring, but little is known about the physical, chemical, and biological features of the system. Using a remotely operated vessel, we characterized the bathymetry and near-surface temperatures at sub-meter resolution. The majority of the 1.2 ha, pH 2.2 lake is 10 m deep and 50-52 °C, but temperatures reach 93 °C locally. We extracted DNA from water and sediments collected from warm (52 °C) and hot (73-83 °C) sites separated by 180 m. Gene clone libraries and functional gene microarray (GeoChip 3.0) were used to investigate the BSL community, and uptake of radiolabeled carbon sources was used to assess the relative importance of heterotrophic vs. autotrophic production. Microbial assemblages are similar in both sites despite the strong temperature differential, supporting observations of a dynamic, convectively mixed system. Bacteria in the Actinobacteria and Aquificales phyla are abundant in the water column, and Archaea distantly related to known taxa are abundant in sediments. The functional potential appears similar across a 5-year time span, indicating a stable community with little inter-annual variation, despite the documented seasonal temperature cycle. BSL water-derived DNA contains genes for complete C, N, and S cycles, and low hybridization to probes for N and S oxidation suggests that reductive processes dominate. Many of the detected genes for these processes were from uncultivated bacteria, suggesting novel organisms are responsible for key ecosystem services. Selection imposed by low nutrients, low pH, and high temperature appear to result in low diversity and evenness of genes for key functions involved in C, N, and S cycling. Conversely, organic degradation genes appear to be functionally redundant, and the rapid assimilation of radiolabeled organic carbon into BSL cells suggests the importance of allochthonous C fueling heterotrophic production in the BSL C cycle.
Collapse
Affiliation(s)
- P L Siering
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
This chapter discusses the astonishing discovery of the Sputnik virophage, a new virus infecting giant viruses of the genera Mimivirus and Mamavirus. While other virophages have also since been described, this chapter focuses mainly on Sputnik, which is the best described. We detail the general properties of the virophage life cycle, as well as its hosts, genomic characteristics, ecology, and origin. In addition to genetic, phylogenetic, and structural evidence, the existence of virophages has deeply altered our view of the tripartite division of life to include the addition of a fourth domain constituted of the nucleocytoplasmic large DNA viruses, an important point that is discussed.
Collapse
Affiliation(s)
- Christelle Desnues
- URMITE, Centre National de la Recherche Scientifique UMR IRD 6236, Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
103
|
Krupovic M, White MF, Forterre P, Prangishvili D. Postcards from the edge: structural genomics of archaeal viruses. Adv Virus Res 2013; 82:33-62. [PMID: 22420850 DOI: 10.1016/b978-0-12-394621-8.00012-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ever since their discovery, archaeal viruses have fascinated biologists with their unusual virion morphotypes and their ability to thrive in extreme environments. Attempts to understand the biology of these viruses through genome sequence analysis were not efficient. Genomes of archaeoviruses proved to be terra incognita with only a few genes with predictable functions but uncertain provenance. In order to facilitate functional characterization of archaeal virus proteins, several research groups undertook a structural genomics approach. This chapter summarizes the outcome of these efforts. High-resolution structures of 30 proteins encoded by archaeal viruses have been solved so far. Some of these proteins possess new structural folds, whereas others display previously known topologies, albeit without detectable sequence similarity to their structural homologues. Structures of the major capsid proteins have illuminated intriguing evolutionary connections between viruses infecting hosts from different domains of life and also revealed new structural folds not yet observed in currently known bacterial and eukaryotic viruses. Structural studies, discussed here, have advanced our understanding of the archaeal virosphere and provided precious information on different aspects of biology of archaeal viruses and evolution of viruses in general.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | | | | |
Collapse
|
104
|
Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story. Proc Natl Acad Sci U S A 2013; 110:10604-9. [PMID: 23733949 DOI: 10.1073/pnas.1303047110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that viruses can be divided into a small number of structure-based viral lineages. One of these lineages is exemplified by bacterial virus Hong Kong 97 (HK97), which represents the head-tailed dsDNA bacteriophages. Seemingly similar viruses also infect archaea. Here we demonstrate using genomic analysis, electron cryomicroscopy, and image reconstruction that the major coat protein fold of newly isolated archaeal Haloarcula sinaiiensis tailed virus 1 has the canonical coat protein fold of HK97. Although it has been anticipated previously, this is physical evidence that bacterial and archaeal head-tailed viruses share a common architectural principle. The HK97-like fold has previously been recognized also in herpesviruses, and this study expands the HK97-like lineage to viruses from all three domains of life. This is only the second established lineage to include archaeal, bacterial, and eukaryotic viruses. Thus, our findings support the hypothesis that the last common universal ancestor of cellular organisms was infected by a number of different viruses.
