101
|
Sadaie MR. Can heparins stimulate bone cancer stem cells and interfere with tumorigenesis? Ther Adv Drug Saf 2014; 2:271-82. [PMID: 25083219 DOI: 10.1177/2042098611419312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heparin and heparan sulfate, a variety of negatively charged highly sulfated polysaccharides, can influence the biological functions of human bone morphogenetic proteins (BMPs). Notably, BMPs control numerous essential biological activities and processes, such as bone formation, bone turnover, brain development, tumor initiation, and progression. BMPs also enhance the repair of bone tissue injuries and are used in bone remodeling alongside implantable prosthetic devices. BMPs either potentiate or inhibit the growth of cancer stem cells (CSCs). This dual biological effect appears to depend upon the cell type, underlying cytogenetic and biochemical aberrations in various distinct malignancies. Similarly, heparins may modulate CSCs positively or negatively through BMPs. The primary aims of this review are to investigate whether heparin prophylaxis would likely stimulate the propagation of a chemotherapy-resistant subpopulation of CSCs and aggravate tumor response to treatment, and result in tumor expansion, tumor recurrence and metastasis. The secondary aim is to document whether such detrimental effects surpass their beneficial effects as anticoagulants in primary bone cancers such as osteosarcoma. The current state of scientific knowledge based on key published articles from the standpoint of rigidity of data and identification of data gaps is discussed.
Collapse
Affiliation(s)
- M Reza Sadaie
- NovoMed Consulting, 12214 Plum Orchard Drive, Silver Spring, MD 20904, USA
| |
Collapse
|
102
|
Park CY, Min KN, Son JY, Park SY, Nam JS, Kim DK, Sheen YY. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial–mesenchymal transition. Cancer Lett 2014; 351:72-80. [DOI: 10.1016/j.canlet.2014.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 01/13/2023]
|
103
|
Molecular regulation of bone marrow metastasis in prostate and breast cancer. BONE MARROW RESEARCH 2014; 2014:405920. [PMID: 25147739 PMCID: PMC4134798 DOI: 10.1155/2014/405920] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a multistep process, which refers to the ability to leave a primary tumor through circulation toward the distant tissue and form a secondary tumor. Bone is a common site of metastasis, in which osteolytic and osteoblastic metastasis are observed. Signaling pathways, chemokines, growth factors, adhesion molecules, and cellular interactions as well as miRNAs have been known to play an important role in the development of bone metastasis. These factors provide an appropriate environment (soil) for growth and survival of metastatic tumor cells (seed) in bone marrow microenvironment. Recognition of these factors and determination of their individual roles in the development of metastasis and disruption of cellular interactions can provide important therapeutic targets for treatment of these patients, which can also be used as prognostic and diagnostic biomarkers. Thus, in this paper, we have attempted to highlight the molecular regulation of bone marrow metastasis in prostate and breast cancers.
Collapse
|
104
|
Chu H, Luo H, Wang H, Chen X, Li P, Bai Y, Zhang F, Cheng R, Chen S, Wang Y, Zhao G, Zhang G. Silencing BMP-2 expression inhibits A549 and H460 cell proliferation and migration. Diagn Pathol 2014; 9:123. [PMID: 24946687 PMCID: PMC4070338 DOI: 10.1186/1746-1596-9-123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Abstract Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4263254471298866
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Guoqiang Zhao
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | | |
Collapse
|
105
|
The role of bone morphogenetic proteins in myeloma cell survival. Cytokine Growth Factor Rev 2014; 25:343-50. [PMID: 24853340 DOI: 10.1016/j.cytogfr.2014.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Multiple myeloma is characterized by slowly growing clones of malignant plasma cells in the bone marrow. The malignant state is frequently accompanied by osteolytic bone disease due to a disturbed balance between osteoblasts and osteoclasts. Bone morphogenetic proteins (BMPs) are present in the bone marrow and are important for several aspects of myeloma pathogenesis including growth and survival of tumor cells, bone homeostasis, and anemia. Among cancer cells, myeloma cells are particularly sensitive to growth inhibition and apoptosis induced by BMPs and therefore represent good models to study BMP receptor usage and signaling. Our review highlights and discusses the current knowledge on BMP signaling in myeloma.
