101
|
Identification of substrate-specific inhibitors of cathepsin K through high-throughput screening. Biochem J 2019; 476:499-512. [DOI: 10.1042/bcj20180851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Cathepsin K (CatK) is a cysteine protease and drug target for skeletal disorders that is known for its potent collagenase and elastase activity. The formation of oligomeric complexes of CatK in the presence of glycosaminoglycans has been associated with its collagenase activity. Inhibitors that disrupt these complexes can selectively block the collagenase activity without interfering with the other regulatory proteolytic activities of the enzyme. Here, we have developed a fluorescence polarization (FP) assay to screen 4761 compounds for substrate-specific ectosteric collagenase inhibitors of CatK. A total of 38 compounds were identified that block the collagenase activity without interfering with the hydrolysis of active site substrates such as the synthetic peptide substrate, benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin, and gelatin. The identified inhibitors can be divided into two main classes, negatively charged and polyaromatic compounds which suggest the binding to different ectosteric sites. Two of the inhibitors were highly effective in preventing the bone-resorption activity of CatK in osteoclasts. Interestingly, some of the ectosteric inhibitors were capable of differentiating between the collagenase and elastase activity of CatK depending on the ectosteric site utilized by the compound. Owing to their substrate-specific selectivity, ectosteric inhibitors represent a viable alternative to side effect-prone active site-directed inhibitors.
Collapse
|
102
|
Li M, Wan P, Wang W, Yang K, Zhang Y, Han Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci Rep 2019; 9:933. [PMID: 30700724 PMCID: PMC6353919 DOI: 10.1038/s41598-018-37091-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023] Open
Abstract
Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as peri-prosthetic osteolysis. In this study, our objective was to study the role of zoledronic acid (ZA), as a highly potent and nitrogen-containing bisphosphonate, in promoting osteogenesis and inhibiting osteoclastogenesis properties of magnesium (Mg)-based implants. ZA was chemically associated with calcium phosphate (CaP) deposited on magnesium-strontium (Mg-Sr) alloy, which was confirmed by the morphological observation, phase composition and drug releasing via SEM, XRD spectrum and High Performance Liquid Chromatography (HPLC), respectively. The in vitro performances indicated that ZA-CaP bilayer coating Mg-Sr alloy could enhance the proliferation and the osteogenic differentiation as well as the mineralization of pre-osteoblasts, however, induce the apoptosis and inhibit the osteoclast differentiation. We further investigated the possible molecular mechanisms by using Quantitative real-time PCR (qRT-PCR) and Western Blotting, and the results showed that ZA-CaP bilayer coating Mg-Sr alloy could regulate the osteogenesis and osteoclastogenesis through the Estrogen Receptor α (ERα) and NF-κB signaling pathway. Moreover, ZA-CaP bilayer coating Mg-Sr alloy could regulate the cross talk of osteoblast-osteoclast and increase the ratio of OPG: RANKL in the co-culture system through OPG/RANKL/RANK signaling pathway, which promoting the balance of bone remodeling process. Therefore, these promising results suggest the potential clinical applications of ZA pretreated Mg-Sr alloys for bone defect repairs and periprosthetical osteolysis due to the excessive differentitation and maturation of osteoclasts.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Peng Wan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Weidan Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
103
|
Abstract
Patients with Rheumatoid Arthritis (RA) commonly develop osteoporosis and fragility fractures. This fact cannot be explained only with the use of glucocorticoids, known to be detrimental for bone health. RA is characterized by a chronic inflammation caused by the continuous activation of innate and adaptive immunity with proinflammatory cytokines overproduction. This process is detrimental for several organs and physiological processes, including the impairment of bone remodeling. We will briefly review the pathogenesis of inflammation-related bone loss in RA, describing well-known and new molecular pathways and focusing on vitamin D and Parathyroid Hormone role.
Collapse
|
104
|
Pohl S, Angermann A, Jeschke A, Hendrickx G, Yorgan TA, Makrypidi-Fraune G, Steigert A, Kuehn SC, Rolvien T, Schweizer M, Koehne T, Neven M, Winter O, Velho RV, Albers J, Streichert T, Pestka JM, Baldauf C, Breyer S, Stuecker R, Muschol N, Cox TM, Saftig P, Paganini C, Rossi A, Amling M, Braulke T, Schinke T. The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover. J Bone Miner Res 2018; 33:2186-2201. [PMID: 30075049 DOI: 10.1002/jbmr.3563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 06/20/2018] [Indexed: 12/24/2022]
Abstract
Skeletal pathologies are frequently observed in lysosomal storage disorders, yet the relevance of specific lysosomal enzymes in bone remodeling cell types is poorly defined. Two lysosomal enzymes, ie, cathepsin K (Ctsk) and Acp5 (also known as tartrate-resistant acid phosphatase), have long been known as molecular marker proteins of differentiated osteoclasts. However, whereas the cysteine protease Ctsk is directly involved in the degradation of bone matrix proteins, the molecular function of Acp5 in osteoclasts is still unknown. Here we show that Acp5, in concert with Acp2 (lysosomal acid phosphatase), is required for dephosphorylation of the lysosomal mannose 6-phosphate targeting signal to promote the activity of specific lysosomal enzymes. Using an unbiased approach we identified the glycosaminoglycan-degrading enzyme arylsulfatase B (Arsb), mutated in mucopolysaccharidosis type VI (MPS-VI), as an osteoclast marker, whose activity depends on dephosphorylation by Acp2 and Acp5. Similar to Acp2/Acp5-/- mice, Arsb-deficient mice display lysosomal storage accumulation in osteoclasts, impaired osteoclast activity, and high trabecular bone mass. Of note, the most prominent lysosomal storage accumulation was observed in osteocytes from Arsb-deficient mice, yet this pathology did not impair production of sclerostin (Sost) and Fgf23. Because the influence of enzyme replacement therapy (ERT) on bone remodeling in MPS-VI is still unknown, we additionally treated Arsb-deficient mice by weekly injection of recombinant human ARSB from 12 to 24 weeks of age. We found that the high bone mass phenotype of Arsb-deficient mice and the underlying bone cell deficits were fully corrected by ERT in the trabecular compartment. Taken together, our results do not only show that the function of Acp5 in osteoclasts is linked to dephosphorylation and activation of lysosomal enzymes, they also provide an important proof-of-principle for the feasibility of ERT to correct bone cell pathologies in lysosomal storage disorders. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra Angermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Steigert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja C Kuehn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Winter
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Voltolini Velho
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Albers
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Hospital Cologne, Cologne, Germany
| | - Jan M Pestka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Baldauf
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Breyer
- Department of Orthopedics, Children's Hospital Hamburg-Altona, Hamburg, Germany