Collapse
|
105
|
van Wolferen M, Ajon M, Driessen AJM, Albers SV. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions. Extremophiles 2013; 17:545-63. [PMID: 23712907 DOI: 10.1007/s00792-013-0552-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/12/2013] [Indexed: 01/24/2023]
Abstract
Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species likely plays a role in repair of DNA via homologous recombination, a process that is crucial under DNA damaging conditions such as high temperatures. Several mechanisms for the transfer of DNA have been described in prokaryotes, emphasizing its general importance. However, until recently, not much was known about this process in prokaryotes growing in highly thermophilic environments. This review describes the different mechanisms of DNA transfer in hyperthermophiles, and how this may contribute to the survival and adaptation of hyperthermophilic archaea and bacteria to extreme environments.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
106
|
Abstract
The majority of viral vectors currently used possess modest cargo capability (up to 40 kb) being based on retroviruses, lentiviruses, adenoviruses, and adenoassociated viruses. These vectors have made the most rapid transition from laboratory to clinic because their small genomes have simplified their characterization and modification. However, there is now an increasing need both in research and therapy to complement this repertoire with larger capacity vectors able to deliver multiple transgenes or to encode complex regulatory regions, constructs which can easily span more than 100 kb. Herpes Simplex Virus Type I (HSV-1) is a well-characterized human virus which is able to package about 150 kb of DNA, and several vector systems are currently in development for gene transfer applications, particularly in neurons where other systems have low efficiency. However, to reach the same level of versatility and ease of use as that of smaller genome viral vectors, simple systems for high-titer production must be developed. This paper reviews the major HSV-1 vector systems and analyses the common elements which may be most important to manipulate to achieve this goal.
Collapse
Affiliation(s)
- Filip Lim
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
107
|
Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME JOURNAL 2013; 7:1738-51. [PMID: 23635867 DOI: 10.1038/ismej.2013.67] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 11/08/2022]
Abstract
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.
Collapse
|
108
|
Schoenfeld TW, Murugapiran SK, Dodsworth JA, Floyd S, Lodes M, Mead DA, Hedlund BP. Lateral gene transfer of family A DNA polymerases between thermophilic viruses, aquificae, and apicomplexa. Mol Biol Evol 2013; 30:1653-64. [PMID: 23608703 DOI: 10.1093/molbev/mst078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa.
Collapse
|
109
|
Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci U S A 2013; 110:5504-9. [PMID: 23520050 DOI: 10.1073/pnas.1300601110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfolobus turreted icosahedral virus (STIV) was isolated in acidic hot springs where it infects the archeon Sulfolobus solfataricus. We determined the STIV structure using near-atomic resolution electron microscopy and X-ray crystallography allowing tracing of structural polypeptide chains and visualization of transmembrane proteins embedded in the viral membrane. We propose that the vertex complexes orchestrate virion assembly by coordinating interactions of the membrane and various protein components involved. STIV shares the same coat subunit and penton base protein folds as some eukaryotic and bacterial viruses, suggesting that they derive from a common ancestor predating the divergence of the three kingdoms of life. One architectural motif (β-jelly roll fold) forms virtually the entire capsid (distributed in three different gene products), indicating that a single ancestral protein module may have been at the origin of its evolution.
Collapse
|
110
|
T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes. J Virol 2013; 87:5926-36. [PMID: 23514883 DOI: 10.1128/jvi.00458-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While studying the gene expression of the Sulfolobus spindle-shaped virus 1 (SSV1) in Sulfolobus solfataricus lysogenic cells, a novel viral transcript (T(lys)) was identified. Transcriptional analysis revealed that T(lys) is expressed only in the absence of UV irradiation and is downregulated during the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and T(ind)) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and T(ind) transcripts, as well as of its own promoter. Binding sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the T(ind) promoter. Taking together the transcriptional analysis data and the biochemical evidences, we surmise that the protein F55 is involved in the regulation of the lysogenic state of SSV1.
Collapse
|
111
|
Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 2013; 39:301-25. [PMID: 23860875 PMCID: PMC3662409 DOI: 10.1007/s10867-013-9314-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/17/2022] Open
Abstract
Physical virology seeks to define the principles of physics underlying viral infections, traditionally focusing on the fundamental processes governing virus assembly, maturation, and disassembly. A detailed understanding of virus structure and assembly has facilitated the development and analysis of virus-based materials for medical applications. In this Physical Virology review article, we discuss the recent developments in nanomedicine that help us to understand how physical properties affect the in vivo fate and clinical impact of (virus-based) nanoparticles. We summarize and discuss the design rules that need to be considered for the successful development and translation of virus-based nanomaterials from bench to bedside.
