101
|
de Bakker PI, Hünenberger PH, McCammon JA. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. J Mol Biol 1999; 285:1811-30. [PMID: 9917414 DOI: 10.1006/jmbi.1998.2397] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthermophilic proteins often possess an increased number of surface salt bridges compared with their mesophilic homologues. However, salt bridges are generally thought to be of minor importance in protein stability at room temperature. In an effort to understand why this may no longer be true at elevated temperatures, we performed molecular dynamics simulations of the hyperthermophilic protein Sac7d at 300 K, 360 K, and 550 K. The three trajectories are stable on the nanosecond timescale, as evidenced by the analysis of several time-resolved properties. The simulations at 300 K and (to a lesser extent) 360 K are also compatible with nuclear Overhauser effect-derived distances. Raising the temperature from 300 K to 360 K results in a less favourable protein-solvent interaction energy, and a more favourable intraprotein interaction energy. Both effects are almost exclusively electrostatic in nature and dominated by contributions due to charged side-chains. The reduced solvation is due to a loss of spatial and orientational structure of water around charged side-chains, which is a consequence of the increased thermal motion in the solvent. The favourable change in the intraprotein Coulombic interaction energy is essentially due to the tightening of salt bridges. Assuming that charged side-chains are on average more distant from one another in the unfolded state than in the folded state, it follows that salt bridges may contribute to protein stability at elevated temperatures because (i) the solvation free energy of charged side-chains is more adversely affected in the unfolded state than in the folded state by an increase in temperature, and (ii) due to the tightening of salt bridges, unfolding implies a larger unfavourable increase in the intraprotein Coulombic energy at higher temperature. Possible causes for the unexpected stability of the protein at 550 K are also discussed.
Collapse
Affiliation(s)
- P I de Bakker
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3508 TB, The Netherlands.
| | | | | |
Collapse
|
102
|
D'Auria S, Moracci M, Febbraio F, Tanfani F, Nucci R, Rossi M. Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 1998; 80:949-57. [PMID: 9893955 DOI: 10.1016/s0300-9084(00)88892-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
beta-Glycosidase from the extreme thermophilic archaeon Sulfolobus solfataricus is a thermostable tetrameric protein with a molecular mass of 240 kDa which is stable in the presence of detergents and has a maximal activity above 95 degrees C. An understanding of the structure-function relationship of the enzyme under different chemical-physical conditions is of fundamental importance for both theoretical and application purposes. In this paper we report the effect of basic pH values on the structural stability of this enzyme. The structure of the enzyme was studied at pH 10 and in the temperature range 25-97.5 degrees C using circular dichroism, Fourier-transform infrared and fluorescence spectroscopy. The spectroscopic data indicated that the enzyme stability was strongly affected by pH 10 suggesting that the destabilization of the protein structure is correlated with the perturbation of ionic interactions present in the native protein at neutral pHs. These experiments give support to the observation derived from the 3D-structure, that large ion pair networks on the surface stabilize Sulfolobus solfataricus beta-glycosidase.
Collapse
Affiliation(s)
- S D'Auria
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | | | | | | | |
Collapse
|
103
|
Allard P, Helgstrand M, Hard T. The complete homogeneous master equation for a heteronuclear two-spin system in the basis of cartesian product operators. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 134:7-16. [PMID: 9740725 DOI: 10.1006/jmre.1998.1509] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The complete homogeneous form of the quantum mechanical master equation for a heteronuclear two-spin system is presented in the basis of Cartesian product operators. The homogeneous master equation is useful since it allows fast, single-step computation of the density operator during pulse sequences, without neglecting relaxation effects. The homogeneous master equation is also a prerequisite for an expansion of the average Hamiltonian theory to include relaxation, thus forming average Liouvillian theory. The coherences of the two-spin system are assumed to be relaxed both by mutual dipole-dipole interaction and by chemical shift anisotropy interaction with the static magnetic field. The cross-correlation between dipole-dipole and chemical shift anisotropy relaxation mechanisms is also considered. To illustrate the applicability of the developed formalism we simulate the overall transfer efficiency of three different inverse detection 1H-15N correlation experiments with parameters corresponding to a large protein. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- P Allard
- The Royal Institute of Technology, Center for Structural Biochemistry, Novum, Huddinge, S-141 57, Sweden
| | | | | |
Collapse
|
104
|
Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L, McCrary BS, Edmondson SP, Shriver JW, Wang AH. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. NATURE STRUCTURAL BIOLOGY 1998; 5:782-6. [PMID: 9731772 DOI: 10.1038/1822] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sso7d and Sac7d are two small (approximately 7,000 Mr), but abundant, chromosomal proteins from the hyperthermophilic archaeabacteria Sulfolobus solfataricus and S. acidocaldarius respectively. These proteins have high thermal, acid and chemical stability. They bind DNA without marked sequence preference and increase the Tm of DNA by approximately 40 degrees C. Sso7d in complex with GTAATTAC and GCGT(iU)CGC + GCGAACGC was crystallized in different crystal lattices and the crystal structures were solved at high resolution. Sso7d binds in the minor groove of DNA and causes a single-step sharp kink in DNA (approximately 60 degrees) by the intercalation of the hydrophobic side chains of Val 26 and Met 29. The intercalation sites are different in the two complexes. Observations of this novel DNA binding mode in three independent crystal lattices indicate that it is not a function of crystal packing.