| | - Ralf Stuecker
- Department of Orthopedics, Children's Hospital Hamburg-Altona, Hamburg, Germany
| | - Nicole Muschol
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Chiara Paganini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
105
|
Pišlar A, Jewett A, Kos J. Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Semin Cancer Biol 2018; 53:168-177. [DOI: 10.1016/j.semcancer.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
|
106
|
Inhibitory effects of low intensity pulsed ultrasound on osteoclastogenesis induced in vitro by breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:197. [PMID: 30126457 PMCID: PMC6102871 DOI: 10.1186/s13046-018-0868-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Background Bone tissue is one of the main sites for breast metastasis; patients diagnosed with advanced breast cancer mostly develop bone metastasis characterized by severe osteolytic lesions, which heavily influence their life quality. Low Intensity Pulsed Ultrasound (LIPUS) is a form of mechanical energy able to modulate various molecular pathways both in cancer and in health cells. The purpose of the present study was to evaluate for the first time, the ability of LIPUS to modulate osteolytic capability of breast cancer cells. Methods Two different approaches were employed: a) Indirect method -conditioned medium obtained by MDA-MB-231 cell line treated or untreated with LIPUS was used to induce osteoclast differentiation of murine macrophage Raw264.7 cell line; and b) Direct method -MDA-MB-231 were co-cultured with Raw264.7 cells and treated or untreated with LIPUS. Results LIPUS treatment impaired MDA-MB-231 cell dependentosteoclast differentiation and produced a reduction of osteoclast markers such as Cathepsin K, Matrix Metalloproteinase 9 and Tartrate Resistant Acid Phosphatase, suggesting its role as an effective and safe adjuvant in bone metastasis management. Conclusion LIPUS treatment could be a good and safety therapeutic adjuvant in osteolyitic bone metastasis not only for the induction properties of bone regeneration, but also for the reduction of osteolysis.
Collapse
|
107
|
Yoshioka Y, Yamachika E, Nakanishi M, Ninomiya T, Nakatsuji K, Kobayashi Y, Fujii T, Iida S. Cathepsin K inhibitor causes changes in crystallinity and crystal structure of newly-formed mandibular bone in rats. Br J Oral Maxillofac Surg 2018; 56:732-738. [PMID: 30131193 DOI: 10.1016/j.bjoms.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/03/2018] [Indexed: 11/16/2022]
Abstract
Cathepsin K inhibitors are new drugs with the potential for the treatment of osteoporosis because they sustain bony remodelling better than bone resorption inhibitors such as bisphosphonates. The treatment of osteoporosis with inhibitors of bony resorption is associated with osteonecrosis of the jaw, as the deterioration in bony quality that they induce is thought to be one of its causes. The quality of bone is delineated by structural and material characteristics (which include the degree and quality of mineralisation, and depends on the content of proteoglycan and the structural integrity of the bony collagen).1,2 Animal and clinical studies have shown that cathepsin K inhibitors improve the mineral density and structural characteristics of bone, but their effect on the rest remains unknown. We therefore hypothesised that these inhibitors will affect the material characteristics of newly-formed mandibular bone. To verify our hypothesis, we used Raman microspectroscopy to examine such bone in rats that were given a cathepsin K inhibitor, and found unusual crystallinity and an increased substitution of carbonate (CO32-) in its crystal structure.
Collapse
Affiliation(s)
- Y Yoshioka
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City 700-8558, Japan
| | - E Yamachika
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama City 700-8558, Japan.
| | - M Nakanishi
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama City 700-8530, Japan
| | - T Ninomiya
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan
| | - K Nakatsuji
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City 700-8558, Japan
| | - Y Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan
| | - T Fujii
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama City 700-8530, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City 700-8558, Japan
| |
Collapse
|
108
|
Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers (Basel) 2018; 10:E182. [PMID: 29867053 PMCID: PMC6025347 DOI: 10.3390/cancers10060182] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
109
|
Walia B, Lingenheld E, Duong L, Sanjay A, Drissi H. A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair. Ann N Y Acad Sci 2018; 1415:57-68. [PMID: 29479711 DOI: 10.1111/nyas.13629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP+ ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk-/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk-/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk-/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk-/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk-/- mice.
Collapse
Affiliation(s)
- Bhavita Walia
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
| | | | - Le Duong
- Bone Biology Group, Merck Research Laboratories, West Point, Pennsylvania
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
110
|
Gennari L, Bilezikian JP. New and developing pharmacotherapy for osteoporosis in men. Expert Opin Pharmacother 2018; 19:253-264. [DOI: 10.1080/14656566.2018.1428559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luigi Gennari
- Department Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - John P. Bilezikian
- Medicine and Pharmacology, International Education and Research, Division of Endocrinology, Emeritus, Metabolic Bone Diseases Unit, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
111
|
Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol 2017; 5:898-907. [PMID: 28689769 PMCID: PMC5798872 DOI: 10.1016/s2213-8587(17)30188-2] [Citation(s) in RCA: 600] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Osteoporosis is an enormous and growing public health problem. Once considered an inevitable consequence of ageing, it is now eminently preventable and treatable. Ironically, despite tremendous therapeutic advances, there is an increasing treatment gap for patients at high fracture risk. In this Series paper, we trace the evolution of drug therapy for osteoporosis, which began in the 1940s with the demonstration by Fuller Albright that treatment with oestrogen could reverse the negative calcium balance that developed in women after menopause or oophorectomy. We note a watershed in osteoporosis drug discovery around the year 2000, when the approach to developing novel therapeutics shifted from one driven by discoveries in animal studies and clinical observations (eg, oestrogen, calcitonin, and teriparatide) or opportunistic repurposing of existing compounds (eg, bisphosphonates) to one driven by advances in fundamental bone biology (eg, denosumab) coupled with clues from patients with rare bone diseases (eg, romosozumab, odanacatib). Despite these remarkable advances, concerns about rare side-effects of anti-resorptive drugs, particularly bisphosphonates, and the absence of clear evidence in support of their long-term efficacy is leading many patients who could benefit from drug therapy to not take these drugs. As such, there remains an important clinical need to develop ways to enhance patient acceptance and compliance with these effective drugs, and to continue to develop new drugs that do not cause these side-effects and have prolonged anabolic effects on bone. Such changes could lead to a true reversal of this potentially devastating disease of ageing.