Collapse
Affiliation(s)
- Amy M. Wen
- />Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Pooja H. Rambhia
- />Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Roger H. French
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Nicole F. Steinmetz
- />Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
112
|
A survey of protein structures from archaeal viruses. Life (Basel) 2013; 3:118-30. [PMID: 25371334 PMCID: PMC4187194 DOI: 10.3390/life3010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/17/2022] Open
Abstract
Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight.
Collapse
|
113
|
Genome sequence of a novel archaeal rudivirus recovered from a mexican hot spring. GENOME ANNOUNCEMENTS 2013; 1:genomeA00040-12. [PMID: 23405288 PMCID: PMC3569270 DOI: 10.1128/genomea.00040-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
Abstract
We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico.
Collapse
|
114
|
Pietilä MK, Atanasova NS, Oksanen HM, Bamford DH. Modified coat protein forms the flexible spindle-shaped virion of haloarchaeal virus His1. Environ Microbiol 2012; 15:1674-86. [PMID: 23163639 DOI: 10.1111/1462-2920.12030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022]
Abstract
Extremophiles are found in all three domains of cellular life. However, hyperthermic and hypersaline environments are typically dominated by archaeal cells which also hold the records for the highest growth temperature and are able to grow even at saturated salinity. Hypersaline environments are rich of virus-like particles, and spindle-shaped virions resembling lemons are one of the most abundant virus morphotypes. Spindle-shaped viruses are archaea-specific as all the about 15 such virus isolates infect either hyperthermophilic or halophilic archaea. In the present work, we studied spindle-shaped virus His1 infecting an extremely halophilic euryarchaeon, Haloarcula hispanica. We demonstrate that His1 tolerates a variety of salinities, even lower than that of seawater. The detailed analysis of the structural constituents showed that the His1 virion is composed of only one major and a few minor structural proteins. There is no lipid bilayer in the His1 virion but the major structural protein VP21 is most likely lipid modified. VP21 forms the virion capsid, and the lipid modification probably enables hydrophobic interactions leading to the flexible nature of the virion. Furthermore, we propose that euryarchaeal virus His1 may be related to crenarchaeal fuselloviruses, and that the short-tailed spindle-shaped viruses could form a structure-based viral lineage.
Collapse
Affiliation(s)
- Maija K Pietilä
- Institute of Biotechnology, University of Helsinki, PO Box 56, Viikinkaari 5, Helsinki 00014, Finland
| | | | | | | |
Collapse
|
115
|
Ceballos RM, Marceau CD, Marceau JO, Morris S, Clore AJ, Stedman KM. Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments. Front Microbiol 2012; 3:295. [PMID: 22936928 PMCID: PMC3426928 DOI: 10.3389/fmicb.2012.00295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 01/21/2023] Open
Abstract
An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs), are “lemon” or “spindle”-shaped double-stranded DNA viruses, which are also found worldwide. Although a few studies have addressed the host-range for the type virus, Sulfolobus Spindle-shaped Virus 1 (SSV1), using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH) and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A spot-on-lawn or “halo” assay was employed to determine SSV infectivity (and host susceptibility) in parallel challenges of multiple SSVs on a lawn of a single Sulfolobus strain. Different SSVs have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, geography does not appear to be a reliable predictor of Sulfolobus susceptibility to infection by any given SSV. The ability for SSVs to infect susceptible Sulfolobus host does not appear to change between 65°C and 88°C (physiological range); however, very low pH appears to influence infection. Lastly, for the virus-host pairs tested the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host coevolution in extreme ecosystems.