Collapse
Affiliation(s)
- Y G Gao
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Oppermann UC, Knapp S, Bonetto V, Ladenstein R, Jörnvall H. Isolation and structure of repressor-like proteins from the archaeon Sulfolobus solfataricus. Co-purification of RNase A with Sso7c. FEBS Lett 1998; 432:141-4. [PMID: 9720912 DOI: 10.1016/s0014-5793(98)00848-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The thermostable histone-like protein Sso7c (Sso for Sulfolobus solfataricus) from the archaeon Sulfolobus solfataricus was purified from the supernatant of acid-soluble cell lysates. Reverse phase HPLC of an apparently homogeneous Sso7c protein fraction from Mono S chromatography resulted in resolution of three further peaks. Sequence analysis revealed one of these components to be bovine RNase A, originating from the culture medium and explaining the RNA hydrolyzing activities of Sso7 preparations previously described. Sequence analysis of pure Sso7c showed an epsilon-Lys methylation pattern identical to that of Sso7d and a single Gln --> Glu mutational difference at position 13. The remaining two proteins obtained after HPLC separation were identified as homologues of bacterial repressor-like proteins. Thus, the existence of repressor-like proteins was demonstrated at the protein level in archaea, raising the question of structural and functional consequences of these proteins on the otherwise eukaryotic-like basal transcriptional machinery in archaea.
Collapse
Affiliation(s)
- U C Oppermann
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
106
|
van der Oost J, Ciaramella M, Moracci M, Pisani FM, Rossi M, de Vos WM. Molecular biology of hyperthermophilic Archaea. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:87-115. [PMID: 9670798 DOI: 10.1007/bfb0102290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.
Collapse
Affiliation(s)
- J van der Oost
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | |
Collapse
|
107
|
Ladenstein R, Antranikian G. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:37-85. [PMID: 9670797 DOI: 10.1007/bfb0102289] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become clear since about a decade ago, that the biosphere contains a variety of microorganisms that can live and grow in extreme environments. Hyperthermophilic microorganisms, present among Archaea and Bacteria, proliferate at temperatures of around 80-100 degrees C. The majority of the genera known to date are of marine origin, however, some of them have been found in continental hot springs and solfataric fields. Metabolic processes and specific biological functions of these organisms are mediated by enzymes and proteins that function optimally under these extreme conditions. We are now only starting to understand the structural, thermodynamic and kinetic basis for function and stability under conditions of high temperature, salt and extremes of pH. Insights gained from the study of such macromolecules help to extend our understanding of protein biochemistry and -biophysics and are becoming increasingly important for the investigation of fundamental problems in structure biology such as protein stability and protein folding. Extreme conditions in the biosphere require either the adaptation of the amino acid sequence of a protein by mutations, the optimization of weak interactions within the protein and at the protein-solvent boundary, the influence of extrinsic factors such as metabolites, cofactors, compatible solutes. Furthermore folding catalysts, known as chaperones, that assist the folding of proteins may be involved or increased protein protein synthesis in order to compensate for destruction by extreme conditions. The comparison of structure and stability of homologous proteins from mesophiles and hyperthermophiles has revealed important determinants of thermal stability of proteins. Rather than being the consequence of one dominant type of interactions or of a general stabilization strategy, it appears that the adaptation to high temperatures reflects a number of subtle interactions, often characteristic for each protein species, that minimize the surface energy and the hydration of apolar surface groups while burying hydrophobic residues and maximizing packing of the core as well as the energy due to charge-charge interactions and hydrogen bonds. In this article, mechanisms of intrinsic stabilization of proteins are reviewed. These mechanisms are found on different levels of structural organization. Among the extrinsic stabilization factors, emphasis is put on archaea chaperonins and their still strongly debated function. It will be shown, that optimization of weak protein-protein and protein-solvent interactions plays a key role in gaining thermostability. The difficulties in correlating suitable optimization criteria with real thermodynamic stability measures are due to experimental difficulties in measuring stabilization energies in large proteins or protein oligomers and will be discussed. Thus small single domain proteins or isolated domains of larger proteins may serve as model systems for large or multidomain proteins which due to the complexity of their thermal unfolding transitions cannot be analyzed by equilibrium thermodynamics. The analysis of the energetics of the thermal unfolding of a small, hyperthermostable DNA binding protein from Sulfolobus has revealed that a high melting temperature is not synonymous with a larger maximum thermodynamic stability. Finally, it is now well documented, that many thermophilic and hyperthermophilic proteins show a statistically increased number of salt bridges and salt bridge networks. However their contribution to thermodynamic and functional stability is still obscure.