Collapse
Affiliation(s)
- Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Endocrine Research Unit, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Carl Gustav Carus University Hospital, Dresden Technical University, Dresden, Germany; Centre for Healthy Aging, Carl Gustav Carus University Hospital, Dresden Technical University, Dresden, Germany
| |
Collapse
|
112
|
Tatara Y, Suto S, Itoh K. Novel roles of glycosaminoglycans in the degradation of type I collagen by cathepsin K. Glycobiology 2017; 27:1089-1098. [DOI: 10.1093/glycob/cwx083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/02/2017] [Indexed: 11/14/2022] Open
|
113
|
Ye F, Zhou Q, Tian L, Lei F, Feng D. The protective effect of berberine hydrochloride on LPS‑induced osteoclastogenesis through inhibiting TRAF6‑Ca2+‑calcineurin‑NFATcl signaling pathway. Mol Med Rep 2017; 16:6228-6233. [PMID: 28849049 DOI: 10.3892/mmr.2017.7338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the protective effect of berberine hydrochloride on lipopolysaccharide (LPS) ‑induced acute bone destruction through inhibition of the TNF receptor associated factor 6 (TRAF6)‑Ca2+‑calcineurin‑nuclear factor of activated T‑cell 1 (NFATc1) signaling pathway. An osteoclast culture system of RAW264.7 cells induced by LPS in vitro was established. A polymerase chain reaction (PCR) assay was applied to determine the effect of berberine hydrochloride on the mRNA expression levels of fos‑related antigen 2 (Fra‑2), tartrate‑resistant acid phosphatase (TRAP), β3‑integrin, cathepsin K, dendritic cell‑specific transmembrane protein (DC‑STAMP), V‑type proton ATPase subunit d 2 (Atp6v0d2) and NFATcl. An ELISA assay was performed to measure the release of tumor necrosis factor‑α (TNF‑α). Western blot analysis was used to measure the effect of berberine hydrochloride on the expression of calcineurin in the LPS‑induced NFATc1 signaling pathway, as well as the expression levels of phosphoinositide phospholipase C‑γl (PLC‑γ1), toll like receptor 4 (TLR4) and TRAF6. The effect of berberine hydrochloride on Ca2+ concentration was detected using a confocal technique with a Flou‑3/acetoxymethyl ester Ca2+ probe. The PCR results demonstrated that berberine hydrochloride inhibited the mRNA expression levels of Fra‑2, TRAP, β3‑integrin, cathepsin K, DC‑STAMP, Atp6v0d2 and NFATc1. Furthermore, the ELISA results demonstrated that TNF‑α expression was decreased. The western blot analysis revelead that berberine hydrochloride treatment results in decreased expression levels of PLC‑γ1, TLR4 and TRAF6, and inhibition of Ca2+ influx. In conclusion, the results of the present study suggest that berberine hydrochloride targets TRAF6 and NFATc1, thus inhibiting osteoclastogenesis and bone destruction via inhibition of the TRAF6‑Ca2+‑calcineurin‑NFATcl signaling pathway.
Collapse
Affiliation(s)
- Fei Ye
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qingzhong Zhou
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Long Tian
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fei Lei
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Daxiong Feng
- Department of Orthopaedic, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
114
|
Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25:858-865. [PMID: 28087412 DOI: 10.1016/j.joca.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate serum biomarkers, tartrate resistant acid phosphatase 5b (TRAcP5b) and cathepsin K (cath-K), indicative of osteoclastic bone resorption, and their relationship to pain and pain change in knee osteoarthritis (OA). METHODS Sera and clinical data were collected from 129 people (97 with 3-year follow-up) with knee OA from the Prediction of Osteoarthritis Progression (POP) cohort. Knee OA-related outcomes in POP included: WOMAC pain, National Health and Nutrition Examination Survey (NHANES) I (pain, aching and stiffness), subchondral sclerosis, and radiographically determined tibiofemoral and patellofemoral OA. Two putative osteoclast biomarkers were measured in sera: TRAcP5b and cath-K. Medial tibia plateaux were donated at knee arthroplasty for symptomatic OA (n = 84) or from 16 post mortem (PM) controls from the Arthritis Research UK (ARUK) Pain Centre joint tissue repository. Osteoclasts were stained for tartrate resistant acid phosphatase (TRAcP) within the subchondral bone of the medial tibia plateaux. RESULTS Serum TRAcP5b activity, but not cath-K-immunoreactivity, was associated with density of TRAcP-positive osteoclasts in the subchondral bone of medial tibia plateaux. TRAcP-positive osteoclasts were more abundant in people with symptomatic OA compared to controls. Serum TRAcP5b activity was associated with baseline pain and pain change. CONCLUSIONS Our observations support a role for subchondral osteoclast activity in the generation of OA pain. Serum TRAcP5b might be a clinically relevant biomarker of disease activity in OA.
Collapse
|
115
|
Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C, Yin P, Yu X, Tang M. β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Life Sci 2017; 174:15-20. [DOI: 10.1016/j.lfs.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
116
|
Lewiecki EM, Bilezikian JP, Bukata SV, Camacho P, Clarke BL, McClung MR, Miller PD, Shepherd J. Proceedings of the 2016 Santa Fe Bone Symposium: New Concepts in the Management of Osteoporosis and Metabolic Bone Diseases. J Clin Densitom 2017; 20:134-152. [PMID: 28185765 DOI: 10.1016/j.jocd.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023]
Abstract
The Santa Fe Bone Symposium is an annual meeting of healthcare professionals and clinical researchers that details the clinical relevance of advances in knowledge of skeletal diseases. The 17th Santa Fe Bone Symposium was held in Santa Fe, New Mexico, USA, on August 5-6, 2016. The program included plenary lectures, oral presentations by endocrinology fellows, meet-the-professor sessions, and panel discussions, all aimed to provide ample opportunity for interactive discussions among all participants. Symposium topics included recent developments in the translation of basic bone science to patient care, new clinical practice guidelines for postmenopausal osteoporosis, management of patients with disorders of phosphate metabolism, new and emerging treatments for rare bone diseases, strategies to enhance fracture healing, and an update on Bone Health Extension for Community Healthcare Outcomes, using a teleconferencing platform to elevate the level of knowledge of healthcare professionals in underserved communities to deliver best practice care for skeletal diseases. The highlights and important clinical messages of the 2016 Santa Fe Bone Symposium are provided herein by each of the faculty presenters.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA.