Collapse
Affiliation(s)
- Ruben M Ceballos
- Native American Research Laboratory, Division of Science and Mathematics, The University of Minnesota Morris, MN, USA
| | | | | | | | | | | |
Collapse
|
116
|
Forterre P. Darwin's goldmine is still open: variation and selection run the world. Front Cell Infect Microbiol 2012; 2:106. [PMID: 22919695 PMCID: PMC3417645 DOI: 10.3389/fcimb.2012.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/21/2012] [Indexed: 01/02/2023] Open
Abstract
The scientific contribution of Darwin, still agonized in many religious circles, has now been recognized and celebrated by scientists from various disciplines. However, in recent years, several evolutionists have criticized Darwin as outdated, arguing that "Darwinism," assimilated to the "tree of life," cannot explain microbial evolution, or else was not operating in early life evolution. These critics either confuse "Darwinism" and old versions of "neo-Darwinism" or misunderstand the role of gene transfers in evolution. The core of Darwin explanation of evolution (variation/selection) remains necessary and sufficient to decipher the history of life. The enormous diversity of mechanisms underlying variations has been successfully interpreted by evolutionists in this framework and has considerably enriched the corpus of evolutionary biology without the necessity to kill the father. However, it remains for evolutionists to acknowledge interactions between cells and viruses (unknown for Darwin) as a major driving force in life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut PasteurParis, France
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR8621Orsay Cedex, France
| |
Collapse
|
117
|
Erdmann S, Garrett RA. Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol Microbiol 2012; 85:1044-56. [PMID: 22834906 PMCID: PMC3468723 DOI: 10.1111/j.1365-2958.2012.08171.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central to the disparate adaptive immune systems of archaea and bacteria are clustered regularly interspaced short palindromic repeats (CRISPR). The spacer regions derive from invading genetic elements and, via RNA intermediates and associated proteins, target and cleave nucleic acids of the invader. Here we demonstrate the hyperactive uptake of hundreds of unique spacers within CRISPR loci associated with type I and IIIB immune systems of a hyperthermophilic archaeon. Infection with an environmental virus mixture resulted in the exclusive uptake of protospacers from a co-infecting putative conjugative plasmid. Spacer uptake occurred by two distinct mechanisms in only one of two CRISPR loci subfamilies present. In two loci, insertions, often multiple, occurred adjacent to the leader while in a third locus single spacers were incorporated throughout the array. Protospacer DNAs were excised from the invading genetic element immediately after CCN motifs, on either strand, with the secondary cut apparently produced by a ruler mechanism. Over a 10-week period, there was a gradual decrease in the number of wild-type cells present in the culture but the virus and putative conjugative plasmid were still propagating. The results underline the complex dynamics of CRISPR-based immune systems within a population infected with genetic elements.
Collapse
Affiliation(s)
- Susanne Erdmann
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
118
|
Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc Natl Acad Sci U S A 2012; 109:13386-91. [PMID: 22826255 DOI: 10.1073/pnas.1203668109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Known viruses build their particles using a restricted number of redundant structural solutions. Here, we describe the Aeropyrum coil-shaped virus (ACV), of the hyperthermophilic archaeon Aeropyrum pernix, with a virion architecture not previously observed in the viral world. The nonenveloped, hollow, cylindrical virion is formed from a coiling fiber, which consists of two intertwining halves of a single circular nucleoprotein. The virus ACV is also exceptional for its genomic properties. It is the only virus with a single-stranded (ss) DNA genome among the known hyperthermophilic archaeal viruses. Moreover, the size of its circular genome, 24,893 nt, is double that of the largest known ssDNA genome, suggesting an efficient solution for keeping ssDNA intact at 90-95 °C, the optimal temperature range of A. pernix growth. The genome content of ACV is in line with its unique morphology and confirms that ACV is not closely related to any known virus.
Collapse
|
119
|
Zhang Z, Liu Y, Wang S, Yang D, Cheng Y, Hu J, Chen J, Mei Y, Shen P, Bamford DH, Chen X. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 2012; 434:233-41. [PMID: 22784791 DOI: 10.1016/j.virol.2012.05.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
A temperate haloarchaeal virus, SNJ1, was induced from the lysogenic host, Natrinema sp. J7-1, with mitomycin C, and the virus produced plaques on lawns of Natrinema sp. J7-2. Optimization of the induction conditions allowed us to increase the titer from ~10(4) PFU/ml to ~10(11) PFU/ml. Single-step growth curves exhibited a burst size of ~100 PFU/cell. The genome of SNJ1 was observed to be a circular, double-stranded DNA (dsDNA) molecule (16,341 bp). Surprisingly, the sequence of SNJ1 was identical to that of a previously described plasmid, pHH205, indicating that this plasmid is the provirus of SNJ1. Several structural protein-encoding genes were identified in the viral genome. In addition, the comparison of putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses, as well as the presence of lipid constituents from the host phospholipid pool, strongly suggest that SNJ1 belongs to the PRD1-type lineage of dsDNA viruses, which have an internal membrane.
Collapse
Affiliation(s)
- Ziqian Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.
Collapse
|
121
|
Hyman P, Abedon ST. Smaller fleas: viruses of microorganisms. SCIENTIFICA 2012; 2012:734023. [PMID: 24278736 PMCID: PMC3820453 DOI: 10.6064/2012/734023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 05/31/2023]
Abstract
Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category-bacterial, archaeal, fungal, and protist-with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, 1680 University Dr., Mansfield, OH 44906, USA
| |
Collapse
|
122
|
Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat. ISME JOURNAL 2012; 6:2119-27. [PMID: 22648129 DOI: 10.1038/ismej.2012.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.