Collapse
Affiliation(s)
- R Ladenstein
- Karolinska Institutet NOVUM, Center for Structural Biochemistry, Huddinge, Sweden.
| | | |
Collapse
|
108
|
Agback P, Baumann H, Knapp S, Ladenstein R, Härd T. Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. NATURE STRUCTURAL BIOLOGY 1998; 5:579-84. [PMID: 9665172 DOI: 10.1038/836] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many biochemical processes, including DNA packing, maintenance and control, rely on non-sequence specific protein-DNA interactions. Nonspecific DNA-binding proteins have evolved to tolerate a wide range of DNA sequences, yet bind with a respectable affinity. The nonspecific binding requirement is in contrast to that imposed on, for example, transcription factors and implies a different structural basis for the biomolecular recognition process. To address this issue, and the mechanism for archaeal DNA packing, we determined the structure of the Sso7d protein from Sulfolobus solfataricus in complex with DNA. Sso7d binds DNA by placing a triple-stranded beta-sheet across the DNA minor groove. The protein is anchored in this position by the insertion of hydrogen bond-donating side chains into the groove and additionally stabilized by electrostatic and non-polar interactions with the DNA backbone. This structure explains how strong binding can be achieved independent of DNA sequence. Sso7d binding also distorts the DNA conformation and introduces significant unwinding of the helix. This effect suggests a mechanism for DNA packing in Sulfolobus based on negative DNA supercoiling.
Collapse
Affiliation(s)
- P Agback
- Center for Structural Biochemistry, Department of Biotechnology, The Royal Institute of Technology (KTH), Huddinge, Sweden
| | | | | | | | | |
Collapse
|
109
|
Lutzke RA, Plasterk RH. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. J Virol 1998; 72:4841-8. [PMID: 9573250 PMCID: PMC110031 DOI: 10.1128/jvi.72.6.4841-4848.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220-270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220-270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220-270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3' processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN.
Collapse
Affiliation(s)
- R A Lutzke
- Division of Molecular Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
110
|
Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Thermal unfolding of small proteins with SH3 domain folding pattern. Proteins 1998; 31:309-19. [PMID: 9593201 DOI: 10.1002/(sici)1097-0134(19980515)31:3<309::aid-prot7>3.0.co;2-d] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy. The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 < pH < 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec). At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12-16 kJ/mol but show quite high melting temperatures. Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities.
Collapse
Affiliation(s)
- S Knapp
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
111
|
López-García P, Knapp S, Ladenstein R, Forterre P. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth. Nucleic Acids Res 1998; 26:2322-8. [PMID: 9580681 PMCID: PMC147572 DOI: 10.1093/nar/26.10.2322] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus alters DNA conformation. In ligase-mediated supercoiling assays carried out at 37, 60, 70, 80 and 90 degrees C we found that DNA binding of increasing amounts of Sso7d led to a progressive decrease in plasmid linking number (Lk), producing negative supercoiling. Identical unwinding effects were observed when recombinant non-methylated Sso7d was used. For a given Sso7d concentration the DNA unwinding induced was augmented with increasing temperature. However, after correction for the overwinding effect of high temperature on DNA, plasmids ligated at 60-90 degrees C exhibited similar sigma values at the highest Sso7d concentrations assayed. These results suggest that Sso7d may play a compensatory role in vivo by counteracting the overwinding effect of high temperature on DNA. Additionally, Sso7d unwinding could be involved in the topological changes observed during thermal stress (heat and cold shock), playing an analogous role in crenarchaeal cells to that proposed for HU in bacteria.
Collapse
Affiliation(s)
- P López-García
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS URA 1354, GDR 1006, Bâtiment 409, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
112
|
Mai VQ, Chen X, Hong R, Huang L. Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils. J Bacteriol 1998; 180:2560-3. [PMID: 9573212 PMCID: PMC107202 DOI: 10.1128/jb.180.9.2560-2563.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Major DNA binding proteins, designated Ssh7, were purified from the thermoacidophilic archaeon Sulfolobus shibatae. The Ssh7 proteins have an apparent molecular mass of 6.5 kDa and are similar to the 7-kDa DNA binding proteins from Sulfolobus acidocaldarius and Sulfolobus solfataricus in N-terminal amino acid sequence. The proteins constitute about 4.8% of the cellular protein. Upon binding to DNA, the Ssh7 proteins constrain negative supercoils. At the tested Ssh7/DNA mass ratios (0 to 1.65), one negative supercoil was taken up by approximately 20 Ssh7 molecules. Our results, together with the observation that the viral DNA isolated from S. shibatae is relaxed, suggest that regions of free DNA in the S. shibatae genome, if present, are highly positively supercoiled.
Collapse
Affiliation(s)
- V Q Mai
- Department of Biology, Pomona College, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
113
|
Robinson H, Gao YG, McCrary BS, Edmondson SP, Shriver JW, Wang AH. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 1998; 392:202-5. [PMID: 9515968 DOI: 10.1038/32455] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The proteins Sac7d and Sso7d belong to a class of small chromosomal proteins from the hyperthermophilic archaeon Sulfolobus acidocaldarius and S. solfactaricus, respectively. These proteins are extremely stable to heat, acid and chemical agents. Sac7d binds to DNA without any particular sequence preference and thereby increases its melting temperature by approximately 40 degrees C. We have now solved and refined the crystal structure of Sac7d in complex with two DNA sequences to high resolution. The structures are examples of a nonspecific DNA-binding protein bound to DNA, and reveal that Sac7d binds in the minor groove, causing a sharp kinking of the DNA helix that is more marked than that induced by any sequence-specific DNA-binding proteins. The kink results from the intercalation of specific hydrophobic side chains of Sac7d into the DNA structure, but without causing any significant distortion of the protein structure relative to the uncomplexed protein in solution.