| | - John P Bilezikian
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | - Pauline Camacho
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | | | | | - Paul D Miller
- Colorado Center for Bone Research at Centura Health, Lakewood, CO, USA
| | - John Shepherd
- Department of Radiology and Biochemical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
117
|
Abstract
Recently discovered mechanisms have assisted in developing new therapies for osteoporosis. New classes of drugs have been developed for the treatment of postmenopausal osteoporosis. Although there have been numerous advances over the past 2 decades, the search for newer therapies continues.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH8W-864, New York, NY 10032, USA
| | - John P Bilezikian
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH8W-864, New York, NY 10032, USA.
| |
Collapse
|
118
|
Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib. Biochem J 2017; 474:851-864. [PMID: 28049758 DOI: 10.1042/bcj20160985] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Cathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs. the human protease orthologs have made it impossible to use rodent models. This is even more of a problem considering that the most advanced CatK inhibitors, including odanacatib (ODN) and balicatib, failed in human clinical trials due to side effects and rodent models are not available to investigate the mechanism of these failures. Here, we elucidated the structural elements of the potency differences between mouse and human CatK (hCatK) using ODN. We determined and compared the structures of inhibitor-free mouse CatK (mCatK), hCatK and ODN bound to hCatK. Two structural differences were identified and investigated by mutational analysis. Humanizing subsite 2 in mCatK led to a 5-fold improvement of ODN binding, whereas the replacement of Tyr61 in mCatK with Asp resulted in an hCatK with comparable ODN potency. Combining both sites further improved the inhibition of the mCatK variant. Similar results were obtained for balicatib. These findings will allow the generation of transgenic CatK mice that will facilitate the evaluation of CatK inhibitor adverse effects and to explore routes to avoid them.
Collapse
|
119
|
Urban DJ, Anthwal N, Luo ZX, Maier JA, Sadier A, Tucker AS, Sears KE. A new developmental mechanism for the separation of the mammalian middle ear ossicles from the jaw. Proc Biol Sci 2017; 284:20162416. [PMID: 28179517 PMCID: PMC5310609 DOI: 10.1098/rspb.2016.2416] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 01/25/2023] Open
Abstract
Multiple mammalian lineages independently evolved a definitive mammalian middle ear (DMME) through breakdown of Meckel's cartilage (MC). However, the cellular and molecular drivers of this evolutionary transition remain unknown for most mammal groups. Here, we identify such drivers in the living marsupial opossum Monodelphis domestica, whose MC transformation during development anatomically mirrors the evolutionary transformation observed in fossils. Specifically, we link increases in cellular apoptosis and TGF-BR2 signalling to MC breakdown in opossums. We demonstrate that a simple change in TGF-β signalling is sufficient to inhibit MC breakdown during opossum development, indicating that changes in TGF-β signalling might be key during mammalian evolution. Furthermore, the apoptosis that we observe during opossum MC breakdown does not seemingly occur in mouse, consistent with homoplastic DMME evolution in the marsupial and placental lineages.
Collapse
Affiliation(s)
- Daniel J Urban
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer A Maier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Alexa Sadier
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Karen E Sears
- School of Integrative Biology, University of Illinois, 505 S Goodwin Avenue, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
120
|
Geraniol attenuates osteoclast differentiation by suppressingNF-kB activity and expression of osteoclastogenic genes. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
121
|
Müller WEG, Wang X, Schröder HC. New Target Sites for Treatment of Osteoporosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:187-219. [PMID: 28238039 DOI: 10.1007/978-3-319-51284-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany. .,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
122
|
Jakob F, Genest F, Baron G, Stumpf U, Rudert M, Seefried L. [Regulation of bone metabolism in osteoporosis : novel drugs for osteoporosis in development]. Unfallchirurg 2016; 118:925-32. [PMID: 26471379 DOI: 10.1007/s00113-015-0085-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone is continuously regenerated and remodeled as an adaptation to mechanical load. Bone mass and fracture resistance are maintained by a balanced equilibrium between bone formation and bone resorption. Regeneration and response to mechanical load are, however, impaired in osteoporosis and during aging. Bone resorption is enhanced by chronic inflammation while bone formation is altered by rising levels of inhibitors in the aging organism. Core molecular principles of the regulation of bone metabolism in health and disease have been characterized and developed as therapeutic targets. The receptor activator of nuclear factor kappaB ligand (RANKL) and osteoclast-derived protease cathepsin K are important regulators and effectors of osteoclast differentiation and bone resorption. Bone formation is stimulated by bone morphogenetic proteins (BMP) and via the parathyroid hormone receptor and the Wnt signaling pathway. The principles of osteoclast inhibition using bisphosphonates have now been known for almost three decades. Based on more recent knowledge RANKL and cathepsin K have been developed as new therapeutic targets to inhibit bone resorption. While denosumab, a RANKL antibody, has already been introduced into routine treatment strategies, the cathepsin K antagonist odanacatib is currently in the licensing process. Bone formation can also be stimulated by local administration of BMPs, by systemic treatment with the parathyroid hormone fragment teriparatide and by using antibodies targeting the Wnt inhibitor sclerostin. The latter are presently being tested in phase III clinical studies. In the near future a panel of traditional and novel treatment strategies will be available that will enable us to meet the individual clinical needs during aging and for the treatment of osteoporosis.