Collapse
|
123
|
Peng X, Garrett RA, She Q. Archaeal viruses--novel, diverse and enigmatic. SCIENCE CHINA-LIFE SCIENCES 2012; 55:422-33. [PMID: 22645086 DOI: 10.1007/s11427-012-4325-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 01/28/2023]
Abstract
Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.
Collapse
Affiliation(s)
- Xu Peng
- Archaea Centre, Department of Biology, Copenhagen University, Copenhagen N, Denmark.
| | | | | |
Collapse
|
124
|
Huang L. Unveiling the beauty of Archaea. SCIENCE CHINA. LIFE SCIENCES 2012; 55:375-6. [PMID: 22645081 DOI: 10.1007/s11427-012-4323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Indexed: 11/30/2022]
|
125
|
Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC, Horvath P, Barrangou R, Gilmore MS, Getz WM, Banfield JF. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol 2012; 8:e1002475. [PMID: 22532794 PMCID: PMC3330103 DOI: 10.1371/journal.pcbi.1002475] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022] Open
Abstract
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This 'trailer-end conservation' occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. 'Trailer-end clonality' occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining 'trailer-end conservation,' we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.
Collapse
Affiliation(s)
- Ariel D. Weinberger
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Departments of Ophthalmology and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine L. Sun
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Mateusz M. Pluciński
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Vincent J. Denef
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Brian C. Thomas
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | | | - Rodolphe Barrangou
- DuPont Nutrition and Health, Madison, Wisconsin, United States of America
| | - Michael S. Gilmore
- Departments of Ophthalmology and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Microbial Sciences Initiative, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wayne M. Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| |
Collapse
|
126
|
Abstract
Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.
Collapse
|
127
|
Schlenker C, Goel A, Tripet BP, Menon S, Willi T, Dlakić M, Young MJ, Lawrence CM, Copié V. Structural studies of E73 from a hyperthermophilic archaeal virus identify the "RH3" domain, an elaborated ribbon-helix-helix motif involved in DNA recognition. Biochemistry 2012; 51:2899-910. [PMID: 22409376 PMCID: PMC3326356 DOI: 10.1021/bi201791s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperthermophilic archaeal viruses, including Sulfolobus spindle-shaped viruses (SSVs) such as SSV-1 and SSV-Ragged Hills, exhibit remarkable morphology and genetic diversity. However, they remain poorly understood, in part because their genomes exhibit limited or unrecognizable sequence similarity to genes with known function. Here we report structural and functional studies of E73, a 73-residue homodimeric protein encoded within the SSV-Ragged Hills genome. Despite lacking significant sequence similarity, the nuclear magnetic resonance (NMR) structure reveals clear similarity to ribbon-helix-helix (RHH) domains present in numerous proteins involved in transcriptional regulation. In vitro double-stranded DNA (dsDNA) binding experiments confirm the ability of E73 to bind dsDNA in a nonspecific manner with micromolar affinity, and characterization of the K11E variant confirms the location of the predicted DNA binding surface. E73 is distinct, however, from known RHH domains. The RHH motif is elaborated upon by the insertion of a third helix that is tightly integrated into the structural domain, giving rise to the "RH3" fold. Within the homodimer, this helix results in the formation of a conserved, symmetric cleft distal to the DNA binding surface, where it may mediate protein-protein interactions or contribute to the high thermal stability of E73. Analysis of backbone amide dynamics by NMR provides evidence of a rigid core, fast picosecond to nanosecond time scale NH bond vector motions for residues located within the antiparallel β-sheet region of the proposed DNA-binding surface, and slower microsecond to millisecond time scale motions for residues in the α1-α2 loop. The roles of E73 and its SSV homologues in the viral life cycle are discussed.
Collapse
Affiliation(s)
- Casey Schlenker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Anupam Goel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Brian P. Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Smita Menon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Taylor Willi
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, MT 59717
| | - Mark J. Young
- Department of Microbiology, Montana State University, Bozeman, MT 59717
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| |
Collapse
|
128
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
129
|
Fu CY, Johnson JE. Structure and cell biology of archaeal virus STIV. Curr Opin Virol 2012; 2:122-7. [PMID: 22482708 DOI: 10.1016/j.coviro.2012.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/21/2012] [Accepted: 01/29/2012] [Indexed: 11/28/2022]
Abstract
Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interactions. Reliable laboratory conditions to propagate STIV and available genetic tools allowed structural characterization of the virus and viral components that lead to the proposal of common capsid ancestry with PRD1 (bacteriophage), Adenovirus (eukaryotic virus) and PBCV (chlorellavirus). Microarray and proteomics approaches systematically analyzed viral replication and the corresponding host responses. Cellular cryo-electron tomography and thin-section EM studies uncovered the assembly and maturation pathway of STIV and revealed dramatic cellular ultra-structure changes upon infection. The viral-induced pyramid-like protrusions on cell surfaces represent a novel viral release mechanism and previously uncharacterized functions in viral replication.