Collapse
|
106
|
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014:141747. [PMID: 24891760 PMCID: PMC4033515 DOI: 10.1155/2014/141747] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is potentially life-threatening malignancy that still causes high mortality among women. Scientific research in this field is focused on deeper understanding of pathogenesis and progressing of BC, in order to develop relevant diagnosis and improve therapeutic treatment. Multifunctional cytokine TGF- β 1 is one of many factors that have a direct influence on BC pathophysiology. Expression of TGF- β 1, induction of canonical and noncanonical signaling pathways, and mutations in genes encoding TGF- β 1 and its receptors are correlated with oncogenic activity of this cytokine. In early stages of BC this cytokine inhibits epithelial cell cycle progression and promotes apoptosis, showing tumor suppressive effects. However, in late stages, TGF- β 1 is linked with increased tumor progression, higher cell motility, cancer invasiveness, and metastasis. It is also involved in cancer microenvironment modification and promotion of epithelial to mesenchymal transition (EMT). This review summarizes the current knowledge on the phenomenon called "TGF- β 1 paradox", showing that better understanding of TGF- β 1 functions can be a step towards development of new therapeutic approaches. According to current knowledge several drugs against TGF- β 1 have been developed and are either in nonclinical or in early stages of clinical investigation.
Collapse
Affiliation(s)
- Joanna Magdalena Zarzynska
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
107
|
Hao J, Lee R, Chang A, Fan J, Labib C, Parsa C, Orlando R, Andresen B, Huang Y. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer. PLoS One 2014; 9:e90748. [PMID: 24603907 PMCID: PMC3946239 DOI: 10.1371/journal.pone.0090748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 01/29/2023] Open
Abstract
The bone morphogenetic protein (BMP) signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC) but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (JH); (YH)
| | - Rachel Lee
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Andy Chang
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Jeffery Fan
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Chantelle Labib
- College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Cyrus Parsa
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Robert Orlando
- Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Bradley Andresen
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Ying Huang
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (JH); (YH)
| |
Collapse
|
108
|
Ren W, Sun X, Wang K, Feng H, Liu Y, Fei C, Wan S, Wang W, Luo J, Shi Q, Tang M, Zuo G, Weng Y, He T, Zhang Y. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression. Mol Biol Rep 2014; 41:1373-83. [PMID: 24413988 DOI: 10.1007/s11033-013-2982-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/24/2013] [Indexed: 01/14/2023]
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.
Collapse
Affiliation(s)
- Wei Ren
- Department of General Surgery, The First Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Slattery ML, Lundgreen A, Stern MC, Hines L, Wolff RK, Giuliano AR, Baumgartner KB, John EM. The influence of genetic ancestry and ethnicity on breast cancer survival associated with genetic variation in the TGF-β-signaling pathway: The Breast Cancer Health Disparities Study. Cancer Causes Control 2013; 25:293-307. [PMID: 24337772 DOI: 10.1007/s10552-013-0331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The TGF-β signaling pathway regulates cellular proliferation and differentiation. We evaluated genetic variation in this pathway, its association with breast cancer survival, and survival differences by genetic ancestry and self-reported ethnicity. The Breast Cancer Health Disparities Study includes participants from the 4-Corners Breast Cancer Study (n = 1,391 cases) and the San Francisco Bay Area Breast Cancer Study (n = 946 cases) who have been followed for survival. We evaluated 28 genes in the TGF-β signaling pathway using a tagSNP approach. Adaptive rank truncated product (ARTP) was used to test the gene and pathway significance by Native American (NA) ancestry and by self-reported ethnicity (non-Hispanic white (NHW) and Hispanic/NA). Genetic