Collapse
Affiliation(s)
- F Jakob
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland.
| | - F Genest
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - G Baron
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - U Stumpf
- Osteologisches Schwerpunktzentrum, Chirurgische Klinik und Poliklinik, Nußbaumstr. 20, 80336, München, Deutschland
| | - M Rudert
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - L Seefried
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| |
Collapse
|
123
|
Libouban H, Pascaretti-Grizon F, Camprasse G, Camprasse S, Chappard D. In vivo erosion of orthopedic screws prepared from nacre (mother of pearl). Orthop Traumatol Surg Res 2016; 102:913-918. [PMID: 27554519 DOI: 10.1016/j.otsr.2016.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biodegradable biomaterials have been proposed to prepare orthopedic devices. Nacre is a natural aragonitic material made of calcium carbonate and is bioerodible. WORKING HYPOTHESIS We postulated that nacre is biodegradable without provoking bone erosion and favors bone apposition. MATERIAL AND METHODS We prepared orthopedic screws from nacre of the giant oyster Pinctada maxima. Threaded screws (3.5mm diameter) were implanted in 6 ewes in the upper tibial metaphysis (3 to 4 screws per animal). Their trajectory was transcortical and intramedullary to the opposite cortex. Animals were kept for 3months (n=2) and 6 months (n=4). They did not develop local inflammation. Before euthanasia, they received a double calcein labeling. Bone samples were analyzed by X-ray nanotomography and histology after embedding in poly(methyl methacrylate). The fractal dimension of the screw profiles (measured by the box-counting method) was used to quantify surface erosion. RESULTS 3D nanotomography showed a gradual erosion of the threads, which was confirmed by a decreased fractal dimension. Histologically, multinucleated cells (non-osteoclastic appearance) were visible at the surface of the screws. No ruffled border was seen in these cells but they had extensions creeping in the organic matter between the aragonite tablets. Bone apposition was noted in the transcortical path of the screws with limited osteoconduction at the endosteum. Mineralization rate was increased in these zones composed of woven bone in contact with the nacre. DISCUSSION AND CONCLUSION Screws prepared from nacre have the advantage of an in vivo resorbability by macrophage-derived cells and an osteoconductive apposition in contact with the material without triggering a local inflammatory reaction.
Collapse
Affiliation(s)
- H Libouban
- GEROM - LHEA, Groupe études remodelage osseux et biomatériaux, IRIS-IBS institut de biologie en santé, université d'Angers, CHU d'Angers, 49933 Angers cedex, France
| | - F Pascaretti-Grizon
- GEROM - LHEA, Groupe études remodelage osseux et biomatériaux, IRIS-IBS institut de biologie en santé, université d'Angers, CHU d'Angers, 49933 Angers cedex, France
| | | | | | - D Chappard
- GEROM - LHEA, Groupe études remodelage osseux et biomatériaux, IRIS-IBS institut de biologie en santé, université d'Angers, CHU d'Angers, 49933 Angers cedex, France.
| |
Collapse
|
124
|
Hu X, Garcia M, Weng L, Jung X, Murakami JL, Kumar B, Warden CD, Todorov I, Chen CC. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun 2016; 7:13095. [PMID: 27721421 PMCID: PMC5062560 DOI: 10.1038/ncomms13095] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Microenvironment cues received by haematopoietic stem cells (HSC) are important in regulating the choice between self-renewal and differentiation. On the basis of the differential expression of cell-surface markers, here we identify a mesenchymal stromal progenitor hierarchy, where CD45−Ter119−CD31−CD166−CD146−Sca1+(Sca1+) progenitors give rise to CD45−Ter119−CD31−CD166−CD146+(CD146+) intermediate and CD45−Ter119−CD31−CD166+CD146−(CD166+) mature osteo-progenitors. All three progenitors preserve HSC long-term multi-lineage reconstitution capability in vitro; however, their in vivo fates are different. Post-transplantation, CD146+ and CD166+ progenitors form bone only. While Sca1+ progenitors produce CD146+, CD166+ progenitors, osteocytes and CXCL12-producing stromal cells. Only Sca1+ progenitors are capable of homing back to the marrow post-intravenous infusion. Ablation of Sca1+ progenitors results in a decrease of all three progenitor populations as well as haematopoietic stem/progenitor cells. Moreover, suppressing production of KIT-ligand in Sca1+ progenitors inhibits their ability to support HSCs. Our results indicate that Sca1+ progenitors, through the generation of both osteogenic and stromal cells, provide a supportive environment for hematopoiesis. How the environment of the niche regulates haematopoietic stem cells (HSC) is unclear. Here, the authors identify a mesenchymal stromal progenitor hierarchy and identify Sca1+ cells as common progenitors for mesenchymal stromal cells in the adult niche that provide a supportive environment for hematopoiesis.
Collapse
Affiliation(s)
- Xingbin Hu
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 7100032, PR China
| | - Mayra Garcia
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Lihong Weng
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Xiaoman Jung
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Jodi L Murakami
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| | - Bijender Kumar
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Charles D Warden
- Bioinformatics Core, Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Ivan Todorov
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Ching-Cheng Chen
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
125
|
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 2016; 117:10-9. [DOI: 10.1016/j.bcp.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
126
|
Aguda AH, Lavallee V, Cheng P, Bott TM, Meimetis LG, Law S, Nguyen NT, Williams DE, Kaleta J, Villanueva I, Davies J, Andersen RJ, Brayer GD, Brömme D. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts. JOURNAL OF NATURAL PRODUCTS 2016; 79:1962-1970. [PMID: 27498895 DOI: 10.1021/acs.jnatprod.6b00215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.
Collapse
Affiliation(s)
- Adeleke H Aguda
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Vincent Lavallee
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Ping Cheng
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Tina M Bott
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Labros G Meimetis
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Simon Law
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Nham T Nguyen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - David E Williams
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Jadwiga Kaleta
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Ivan Villanueva
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Julian Davies
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Raymond J Andersen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Gary D Brayer
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, ‡Department of Biochemistry and Molecular Biology, Faculty of Medicine, §Department of Chemistry and Earth, Ocean & Atmospheric Sciences, Faculty of Science, ⊥Department of Microbiology, Faculty of Science, and ∥Centre for Blood Research, University of British Columbia , Vancouver, BC Canada , V6T 1Z3
| |
Collapse
|
127
|
Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway. Sci Rep 2016; 6:32260. [PMID: 27558652 PMCID: PMC4997609 DOI: 10.1038/srep32260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022] Open
Abstract
Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis.