Collapse
Affiliation(s)
- Chi-yu Fu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
130
|
Deng L, Kenchappa CS, Peng X, She Q, Garrett RA. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res 2012; 40:2470-80. [PMID: 22139923 PMCID: PMC3315313 DOI: 10.1093/nar/gkr1111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 11/29/2022] Open
Abstract
CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system. Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism is that it minimizes interference from potential transcriptional signals carried on spacers deriving from A-T-rich genetic elements and, occasionally, on DNA repeats. Supporting evidence is provided by microarray and northern blotting analyses, and publicly available whole-transcriptome data for S. solfataricus P2.
Collapse
Affiliation(s)
| | | | | | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N Copenhagen K, Denmark
| | - Roger A. Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N Copenhagen K, Denmark
| |
Collapse
|
131
|
A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci U S A 2012; 109:2037-42. [PMID: 22308387 DOI: 10.1073/pnas.1115467109] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.
Collapse
|
132
|
A new proposed taxon for double-stranded DNA viruses, the order “Ligamenvirales”. Arch Virol 2012; 157:791-5. [DOI: 10.1007/s00705-012-1229-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
|
133
|
DuBow MS, Prestel E, Regeard C, Andrews J, Oger P. A Novel Bacteriophage Morphotype with a Ribbon-like Structure at the Tail Extremity. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jm.2012.75.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
134
|
Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 2011; 14:503-16. [PMID: 22151304 DOI: 10.1111/j.1462-2920.2011.02662.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a novel virus, TPV1 (Thermococcus prieurii virus 1), which was discovered in a hyperthermophilic euryarchaeote isolated from a deep-sea hydrothermal chimney sample collected at a depth of 2700 m at the East Pacific Rise. TPV1 is the first virus isolated and characterized from the hyperthermophilic euryarchaeal genus Thermococcus. TPV1 particles have a lemon-shaped morphology (140 nm × 80 nm) similar to the structures previously reported for Fuselloviruses and for the unclassified virus-like particle PAV1 (Pyrococcus abyssi virus 1). The infection with TPV1 does not cause host lysis and viral replication can be induced by UV irradiation. TPV1 contains a double-stranded circular DNA of 21.5 kb, which is also present in high copy number in a free form in the host cell. The TPV1 genome encompasses 28 predicted genes; the protein sequences encoded in 16 of these genes show no significant similarity to proteins in public databases. Proteins predicted to be involved in genome replication were identified as well as transcriptional regulators. TPV1 encodes also a predicted integrase of the tyrosine recombinase family. The only two genes that are homologous between TPV1 and PAV1 are TPV1-22 and TPV1-23, which encode proteins containing a concanavalin A-like lectin/glucanase domain that might be involved in virus-host recognition.
Collapse
Affiliation(s)
- Aurore Gorlas
- Laboratory of Microbiology of Extreme Environments, UMR 6197/CNRS/UBO IUEM, Place Nicolas Copernic, Technopôle Brest Iroise Plouzane, France
| | | | | | | | | |
Collapse
|
135
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
136
|
Gao Y, Luo L. Genome-based phylogeny of dsDNA viruses by a novel alignment-free method. Gene 2011; 492:309-14. [PMID: 22100880 DOI: 10.1016/j.gene.2011.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/19/2011] [Accepted: 11/01/2011] [Indexed: 12/25/2022]
Abstract
Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain "unclassified" viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification.
Collapse
Affiliation(s)
- Yang Gao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | | |
Collapse
|
137
|
Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM. Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 2011; 14:426-40. [PMID: 22003883 DOI: 10.1111/j.1462-2920.2011.02603.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypersaline environments are dominated by archaea and bacteria and are almost entirely devoid of eukaryotic organisms. In addition, hypersaline environments contain considerable numbers of viruses. Currently, there is only a limited amount of information about these haloviruses. The ones described in detail mostly resemble head-tail bacteriophages, whereas observations based on direct microscopy of the hypersaline environmental samples highlight the abundance of non-tailed virus-like particles. Here we studied nine spatially distant hypersaline environments for the isolation of new halophilic archaea (61 isolates), halophilic bacteria (24 isolates) and their viruses (49 isolates) using a culture-dependent approach. The obtained virus isolates approximately double the number of currently described archaeal viruses. The new isolates could be divided into three tailed and two non-tailed virus morphotypes, suggesting that both types of viruses are widely distributed and characteristic for haloarchaeal viruses. We determined the sensitivity of the hosts against all isolated viruses. It appeared that the host ranges of numerous viruses extend to hosts in distant locations, supporting the idea that there is a global exchange of microbes and their viruses. It suggests that hypersaline environments worldwide function like a single habitat.