Collapse
Affiliation(s)
- H Robinson
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
114
|
Lundbäck T, Hansson H, Knapp S, Ladenstein R, Härd T. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus. J Mol Biol 1998; 276:775-86. [PMID: 9500918 DOI: 10.1006/jmbi.1997.1558] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used isothermal titration calorimetry and fluorescence spectroscopy to investigate the thermodynamics of non-sequence-specific DNA-binding by the Sso7d protein from the archaeon Sulfolobus solfataricus. We report the Sso7d-poly(dGdC) binding thermodynamics as a function of buffer composition (Tris-HCl or phosphate), temperature (15 to 45 degrees C), pH (7.1 to 8.0), osmotic stress and solvent (H2O/2H2O), and compare it to poly (dAdT) binding; and we have previously also reported the salt concentration dependence. Binding isotherms can be represented by the McGhee-von Hippel model for non-cooperative binding, with a binding site size of four to five DNA base-pairs and binding free energies in the range DeltaG degrees approximately -7 to DeltaG degrees approximately -10 kcal mol-1, depending on experimental conditions. The non-specific nature of the binding is reflected in similar thermodynamics for binding to poly(dAdT) and poly(dGdC). The native lysine methylation of Sso7d has only minor effects on the binding thermodynamics. Sso7d binding to poly(dGdC) is endothermic at 25 degrees C with a binding enthalpy DeltaH degrees approximately 10 kcal mol-1 in both phosphate and Tris-HCl buffers at pH 7.6, indicating that DeltaH degrees does not include large contributions from coupled buffer ionization equilibria at this pH. The binding enthalpy is temperature dependent with a measured heat capacity change DeltaCp degrees=-0.25(+/-0.01) kcal mol-1 K-1 and extrapolations of thermodynamic data indicate that the complex is heat stable with exothermic binding close to the growth temperature (75 to 80 degreesC) of S. solfataricus. Addition of neutral solutes (osmotic stress) has minor effects on DeltaG degrees and the exchange of H2O for 2H2O has only a small effect on DeltaH degrees, consistent with the inference that complex formation is not accompanied by net changes in surface hydration. Thus, other mechanisms for the heat capacity change must be found. The observed thermodynamics is discussed in relation to the nature of non-sequence-specific DNA-binding by proteins.
Collapse
Affiliation(s)
- T Lundbäck
- Department of Biosciences, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
115
|
Lazaridis T, Lee I, Karplus M. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci 1997; 6:2589-605. [PMID: 9416608 PMCID: PMC2143628 DOI: 10.1002/pro.5560061211] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molecular dynamics simulations in solution are performed for a rubredoxin from the hyperthermophilic archaeon Pyrococcus furiosus (RdPf) and one from the mesophilic organism Desulfovibrio vulgaris (RdDv). The two proteins are simulated at four temperatures: 300 K, 373 K, 473 K (two sets), and 500 K; the various simulations extended from 200 ps to 1,020 ps. At room temperature, the two proteins are stable, remain close to the crystal structure, and exhibit similar dynamic behavior; the RMS residue fluctuations are slightly smaller in the hyperthermophilic protein. An analysis of the average energy contributions in the two proteins is made; the results suggest that the intraprotein energy stabilizes RdPf relative to RdDv. At 373 K, the mesophilic protein unfolds rapidly (it begins to unfold at 300 ps), whereas the hyperthermophilic does not unfold over the simulation of 600 ps. This is in accord with the expected stability of the two proteins. At 473 K, where both proteins are expected to be unstable, unfolding behavior is observed within 200 ps and the mesophilic protein unfolds faster than the hyperthermophilic one. At 500 K, both proteins unfold; the hyperthermophilic protein does so faster than the mesophilic protein. The unfolding behavior for the two proteins is found to be very similar. Although the exact order of events differs from one trajectory to another, both proteins unfold first by opening of the loop region to expose the hydrophobic core. This is followed by unzipping of the beta-sheet. The results obtained in the simulation are discussed in terms of the factors involved in flexibility and thermostability.
Collapse
Affiliation(s)
- T Lazaridis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massacusetts 02138, USA
| | | | | |
Collapse
|
116
|
Fusi P, Goossens K, Consonni R, Grisa M, Puricelli P, Vecchio G, Vanoni M, Zetta L, Heremans K, Tortora P. Extreme heat- and pressure-resistant 7-kDa protein P2 from the archaeon Sulfolobus solfataricus is dramatically destabilized by a single-point amino acid substitution. Proteins 1997; 29:381-90. [PMID: 9365992 DOI: 10.1002/(sici)1097-0134(199711)29:3<381::aid-prot11>3.0.co;2-j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study reports the characterization of the recombinant 7-kDa protein P2 from Sulfolobus solfataricus and the mutants F31A and F31Y with respect to temperature and pressure stability. As observed in the NMR, FTIR, and CD spectra, wild-type protein and mutants showed substantially similar structures under ambient conditions. However, midpoint transition temperatures of the denaturation process were 361, 334, and 347 K for wild type, F31A, and F31Y mutants, respectively: thus, alanine substitution of phenylalanine destabilized the protein by as much as 27 K. Midpoint transition pressures for wild type and F31Y mutant could not be accurately determined because they lay either beyond (wild type) or close to (F31Y) 14 kbar, a pressure at which water undergoes a phase transition. However, a midpoint transition pressure of 4 kbar could be determined for the F31A mutant, implying a shift in transition of at least 10 kbar. The pressure-induced denaturation was fully reversible; in contrast, thermal denaturation of wild type and mutants was only partially reversible. To our knowledge, both the pressure resistance of protein P2 and the dramatic pressure and temperature destabilization of the F31A mutant are unprecedented. These properties may be largely accounted for by the role of an aromatic cluster where Phe31 is found at the core, because interactions among aromatics are believed to be almost pressure insensitive; furthermore, the alanine substitution of phenylalanine should create a cavity with increased compressibility and flexibility, which also involves an impaired pressure and temperature resistance.