Collapse
|
128
|
Stoch SA, Ballard J, Gibson C, Kesisoglou F, Witter R, Kassahun K, Zajic S, Mehta A, Brandquist C, Dempsey C, Stypinski D, Reitman ML. Coadministration of Rifampin Significantly Reduces Odanacatib Concentrations in Healthy Subjects. J Clin Pharmacol 2016; 57:110-117. [PMID: 27321774 DOI: 10.1002/jcph.780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/11/2022]
Abstract
This open-label 2-period study assessed the effect of multiple-dose administration of rifampin, a strong cytochrome P450 3A (CYP3A) and P-glycoprotein inducer, on the pharmacokinetics of odanacatib, a cathepsin K inhibitor. In period 1, 12 healthy male subjects (mean age, 30 years) received a single dose of odanacatib 50 mg on day 1, followed by a 28-day washout. In period 2, subjects received rifampin 600 mg/day for 28 days; odanacatib 50 mg was coadministered on day 14. Blood samples for odanacatib pharmacokinetics were collected at predose and on day 1 of period 1 and day 14 of period 2. Coadministration of odanacatib and rifampin significantly reduced odanacatib exposure. The odanacatib AUC0-∞ geometric mean ratio (90% confidence interval) of odanacatib + rifampin/odanacatib alone was 0.13 (0.11-0.16). The harmonic mean ± jackknife standard deviation apparent terminal half-life (t½ ) was 71.6 ± 10.2 hours for odanacatib alone and 16.0 ± 3.4 hours for odanacatib + rifampin, indicating greater odanacatib clearance following coadministration with rifampin. Samples were collected in period 2 during rifampin dosing (days 1, 14, and 28) and after rifampin discontinuation (days 35, 42, and 56) to evaluate the ratio of plasma 4β-hydroxycholesterol to total serum cholesterol as a CYP3A4 induction biomarker; the ratio increased ∼5-fold over 28 days of daily dosing with 600 mg rifampin, demonstrating sensitivity to CYP3A4 induction.
Collapse
|
129
|
Ferulic acid impairs osteoclast fusion and exacerbates survival of mature osteoclasts. Cytotechnology 2016; 68:1963-72. [PMID: 27449923 DOI: 10.1007/s10616-016-0009-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/16/2016] [Indexed: 01/14/2023] Open
Abstract
Elevated bone loss induced by osteoclasts is a critical and most commonly observed pathological complication during osteolytic diseases such as osteoporosis. Hence, attenuation of osteoclast formation or function is a classical therapeutic approach to regulate bone loss. In this study, we found that ferulic acid (FA), a natural compound potently inhibited osteoclast formation in human CD14+ peripheral blood monocytes ex vivo with an IC50 of 39 µM. Moreover, due to impaired differentiation of osteoclast progenitors, actin ring formation and bone resorption activity were also perturbed. Investigation of underlying molecular mechanisms revealed that FA inhibited the RANKL-induced expression of dendritic cell-specific transmembrane protein (DC-STAMP), a critical regulator of osteoclast fusion. In addition, expression of matrix metalloproteinase-9 (MMP-9) and cathepsin K, the key osteoclast specific lysosomal proteases involved in bone matrix resorption were severely aggravated by FA. A significant reduction in mature osteoclast numbers was detected in the presence of FA accompanied by increased caspase-3 activity and DNA-fragmentation, a characteristic hallmark of apoptosis. Collectively, these results suggested that FA inhibited osteoclast fusion by suppressing the expression of DC-STAMP and induced apoptosis in mature osteoclasts by the caspase-3 pathway.
Collapse
|
130
|
Liu F, Zhou ZF, An Y, Yu Y, Wu RX, Yin Y, Xue Y, Chen FM. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells. J Tissue Eng Regen Med 2016; 11:2922-2934. [DOI: 10.1002/term.2195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
- Department of Oral Medicine; Northwest Women's and Children's Hospital; Xi'an China
| | - Zhi-Fei Zhou
- State Key Laboratory of Military Stomatology, Department of Paediatric Dentistry; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| |
Collapse
|
131
|
Barbarash OL, Lebedeva NB, Kokov AN, Novitskaya AA, Hryachkova ON, Voronkina AV, Raskina TA, Kashtalap VV, Kutikhin AG, Shibanova IA. Decreased Cathepsin K Plasma Level may Reflect an Association of Osteopoenia/Osteoporosis with Coronary Atherosclerosis and Coronary Artery Calcification in Male Patients with Stable Angina. Heart Lung Circ 2016; 25:691-7. [DOI: 10.1016/j.hlc.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 01/03/2023]
|
132
|
Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL. PLoS One 2016; 11:e0156708. [PMID: 27311019 PMCID: PMC4911171 DOI: 10.1371/journal.pone.0156708] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 11/22/2022] Open
Abstract
Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S. aureus regulates osteoclastogenesis to obtain better understanding of the complex mechanisms of S. aureus induced bone destruction in vivo.
Collapse
|
133
|
Takizawa A, Chiba M, Ota T, Yasuda M, Suzuki K, Kanemitsu T, Itoh T, Shinoda H, Igarashi K. The novel bisphosphonate disodium dihydrogen-4-[(methylthio) phenylthio] methanebisphosphonate increases bone mass in post-ovariectomy rats. J Pharmacol Sci 2016; 131:37-50. [PMID: 27245552 DOI: 10.1016/j.jphs.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023] Open
Abstract
The novel bisphosphonate (BP) disodium dihydrogen-4-[(methylthio) phenylthio] methanebisphosphonate (MPMBP) is a non-nitrogen-containing BP with an antioxidant side chain that possesses anti-inflammatory properties. We investigated the systemic effects of this compound on bone loss induced by ovariectomy (OVX) in adult rats. Micro-computed tomography revealed that MPMBP increased bone mass and density in both the metaphysis and diaphysis, and improved the structural properties important for mechanical strength of osteoporotic bone. Sequential bone labeling with tetracycline and calcein indicated that MPMBP decreased longitudinal growth of the primary spongiosa (PS), but stimulated cortical bone formation in the diaphysis. MPMBP increased type I collagen accumulation in the PS, and decreased the number and size of adipocytes in the bone marrow, suggesting inhibition of increased bone marrow adipogenesis induced by OVX. Furthermore, MPMBP reduced the number of bone resorbing cathepsin K-positive osteoclasts induced by OVX. These results suggest that MPMBP could improve bone loss induced by estrogen deficiency. Both stimulation of bone formation and inhibition of bone resorption might play a role in the increase in bone mass and bone density after MPMBP treatment.