Collapse
Affiliation(s)
- Nina S Atanasova
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 5, Helsinki, Finland
| | | | | | | | | |
Collapse
|
138
|
AAA ATPase p529 of Acidianus two-tailed virus ATV and host receptor recognition. Virology 2011; 421:61-6. [PMID: 21982819 DOI: 10.1016/j.virol.2011.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
Abstract
The two structural domains of p529, a predicted AAA ATPase of Acidianus two-tailed virus (ATV), were expressed and purified. The N-terminal domain was demonstrated by loss-of-function mutations to carry ATPase activity with a temperature optimum of 60°C. This domain also showed DNA binding activity that was stronger for the whole protein and was weakened in the presence of ATP. The C-terminal domain exhibits Mg(2+)-dependent endonuclease activity that was eliminated by site-directed mutagenesis at a conserved catalytic PD…D/ExK motif. p529 pull-down experiments with cell extracts of Sulfolobus solfataricus demonstrated a specific interaction with Sso1273, corresponding to OppA(Ss), an N-linked glycoprotein that specifically binds oligopeptides. The sso1273 gene lies in an operon encoding an oligopeptide/dipeptide ABC transporter system. It is proposed that p529 is involved in ATV-host cell receptor recognition and possibly the endonuclease activity is required for cleavage of the circular viral DNA prior to cell entry.
Collapse
|
139
|
Mochizuki T, Sako Y, Prangishvili D. Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J Bacteriol 2011; 193:5412-9. [PMID: 21784945 PMCID: PMC3187419 DOI: 10.1128/jb.05101-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/28/2011] [Indexed: 01/29/2023] Open
Abstract
By in silico analysis, we have identified two putative proviruses in the genome of the hyperthermophilic archaeon Aeropyrum pernix, and under special conditions of A. pernix growth, we were able to induce their replication. Both viruses were isolated and characterized. Negatively stained virions of one virus appeared as pleomorphic spindle-shaped particles, 180 to 210 nm by 40 to 55 nm, with tails of heterogeneous lengths in the range of 0 to 300 nm. This virus was named Aeropyrum pernix spindle-shaped virus 1 (APSV1). Negatively stained virions of the other virus appeared as slightly irregular oval particles with one pointed end, while in cryo-electron micrographs, the virions had a regular oval shape and uniform size (70 by 55 nm). The virus was named Aeropyrum pernix ovoid virus 1 (APOV1). Both viruses have circular, double-stranded DNA genomes of 38,049 bp for APSV1 and 13,769 bp for APOV1. Similarities to proteins of other archaeal viruses were limited to the integrase and Dna1-like protein. We propose to classify APOV1 into the family Guttaviridae.
Collapse
Affiliation(s)
- Tomohiro Mochizuki
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
140
|
Garrett RA, Vestergaard G, Shah SA. Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 2011; 19:549-56. [PMID: 21945420 DOI: 10.1016/j.tim.2011.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence for exchange of functional modules between archaeal systems that is likely to contribute to their diversity, particularly of their nucleic acid targeting and cleavage functions. The molecular constraints that limit such exchange are considered. We also summarize mechanisms underlying the dynamic nature of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
141
|
Advances in understanding archaea-virus interactions in controlled and natural environments. Curr Opin Microbiol 2011; 14:497-503. [PMID: 21821465 DOI: 10.1016/j.mib.2011.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/10/2011] [Accepted: 07/05/2011] [Indexed: 11/21/2022]
Abstract
Our understanding of host-virus interactions in archaeal systems generally lags behind our knowledge of host-virus interactions in bacterial and eukaryotic systems. This is due to the limited number of archaeal host-virus systems available for study under laboratory conditions, as well as the absence of diseases known to be caused by archaea. However, in recent years there has been a rapid expansion of our understanding of archaeal host-virus interactions combining traditional genetic and biochemical approaches with 'omics' based approaches in both laboratory and natural environmental studies. We highlight here the emerging features of host-virus interactions in archaea with a particular emphasis on host-virus interactions gathered from the study of archaeal viruses from high temperature acidic thermal environments.