Collapse
Affiliation(s)
- P Fusi
- Dipartimento di Fisiologia e Biochimica generali, Università di Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y. Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 1997; 5:691-9. [PMID: 9195885 DOI: 10.1016/s0969-2126(97)00223-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nitrile hydratases are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alphabeta unit. We have determined the crystal structure of photoactivated iron-containing nitrile hydratase from Rhodococcus sp. R312 to 2.65 A resolution as a first step in the elucidation of its catalytic mechanism. RESULTS The alpha subunit consists of a long N-terminal arm and a C-terminal domain that forms a novel fold. This fold can be described as a four layered structure, alpha-beta-beta-alpha, with unusual connectivities between the beta strands. The beta subunit also contains a long N-terminal extension, a helical domain, and a C-terminal domain that folds into a beta roll. The two subunits form a tight heterodimer that is the functional unit of the enzyme. The active site is located in a cavity at the subunit-subunit interface. The iron centre is formed by residues from the alpha subunit only-three cysteine thiolates and two mainchain amide nitrogen atoms are ligands. CONCLUSIONS Nitrile hydratases contain a novel iron centre with a structure not previously observed in proteins; it resembles a hybrid of the iron centres of heme and Fe-S proteins. The low-spin electronic configuration presumably results in part from two Fe-amide nitrogen bonds. The structure is consistent with the metal ion having a role as a Lewis acid in the catalytic reaction.
Collapse
Affiliation(s)
- W Huang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
118
|
Allard P, Härd T. NMR Relaxation Mechanisms for Backbone Carbonyl Carbons in a 13 C, 15 N-Labeled Protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1997; 126:48-57. [PMID: 9252275 DOI: 10.1006/jmre.1997.1131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The predominant relaxation mechanisms for backbone carbonyl carbon (13 C') relaxation in a 13 C, 15 N-doubly enriched sample of the thermostable Sso7d protein have been investigated. Pulse sequences for measurements of longitudinal and transverse 13 C' relaxation rates were implemented, and these rates were measured at magnetic fields of 11.7 and 14.1 T. The field dependence in measured rates is small and consistent with a predominant contribution from chemical-shift anisotropy (CSA) to 13 C' relaxation. A pulse sequence for measurement of {1 H}-13 C' cross-relaxation rates (steady-state NOEs) was also developed. This experiment reveals a significant NOE between protons and all 13 C', indicating that dipolar interactions between these nuclei contribute to 13 C' relaxation. Experiments designed to suppress cross correlation between CSA relaxation and dipole-dipole (DD) relaxation due to neighboring 13 Calpha indicate that this effect is negligible. A more quantitative treatment is also presented, in which backbone dynamics parameters are fitted to average 13 C' relaxation rates using Lipari-Szabo expressions for the spectral density. This fit, which reproduces well expected backbone dynamics parameters for a folded protein, is used to estimate the relative contributions of various mechanisms to 13 C' relaxation. It is found that both longitudinal and transverse relaxation rates are dominated by CSA relaxation and contain significant contributions due to DD relaxation induced by nearby protons. Contributions from DD relaxation due to covalently bound 13 Calpha and 15 N are comparably small. The predominant effects of CSA and 1 H-13 C' DD interactions, for which physical and geometrical parameters are uncertain, complicate the use of 13 C' relaxation as a sequence-specific probe for protein backbone dynamics.
Collapse
Affiliation(s)
- P Allard
- Center for Structural Biochemistry, Royal Institute of Technology, Novum, Huddinge, S-141 57, Sweden
| | | |
Collapse
|
119
|
Ball LJ, Murzina NV, Broadhurst RW, Raine AR, Archer SJ, Stott FJ, Murzin AG, Singh PB, Domaille PJ, Laue ED. Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J 1997; 16:2473-81. [PMID: 9171360 PMCID: PMC1169847 DOI: 10.1093/emboj/16.9.2473] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The structure of a chromatin binding domain from mouse chromatin modifier protein 1 (MoMOD1) was determined using nuclear magnetic resonance (NMR) spectroscopy. The protein consists of an N-terminal three-stranded anti-parallel beta-sheet which folds against a C-terminal alpha-helix. The structure reveals an unexpected homology to two archaebacterial DNA binding proteins which are also involved in chromatin structure. Structural comparisons suggest that chromo domains, of which more than 40 are now known, act as protein interaction motifs and that the MoMOD1 protein acts as an adaptor mediating interactions between different proteins.