Collapse
Affiliation(s)
- Aiko Takizawa
- Division of Oral Dysfunction Science, Department of Oral Health and Development Science, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Oral Physiology, Department of Oral Function and Morphology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mirei Chiba
- Division of Oral Physiology, Department of Oral Function and Morphology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Takeru Ota
- Division of Oral Physiology, Department of Oral Function and Morphology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mayumi Yasuda
- Division of Oral Dysfunction Science, Department of Oral Health and Development Science, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Oral Physiology, Department of Oral Function and Morphology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiko Suzuki
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takuya Kanemitsu
- Division of Organic and Bioorganic Chemistry, Department of Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Itoh
- Division of Organic and Bioorganic Chemistry, Department of Medicinal Chemistry, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hisashi Shinoda
- Center for Environmental Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kaoru Igarashi
- Division of Oral Dysfunction Science, Department of Oral Health and Development Science, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
134
|
Gennari L, Rotatori S, Bianciardi S, Nuti R, Merlotti D. Treatment needs and current options for postmenopausal osteoporosis. Expert Opin Pharmacother 2016; 17:1141-52. [DOI: 10.1080/14656566.2016.1176147] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Stefano Rotatori
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
135
|
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 2016; 6:13772-89. [PMID: 25944696 PMCID: PMC4537049 DOI: 10.18632/oncotarget.3830] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Angela De Luca
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Daniele Bellavia
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Flores Naselli
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Simona Fontana
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Odessa Schillaci
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Alessandra Santoro
- Divisione di Ematologia A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Giacomo De Leo
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Gianluca Giavaresi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Riccardo Alessandro
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy.,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
136
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
137
|
Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int J Biol Macromol 2016; 91:1120-33. [PMID: 26955746 DOI: 10.1016/j.ijbiomac.2016.02.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/19/2023]
Abstract
This review describes Protease Inhibitors (PIs) which target or inhibit proteases, protein digesting enzymes. These proteases play a crucial task in many biological events including digestion, blood coagulation, apoptosis etc. Regardless of their crucial roles, they need to be checked regularly by PIs as their excess may possibly damage host organism. On basis of amino acid composition of PIs where Protease-PI enzymatic reactions occur i.e. serine, cysteine, and aspartic acid, they are classified. Nowadays, various PIs are being worked upon to fight various parasitic or viral diseases including malaria, schistosomiasis, colds, flu', dengue etc. They prevent an ongoing process begun by carcinogen exposure by keeping a check on metastasis. They also possess potential to reduce carcinogen-induced, increased levels of gene amplification to almost normal levels. Some PIs can principally be used for treatment of hypertension and congestive heart failure by blocking conversion of angiotensin I to angiotensin II for example Angiotensin-converting enzyme inhibitors (ACEIs). Also PIs target amyloid β-peptide (Aβ) level in brain which is prime responsible for development of Alzheimer's Disease (AD). Also, PIs inhibit enzymatic activity of HIV-1 Protease Receptor (PR) by preventing cleavage events in Gag and Gag-Pol that result in production of non-virulent virus particles.
Collapse
|
138
|
Hiraga T. Targeted Agents in Preclinical and Early Clinical Development for the Treatment of Cancer Bone Metastases. Expert Opin Investig Drugs 2016; 25:319-34. [DOI: 10.1517/13543784.2016.1142972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
139
|
Zeng XZ, He LG, Wang S, Wang K, Zhang YY, Tao L, Li XJ, Liu SW. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37:255-63. [PMID: 26592521 DOI: 10.1038/aps.2015.85] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
AIM Aconiti Lateralis Radix Preparata is a traditional Chinese medicine used to treat chronic arthritis and is highly effective against rheumatoid arthritis. However, the effects of aconine, a derivative of aconitum alkaloids, on osteoclasts, which can absorb bone, remain unknown. Here, we investigated the effects of aconine on osteoclast differentiation and bone resorption in vitro. METHODS The viability of mouse leukemic monocyte/macrophage cell line RAW264.7 was measured using CCK-8 assays. Osteoclast differentiation was induced by incubation of RAW264.7 cells in the presence of RANKL, and assessed with TRAP staining assay. Bone resorption was examined with bone resorption pits assay. The expression of relevant genes and proteins was analyzed using RT-PCR and Western blots. The activation of NF-κB and nuclear factor of activated T-cells (NFAT) was examined using stable NF-κB and NFATc1 luciferase reporter gene systems, RT-PCR and Western blot analysis. RESULTS Aconine (0.125, 0.25 μmol/L) did not affect the viability of RAW264.7 cells, but dose-dependently inhibited RANKL-induced osteoclast formation and bone resorptive activity. Furthermore, aconine dose-dependently inhibited the RANKL-induced activation of NF-κB and NFATc1 in RAW264.7 cells, and subsequently reduced the expression of osteoclast-specific genes (c-Src, β3-Integrin, cathepsin K and MMP-9) and the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which played an important role in cell-cell fusion. CONCLUSION These findings suggest that aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing the activation of NF-κB and NFATc1 and the expression of the cell-cell fusion molecule DC-STAMP.
Collapse
|
140
|
González L, Sánchez RE, Rojas L, Pascual I, García-Fernández R, Chávez MA, Betzel C. Screening of Protease Inhibitory Activity in Aqueous Extracts of Marine Invertebrates from Cuban Coast. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajac.2016.74030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
141
|
Abstract
INTRODUCTION Severe osteoporosis represents a disease of high mortality and morbidity. Recognition of what constitutes and causes severe osteoporosis and aggressive intervention with pharmacological agents with evidence to reduce fracture risk are outlined in this review. AREAS COVERED This review is a blend of evidence obtained from literature searches from PubMed and The National Library of Medicine (USA), clinical experience and the author's opinions. The review covers the recognition of what constitutes severe osteoporosis, and provides up-to-date references on this sub-set of high risk patients. EXPERT OPINION Severe osteoporosis can be classified by using measurements of bone densitometry, identification of prevalent fractures, and, knowledge of what additional risk factors contribute to high fracture risk. Once recognized, the potential consequences of severe osteoporosis can be mitigated by appropriate selection of pharmacological therapies and modalities to reduce the risk for falling.
Collapse
Affiliation(s)
- Paul D Miller
- a University of Colorado Health Sciences Center , Colorado Center for Bone Research , Lakewood , CO , USA
| |
Collapse
|
142
|
Panwar P, Søe K, Guido RV, Bueno RVC, Delaisse JM, Brömme D. A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol 2015; 173:396-410. [PMID: 26562357 DOI: 10.1111/bph.13383] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Potent active site-directed inhibitors have been developed and showed variable success in clinical trials. These inhibitors block the entire activity of CatK and thus may interfere with other pathways. The present study investigates the antiresorptive effect of an exosite inhibitor that selectively inhibits only the therapeutically relevant collagenase activity of CatK. EXPERIMENTAL APPROACH Human osteoclasts and fibroblasts were used to analyse the effect of the exosite inhibitor, ortho-dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY RESULTS DHT1 selectively inhibited the collagenase activity of CatK, without affecting the viability of osteoclasts. Both inhibitors abolished the formation of resorption trenches, with DHT1 having a slightly higher IC50 value than ODN. Maximal reductions of other resorption parameters by DHT1 and ODN were comparable, respectively 41% and 33% for total resorption surface, 46% and 48% for resorption depths, and 83% and 61% for C-terminal telopetide fragment (CTX) release. DHT1 did not affect the turnover of fibrosis-associated TGF-ß1 in fibroblasts, whereas 500 nM ODN was inhibitory. CONCLUSIONS AND IMPLICATIONS Our study shows that an exosite inhibitor of CatK can specifically block bone resorption without interfering with other pathways.