Collapse
|
142
|
Serwer P. Proposed ancestors of phage nucleic acid packaging motors (and cells). Viruses 2011; 3:1249-80. [PMID: 21994778 PMCID: PMC3185796 DOI: 10.3390/v3071249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
143
|
The Prevalence of STIV c92-Like Proteins in Acidic Thermal Environments. Adv Virol 2011; 2011:650930. [PMID: 22312348 PMCID: PMC3265310 DOI: 10.1155/2011/650930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/23/2011] [Indexed: 11/25/2022] Open
Abstract
A new type of viral-induced lysis system has recently been discovered for two unrelated archaeal viruses, STIV and SIRV2. Prior to the lysis of the infected host cell, unique pyramid-like lysis structures are formed on the cell surface by the protrusion of the underlying cell membrane through the overlying external S-layer. It is through these pyramid structures that assembled virions are released during lysis. The STIV viral protein c92 is responsible for the formation of these lysis structures. We searched for c92-like proteins in viral sequences present in multiple viral and cellular metagenomic libraries from Yellowstone National Park acidic hot spring environments. Phylogenetic analysis of these proteins demonstrates that, although c92-like proteins are detected in these environments, some are quite divergent and may represent new viral families. We hypothesize that this new viral lysis system is common within diverse archaeal viral populations found within acidic hot springs.
Collapse
|
144
|
Krupovic M, Bamford DH. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol 2011; 1:118-24. [PMID: 22440622 DOI: 10.1016/j.coviro.2011.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 02/03/2023]
Abstract
The number of viral particles in the biosphere is enormous. Virus classification helps to comprehend the virosphere and to understand the relationship between different virus groups. However, the evolutionary reach of the currently employed sequence-based approaches in virus taxonomy is rather limited, producing a fragmented view of the virosphere. As a result, viruses are currently classified into 87 different families. However, studies on virion architectures have unexpectedly revealed that their structural diversity is far more limited. Here we describe structures of the major capsid proteins of double-stranded DNA viruses infecting hosts residing in different domains of life. We note that viruses belonging to 20 different families fall into only five distinct structural groups, suggesting that optimal virus classification approach should equally rely on both sequence and structural information.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris, France.
| | | |
Collapse
|
145
|
Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl Environ Microbiol 2011; 77:5071-8. [PMID: 21685165 DOI: 10.1128/aem.00726-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 10 years ago, a new family of cell wall-deficient, iron-oxidizing archaea, Ferroplasmaceae, within the large archaeal phylum Euryarchaeota, was described. In this minireview, I summarize the research progress achieved since then and report on the current status of taxonomy, biogeography, physiological diversity, biochemistry, and other research areas involving this exciting group of acidophilic archaea.
Collapse
|
146
|
Gardner AF, Prangishvili D, Jack WE. Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease. Extremophiles 2011; 15:619-24. [PMID: 21667093 PMCID: PMC3158340 DOI: 10.1007/s00792-011-0385-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/26/2011] [Indexed: 10/25/2022]
Abstract
The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg(2+) for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.
Collapse
|
147
|
Abstract
Since their discovery in the early 1980s, viruses that infect the third domain of life, the Archaea, have captivated our attention because of their virions' unusual morphologies and proteins, which lack homologues in extant databases. Moreover, the life cycles of these viruses have unusual features, as revealed by the recent discovery of a novel virus egress mechanism that involves the formation of specific pyramidal structures on the host cell surface. The available data elucidate the particular nature of the archaeal virosphere and shed light on questions concerning the origin and evolution of viruses and cells. In this review, we summarize the current knowledge of archeoviruses, their interaction with hosts and plasmids and their role in the evolution of life.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | | | | |
Collapse
|
148
|
Development of a genetic system for the archaeal virus Sulfolobus turreted icosahedral virus (STIV). Virology 2011; 415:6-11. [DOI: 10.1016/j.virol.2011.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/20/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
149
|
Abstract
Despite recent advances in our understanding of diverse aspects of virus evolution, particularly on the epidemiological scale, revealing the ultimate origins of viruses has proven to be a more intractable problem. Herein, I review some current ideas on the evolutionary origins of viruses and assess how well these theories accord with what we know about the evolution of contemporary viruses. I note the growing evidence for the theory that viruses arose before the last universal cellular ancestor (LUCA). This ancient origin theory is supported by the presence of capsid architectures that are conserved among diverse RNA and DNA viruses and by the strongly inverse relationship between genome size and mutation rate across all replication systems, such that pre-LUCA genomes were probably both small and highly error prone and hence RNA virus-like. I also highlight the advances that are needed to come to a better understanding of virus origins, most notably the ability to accurately infer deep evolutionary history from the phylogenetic analysis of conserved protein structures.
Collapse
Affiliation(s)
- Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park,Pennsylvania 16802, USA.
| |
Collapse
|
150
|
Prangishvili D, Quax TEF. Exceptional virion release mechanism: one more surprise from archaeal viruses. Curr Opin Microbiol 2011; 14:315-20. [DOI: 10.1016/j.mib.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|