Collapse
Affiliation(s)
- L J Ball
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
A structural tree for beta-proteins with predominantly orthogonal beta-sheet packing has been constructed. The 3beta-corner, a structural motif that recurs in proteins of this class, is taken as a root structure of the tree. The 3beta-corner can be represented as a triple-stranded beta-sheet folded on to itself so that its two beta-beta-hairpins are packed approximately orthogonally in different layers and the central strand bends by approximately 90 degrees in a right-handed direction when passing from one layer to the other. The larger protein structures are obtained by stepwise addition of beta-strands to the root 3beta-corner taking into account a restricted set of rules inferred from known principles of protein structure. The protein structures that can be obtained in this way are grouped into one structural class and those found in branches of the structural tree into subclasses.
Collapse
Affiliation(s)
- A V Efimov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region.
| |
Collapse
|
121
|
Guagliardi A, Napoli A, Rossi M, Ciaramella M. Annealing of complementary DNA strands above the melting point of the duplex promoted by an archaeal protein. J Mol Biol 1997; 267:841-8. [PMID: 9135116 DOI: 10.1006/jmbi.1996.0873] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One enigma in the biology of hyperthermophilic microorganisms, living near or above 100 degrees C, is how their genomes can be stable and, at the same time, plastic at temperatures above the melting point. The nonspecific DNA-binding protein Sso7d of the hyperthermophilic archaeon Sulfolobus solfataricus is known to protect DNA from thermal denaturation. We report here that Sso7d promotes the renaturation of complementary DNA strands at temperatures above the melting point of the duplex. This novel annealing activity is strictly homology-dependent, and even one mismatch in a stretch of 17 complementary bases severely reduces its efficiency. Since pairing of homologous single strands is a key step in all fundamental processes involving nucleic acids, such as transcription, replication, recombination, and repair, Sso7d is a candidate component of the protein machinery devoted to the coupling of DNA stability to metabolic flexibility at high temperature.
Collapse
Affiliation(s)
- A Guagliardi
- Dipartimento di Chimica Organica e Biologica Università di Napoli, Italy
| | | | | | | |
Collapse
|
122
|
Knapp S, Karshikoff A, Berndt KD, Christova P, Atanasov B, Ladenstein R. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus. J Mol Biol 1996; 264:1132-44. [PMID: 9000635 DOI: 10.1006/jmbi.1996.0701] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thermal unfolding of the small hyperthermophilic DNA-binding protein Sso7d was studied by circular dichroism spectroscopy and differential scanning calorimetry. The unfolding transition can be described by a reversible two state process. Maximum stability was observed in the region between pH 4.5 and 7.0 where Sso7d unfolds with a melting temperature between 370.8 to 371.9 K and an unfolding enthalpy between 62.9 and 65.4 kcal/mol. The heat capacity differences between the native and the heat denatured states obtained by differential scanning calorimetry (620 cal/(molK)) and circular dichroism spectroscopy (580 cal/(mol K)) resulted in comparable values. The thermodynamic reason for the high melting temperature of Sso7d is the shallow stability curve with a broad free energy maximum, corresponding to the relatively small heat capacity change which was obtained. The calculated stability curve shows that Sso7d has, despite of its high melting temperature, an only moderate intrinsic stability, which reaches its maximum (approximately 7 kcal/mol) at 282 K. Sso7d is particularly poorly stabilized (approximately 1 kcal/mol) at the maximum physiological growth temperature of Sulfolobus solfataricus. Sso7d has furthermore untypically low specific enthalpy (0.99 kcal/(mol residue)) and entropy (2.99 cal/(mol K)) values at convergence temperatures. No significant differences in thermal stability of the partially methylated Sso7d from Sulfolobus solfataricus and the cloned non-methylated form of the protein expressed in Escherichia coli were observed.
Collapse
Affiliation(s)
- S Knapp
- Center for Structural Biochemistry, Karolinska Institutet, NOVUM, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
123
|
Lundbäck T, Härd T. Salt Dependence of the Free Energy, Enthalpy, and Entropy of Nonsequence Specific DNA Binding. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9614613] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Lundbäck
- Center for Structural Biochemistry, Karolinska Institutet and the Royal Institute of Technology, Novum, S-141 57 Huddinge, Sweden
| | - Torleif Härd
- Center for Structural Biochemistry, Karolinska Institutet and the Royal Institute of Technology, Novum, S-141 57 Huddinge, Sweden
| |
Collapse
|
124
|
Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Solution structure and peptide binding of the SH3 domain from human Fyn. Structure 1996; 4:705-14. [PMID: 8805554 DOI: 10.1016/s0969-2126(96)00076-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Src family of tyrosine kinases is involved in the propagation of intracellular signals from many transmembrane receptors. Each member of the family contains two domains that regulate interactions with other molecules, one of which is the Src homology 3 (SH3) domain. Although structures have previously been determined for SH3 domains, and ideas about peptide-binding modes have been proposed, their physiological role is still unclear. RESULTS We have determined the solution structure of the SH3 domain from the Src family tyrosine kinase Fyn in two forms: unbound and complexed with a peptide corresponding to a putative ligand sequence from phosphatidylinositol 3' kinase. Fyn SH3 shows the typical SH3 topology of two perpendicular three-stranded beta sheets and a single turn of 3(10) helix. The interaction of SH3 with three potential ligand peptides was investigated, demonstrating that they all bind to the same site on the molecule. A previous model for ligand binding to SH3 domains predicts binding in one of two orientations (class I or II), each characterized by a consensus sequence. The ligand with the closest match to the class I consensus sequence bound with highest affinity and in the predicted orientation. CONCLUSIONS The Fyn SH3 domain has a well-defined structure in solution. The relative binding affinities of the three ligand peptides and their orientation within the Fyn SH3 complex were consistent with recently proposed models for the binding of 'consensus' polyproline sequences. Although the affinities of consensus and non-consensus peptides are different, the degree of difference is not very large, suggesting that SH3 domains bind to polyproline peptides in a promiscuous manner.