Collapse
Affiliation(s)
- Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Center for Blood Research, Vancouver, BC, Canada.,Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Kent Søe
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Rafael Vc Guido
- Laboratório de Química Medicinal e Computacional, Centro de Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Renata V C Bueno
- Laboratório de Química Medicinal e Computacional, Centro de Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Center for Blood Research, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
143
|
McClung MR. Emerging Therapies for Osteoporosis. Endocrinol Metab (Seoul) 2015; 30:429-35. [PMID: 26354487 PMCID: PMC4722395 DOI: 10.3803/enm.2015.30.4.429] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 01/14/2023] Open
Abstract
Although several effective therapies are available for the treatment of osteoporosis in postmenopausal women and older men, there remains a need for the development of even more effective and acceptable drugs. Several new drugs that are in late-stage clinical development will be discussed. Abaloparatide (recombinant parathyroid hormone related peptide [PTHrP] analogue) has anabolic activity like teriparatide. Recent data from the phase 3 fracture prevention trial demonstrate that this agent is effective in reducing fracture risk. Inhibiting cathepsin K reduces bone resorption without decreasing the numbers or activity of osteoclasts, thereby preserving or promoting osteoblast function. Progressive increases in bone mineral density (BMD) have been observed over 5 years. Early data suggest that odanacatib effectively reduces fracture risk. Lastly, inhibiting sclerostin with humanized antibodies promotes rapid, substantial but transient increases in bone formation while inhibiting bone resorption. Marked increases in BMD have been observed in phase 2 studies. Fracture prevention studies are underway. The new therapies with novel and unique mechanisms of action may, alone or in combination, provide more effective treatment options for our patients.
Collapse
|
144
|
Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 2015; 15:712-29. [PMID: 26597527 DOI: 10.1038/nrc4027] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment.
Collapse
Affiliation(s)
- Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
- Gerstner Sloan Kettering Graduate School of Biomedical Science, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
- Department of Oncology, University of Lausanne
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
| |
Collapse
|
145
|
Adhyatmika A, Putri KSS, Beljaars L, Melgert BN. The Elusive Antifibrotic Macrophage. Front Med (Lausanne) 2015; 2:81. [PMID: 26618160 PMCID: PMC4643133 DOI: 10.3389/fmed.2015.00081] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022] Open
Abstract
Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior.
Collapse
Affiliation(s)
- Adhyatmika Adhyatmika
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Kurnia S S Putri
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; Faculty of Pharmacy, University of Indonesia , Depok , Indonesia
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy (GRIP), University of Groningen , Groningen , Netherlands ; GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
146
|
Porter KM, Wieser FA, Wilder CL, Sidell N, Platt MO. Cathepsin Protease Inhibition Reduces Endometriosis Lesion Establishment. Reprod Sci 2015; 23:623-9. [PMID: 26482207 DOI: 10.1177/1933719115611752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endometriosis is a gynecologic disease characterized by the ectopic presence of endometrial tissue on organs within the peritoneal cavity, causing debilitating abdominal pain and infertility. Current treatments alleviate moderate pain symptoms associated with the disorder but exhibit limited ability to prevent new or recurring lesion establishment and growth. Retrograde menstruation has been implicated for introducing endometrial tissue into the peritoneal cavity, but molecular mechanisms underlying attachment and invasion are not fully understood. We hypothesize that cysteine cathepsins, a group of powerful extracellular matrix proteases, facilitate endometrial tissue invasion and endometriosis lesion establishment in the peritoneal wall and inhibiting this activity would decrease endometriosis lesion implantation. To test this, we used an immunocompetent endometriosis mouse model and found that endometriotic lesions exhibited a greater than 5-fold increase in active cathepsins compared to tissue from peritoneal wall or eutopic endometrium, with cathepsins L and K specifically implicated. Human endometriosis lesions also exhibited greater cathepsin activity than adjacent peritoneum tissue, supporting the mouse results. Finally, we tested the hypothesis that inhibiting cathepsin activity could block endometriosis lesion attachment and implantation in vivo. Intraperitoneal injection of the broad cysteine cathepsin inhibitor, E-64, significantly reduced the number of attached endometriosis lesions in our murine model compared to vehicle-treated controls demonstrating that cathepsin proteases contribute to endometriosis lesion establishment, and their inhibition may provide a novel, nonhormonal therapy for endometriosis.
Collapse
Affiliation(s)
- Kristi M Porter
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Friedrich A Wieser
- Department of Gynecology and Obstetrics, Emory University School of Medicine, GA, USA
| | - Catera L Wilder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, GA, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
147
|
Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism 2015; 64:1199-214. [PMID: 26277199 DOI: 10.1016/j.metabol.2015.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022]
Abstract
Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Sideris Delaroudis
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | | |
Collapse
|
148
|
Bone biology, signaling pathways, and therapeutic targets for osteoporosis. Maturitas 2015; 82:245-55. [DOI: 10.1016/j.maturitas.2015.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
|
149
|
D'Amelio P, Isaia GC. Male Osteoporosis in the Elderly. Int J Endocrinol 2015; 2015:907689. [PMID: 26457082 PMCID: PMC4592737 DOI: 10.1155/2015/907689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is now recognized as an important public health problem in elderly men as fragility fractures are complicated by increased morbidity, mortality, and social costs. This review comprises an overview of recent findings in pathophysiology, diagnosis, and treatment of male osteoporosis, with particular regard to the old population.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Department of Medical Science, University of Torino, 10126 Torino, Italy
| | | |
Collapse
|
150
|
Cathepsin K Inhibitor Regulates Inflammation and Bone Destruction in Experimentally Induced Rat Periapical Lesions. J Endod 2015; 41:1474-9. [DOI: 10.1016/j.joen.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/03/2015] [Accepted: 04/13/2015] [Indexed: 11/18/2022]
|