variation in the TGF-β signaling pathway was associated with overall breast cancer survival (P ARTP = 0.05), especially for women with low NA ancestry (P ARTP = 0.007) and NHW women (P ARTP = 0.006). BMP2, BMP4, RUNX1, and TGFBR3 were significantly associated with breast cancer survival overall (P ARTP = 0.04, 0.02, 0.002, and 0.04, respectively). Among women with low NA, ancestry associations were as follows: BMP4 (P ARTP = 0.007), BMP6 (P ARTP = 0.001), GDF10 (P ARTP = 0.05), RUNX1 (P ARTP = 0.002), SMAD1 (P ARTP = 0.05), and TGFBR2 (P ARTP = 0.02). A polygenic risk model showed that women with low NA ancestry and high numbers of at-risk alleles had twice the risk of dying from breast cancer as did women with high NA ancestry. Our data suggest that genetic variation in the TGF-β signaling pathway influences breast cancer survival. Associations were similar when the analyses were stratified by genetic ancestry or by self-reported ethnicity.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA,
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenetic protein signaling. Cell Signal 2013; 26:352-62. [PMID: 24280125 DOI: 10.1016/j.cellsig.2013.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Increasing evidence supports the theory that tumor growth, homeostasis, and recurrence are dependent on a small subset of cells with stem cell properties, redefined cancer initiating cells (CICs) or cancer stem cells. Bone morphogenetic proteins (BMPs) are involved in cell-fate specification during embryogenesis, in the maintenance of developmental potency in adult stem cells and may contribute to sustain CIC populations in breast carcinoma. Using the mouse A17 cell model previously related to mesenchymal cancer stem cells and displaying properties of CICs, we investigated the role of BMPs in the control of breast cancer cell plasticity. We showed that an autocrine activation of BMP signaling is crucial for the maintenance of mesenchymal stem cell phenotype and tumorigenic potential of A17 cells. Pharmacological inhibition of BMP signaling cascade by Dorsomorphin resulted in the acquisition of epithelial-like traits by A17 cells, including expression of Citokeratin-18 and E-cadherin, through downregulation of Snail and Slug transcriptional factors and Cyclooxygenase-2 (COX2) expression, and in the loss of their stem-features and self-renewal ability. This phenotypic switch compromised A17 cell motility, invasiveness and in vitro tumor growth. These results reveal that BMPs are key molecules at the crossroad between stemness and cancer.
Collapse
|
111
|
Fei ZH, Yao CY, Yang XL, Huang XE, Ma SL. Serum BMP-2 Up-regulation as an Indicator of Poor Survival in Advanced Non-small Cell Lung Cancer Patients. Asian Pac J Cancer Prev 2013; 14:5293-9. [DOI: 10.7314/apjcp.2013.14.9.5293] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
112
|
McCormack N, O'Dea S. Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell Signal 2013; 25:2856-62. [PMID: 24044921 DOI: 10.1016/j.cellsig.2013.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a process in which fully differentiated epithelial cells lose many of their epithelial characteristics and adopt features typical of mesenchymal cells, thus allowing cells to become migratory and invasive. EMT is a critical process in development and its role in cancer and fibrosis is becoming increasingly recognised. It is also becoming apparent that EMT is not just restricted to embryonic development and disease in adults, but in fact may be an important process for the maintenance and regeneration of adult tissue architecture. While transforming growth factor-β (TGF-β) is considered a prototypic inducer of EMT, relatively little is known about other signalling molecules that regulate EMT. Bone morphogenic proteins (BMPs) are members of the TGF-β superfamily and 20 different human BMPs have been identified. Originally named for their effects on bone, these proteins are now considered to be key morphogenetic signals that orchestrate tissue architecture throughout the body. BMP2, -4 and -7 are the best studied to date. There are disparate reports of the roles of BMPs in EMT during development, cancer and fibrosis. Here, we present an overview of this literature as well as the emerging role of EMT in tissue regeneration and the involvement of BMPs in regulating this process.