Collapse
Affiliation(s)
- C J Morton
- Oxford Centre for Molecular Sciences, UK
| | | | | | | | | | | |
Collapse
|
125
|
Grayling RA, Sandman K, Reeve JN. DNA stability and DNA binding proteins. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:437-67. [PMID: 8791631 DOI: 10.1016/s0065-3233(08)60368-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R A Grayling
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
126
|
Narayana N, Matthews DA, Howell EE, Nguyen-huu X. A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site. NATURE STRUCTURAL BIOLOGY 1995; 2:1018-25. [PMID: 7583655 DOI: 10.1038/nsb1195-1018] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteria expressing R67-plasmid encoded dihydrofolate reductase (R67 DHFR) exhibit high-level resistance to the antibiotic trimethoprim. Native R67 DHFR is a 34,000 M(r) homotetramer which exists in equilibrium with an inactive dimeric form. The structure of native R67 DHFR has now been solved at 1.7 A resolution and is unrelated to that of chromosomal DHFR. Homotetrameric R67 DHFR has an unusual pore, 25 A in length, passing through the middle of the molecule. Two folate molecules bind asymmetrically within the pore indicating that the enzyme's active site consists of symmetry related binding surfaces from all four identical units.
Collapse
Affiliation(s)
- N Narayana
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
127
|
Consonni R, Limiroli R, Molinari H, Fusi P, Grisa M, Vanoni M, Tortora P. 1H-NMR and photo-CIDNP spectroscopies show a possible role for Trp23 and Phe31 in nucleic acid binding by P2 ribonuclease from the archaeon Sulfolobus solfataricus. FEBS Lett 1995; 372:135-9. [PMID: 7556654 DOI: 10.1016/0014-5793(95)00940-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Investigations were performed on recombinant ribonuclease P2 from Sulfolobus solfataricus, previously cloned and expressed in Escherichia coli [Fusi, P., Grisa, M., Mombelli, E., Consonni, R., Tortora, P. and Vanoni, M. (1995) Gene 154, 99-103]. NMR and photo-CIDNP spectroscopies showed that the enzyme possesses an aromatic cluster consisting of Phe5, Tyr7, Phe31 and Tyr33 while Trp23 is fully exposed to solvent. Phe31, Tyr33 and Trp23 are located within a triple stranded antiparallel beta-sheet, each one being part of an amino acid stretch matching consensus sequences for RNA binding. Phe31 and Trp23 are exposed to and specifically interact with a flavin dye used as a model ligand, with a topology reminiscent of that found in several eubacterial and eukariotic RNA-binding proteins.
Collapse
Affiliation(s)
- R Consonni
- Istituto di Chimica delle Macromolecole, Lab. NMR, CNR Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
128
|
Eijkelenboom AP, Lutzke RA, Boelens R, Plasterk RH, Kaptein R, Hård K. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. NATURE STRUCTURAL BIOLOGY 1995; 2:807-10. [PMID: 7552753 DOI: 10.1038/nsb0995-807] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have determined the solution structure of the DNA-binding domain of HIV-1 integrase by nuclear magnetic resonance spectroscopy. In solution, this carboxyterminal region of integrase forms a homodimer, consisting of two structures that closely resemble Src-homology 3 (SH3) domains. Lys 264, previously identified by mutagenesis studies to be important for DNA binding of the integrase, as well as several adjacent basic amino acids are solvent exposed. The identification of an SH3-like domain in integrase provides a new potential target for drug design.
Collapse
Affiliation(s)
- A P Eijkelenboom
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
129
|
McAfee JG, Edmondson SP, Datta PK, Shriver JW, Gupta R. Gene cloning, expression, and characterization of the Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry 1995; 34:10063-77. [PMID: 7632679 DOI: 10.1021/bi00031a031] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genes for two Sac7 DNA-binding proteins, Sac7d and Sac7e, from the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned into Escherichia coli and sequenced. The sac7d and sac7e open reading frames encode 66 amino acid (7608 Da) and 65 amino acid (7469 Da) proteins, respectively. Southern blots indicate that these are the only two Sac7 protein genes in S. acidocaldarius, each present as a single copy. Sac7a, b, and c proteins appear to be carboxy-terminal modified Sac7d species. The transcription initiation and termination regions of the sac7d and sac7e genes have been identified along with the promoter elements. Potential ribosome binding sites have been identified downstream of the initiator codons. The sac7d gene has been expressed in E. coli, and various physical properties of the recombinant protein have been compared with those of native Sac7. The UV absorbance spectra and extinction coefficients, the fluorescence excitation and emission spectra, the circular dichroism, and the two-dimensional double-quantum filtered 1H NMR spectra of the native and recombinant species are essentially identical, indicating essentially identical local and global folds. The recombinant and native proteins bind and stabilize double-stranded DNA with a site size of 3.5 base pairs and an intrinsic binding constant of 2 x 10(7) M-1 for poly[dGdC].poly[dGdC] in 0.01 M KH2PO4 at pH 7.0. The availability of the recombinant protein permits a direct comparison of the thermal stabilities of the methylated and unmethylated forms of the protein. Differential scanning calorimetry demonstrates that the native protein is extremely thermostable and unfolds reversibly at pH 6.0 with a Tm of approximately 100 degrees C, while the recombinant protein unfolds at 92.7 degrees C.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Base Sequence
- Blotting, Southern
- Calorimetry, Differential Scanning
- Circular Dichroism
- Cloning, Molecular
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Escherichia coli/genetics
- Gene Dosage
- Genes, Bacterial/genetics
- Magnetic Resonance Spectroscopy
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Binding
- Protein Denaturation
- Recombinant Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrophotometry, Ultraviolet
- Sulfolobus acidocaldarius/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- J G McAfee
- Department of Medical Biochemistry, School of Medicine, Southern Illinois University, Carbondale 62901-4413, USA
| | | | | | | | | |
Collapse
|
130
|
Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 1995; 34:9826-33. [PMID: 7632683 DOI: 10.1021/bi00031a002] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The solution structure of the DNA binding domain of HIV-1 integrase (residues 220-270) has been determined by multidimensional NMR spectroscopy. The protein is a dimer in solution, and each subunit is composed of a five-stranded beta-barrel with a topology very similar to that of the SH3 domain. The dimer is formed by a stacked beta-interface comprising strands 2, 3, and 4, with the two triple-stranded antiparallel beta-sheets, one from each subunit, oriented antiparallel to each other. One surface of the dimer, bounded by the loop between strands beta 1 and beta 2, forms a saddle-shaped groove with dimensions of approximately 24 x 23 x 12 A in cross section. Lys264, which has been shown from mutational data to be involved in DNA binding, protrudes from this surface, implicating the saddle-shaped groove as the potential DNA binding site.
Collapse
Affiliation(s)
- P J Lodi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Kawaguchi S, Kuramitsu S. Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis. Electrophoresis 1995; 16:1060-6. [PMID: 7498128 DOI: 10.1002/elps.11501601176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thermostable proteins from Thermus thermophilus HB8, an extremely thermophilic bacterium, were separated by two-dimensional gel electrophoresis. About 1200 spots were detected with silver staining on the gel between pH 3 and 10. According to the genome size of T. thermophilus, we consider that more than half of the proteins in the cell are visualized on a two-dimensional gel. Using comigrated standard marker proteins, the molecular weight and isoelectric point of each protein spot were calculated. The average molecular weight and isoelectric point values were estimated to be 30 000 and 5.2, respectively. The average size and isoelectric point of detected protein from T. thermophilus were smaller and more acidic than those from Escherichia coli. After the protein spots had been electroblotted onto a polyvinylidene difluoride membrane and stained with Coomassie Brilliant Blue, the N-terminal amino acid sequences were determined for about twenty protein spots. Few proteins had blocked N-termini. Some spots were identified as proteins whose sequences had been reported previously from T. thermophilus. Others had amino acid sequences homologous with those of various proteins from other organisms. The amino acid sequence information of this report will be useful for obtaining stable proteins and for identifying open reading frames determined from the genome DNA sequence. Considering its small genome size and protein stability, T. thermophilus will be an excellent candidate for studying the molecular biology of an autotrophic living cell at the atomic level.
Collapse
Affiliation(s)
- S Kawaguchi
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | |
Collapse
|
132
|
Abstract
This article examines the published evidence in support of the classification of organisms into three groups (Bacteria, Archae, and Eukarya) instead of two groups (prokaryotes and eukaryotes) and summarizes the comparative biochemistry of each of the known histone-like, nucleoid DNA-binding proteins. The molecular structures and amino acid sequences of Archae are more similar to those of Eukarya than of Bacteria, with a few exceptions. Cytochemical methodology employed for localizing these proteins in archaeal and bacterial cells has also been reviewed. It is becoming increasingly apparent that these proteins participate both in the organization of DNA and in the control of gene expression. Evidence obtained from biochemical properties, structural and functional differences, and the ultrastructural location of these proteins, as well as from gene mutations clearly justifies the division of prokaryotes into bacterial and archaeal groups. Indeed, chromosomes, whether they be nuclear, prokaryotic, or organellar, are invariably complexed with abundant, small, basic proteins that bind to DNA with low sequence specificity. These proteins include the histones, histone-like proteins, and nonhistone high mobility group (HMG) proteins.
Collapse
Affiliation(s)
- M A Hayat
- Department of Biology, Kean College of New Jersey Union 07083, USA
| | | |
Collapse
|