Collapse
Affiliation(s)
- Natasha McCormack
- Institute of Immunology, National University of Ireland Maynooth, Ireland.
| | | |
Collapse
|
113
|
Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug. Oncogenesis 2013; 2:e66. [PMID: 23978876 PMCID: PMC3759128 DOI: 10.1038/oncsis.2013.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma is a form of cancer that is highly resistant to conventional cancer therapy for which no major therapeutic advances have been introduced. Here, we identify gremlin-1, a known bone morphogenetic protein inhibitor crucial for embryonic development, as a potential therapeutic target for mesothelioma. We found high expression levels of gremlin-1 in the mesothelioma tumor tissue, as well as in primary mesothelioma cells cultured from pleural effusion samples. Downregulation of gremlin-1 expression by siRNA-mediated silencing in a mesothelioma cell line inhibited cell proliferation. This was associated with downregulation of the transcription factor slug as well as mesenchymal proteins linked to cancer epithelial-to-mesenchymal transition. Further, resistance to paclitaxel-induced cell death was associated with high gremlin-1 and slug expression. Treatment of gremlin-1-silenced mesothelioma cells with paclitaxel or pemetrexed resulted in efficient loss of cell survival. Finally, our data suggest that concomitant upregulation of fibrillin-2 in mesothelioma provides a mechanism for extracellular localization of gremlin-1 to the tumor microenvironment. This was supported by the demonstration of interactions between gremlin-1, and fibrillin-1 and -2 peptides as well as by colocalization of gremlin-1 to fibrillin microfibrils in cells and tumor tissue samples. Our data suggest that gremlin-1 is also a potential target for overcoming drug resistance in mesothelioma.
Collapse
|
114
|
Breen MJ, Moran DM, Liu W, Huang X, Vary CPH, Bergan RC. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors. PLoS One 2013; 8:e72407. [PMID: 23967299 PMCID: PMC3742533 DOI: 10.1371/journal.pone.0072407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 07/15/2013] [Indexed: 12/25/2022] Open
Abstract
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.
Collapse
Affiliation(s)
- Michael J. Breen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diarmuid M. Moran
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenzhe Liu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
115
|
Lv Z, Yang D, Li J, Hu M, Luo M, Zhan X, Song P, Liu C, Bai H, Li B, Yang Y, Chen Y, Shi Q, Weng Y. Bone morphogenetic protein 9 overexpression reduces osteosarcoma cell migration and invasion. Mol Cells 2013; 36:119-26. [PMID: 23807047 PMCID: PMC3887952 DOI: 10.1007/s10059-013-0043-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/08/2013] [Accepted: 05/24/2013] [Indexed: 01/24/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is known to promote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF-β family expressed in a variety of human carcinoma cell lines. The role of bone morphogenetic protein 9 (BMP9), the most powerful osteogenic factor, in osteosarcoma (OS) progression has not been fully clarified. The expression of BMP9 and its receptors in OS cell lines was analyzed by RT-PCR. We found that BMP9 and its receptors were expressed in OS cell lines. We further investigated the influence of BMP9 on the biological behaviors of OS cells. BMP9 overexpression in the OS cell lines 143B and MG63 inhibited in vitro cell migration and invasion. We further investigated the expression of a panel of cancer-related genes and found that BMP9 overexpression increased the phosphorylation of Smad1/5/8 proteins, increased the expression of ID1, and reduced the expression and activity of matrix metalloproteinase 9 (MMP9) in OS cells. BMP9 silencing induced the opposite effects. We also found that BMP9 may not affect the chemokine (C-X-C motif) ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis to regulate the invasiveness and metastatic capacity of OS cells. Interestingly, CXCR4 was expressed in both 143B and MG63 cells, while CXCL12 was only detected in MG63 cells. Taken together, we hypothesize that BMP9 inhibits the migration and invasiveness of OS cells through a Smad-dependent pathway by downregulating the expression and activity of MMP9.
Collapse
Affiliation(s)
- Zilan Lv
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Dandan Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Jie Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Min Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Min Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Xiaoqin Zhan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Peipei Song
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Chen Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Huili Bai
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Baolin Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Yang Yang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Yingying Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Qiong Shi
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| | - Yaguang Weng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education and School of Clinical Diagnostic and Laboratory Medicine, Chongqing Medical University, Chongqing 400016,
People’s Republic of China
| |
Collapse
|
116
|
Wang L, Park P, La Marca F, Than K, Rahman S, Lin CY. Bone formation induced by BMP-2 in human osteosarcoma cells. Int J Oncol 2013; 43:1095-102. [PMID: 23900689 PMCID: PMC3829777 DOI: 10.3892/ijo.2013.2030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/09/2013] [Indexed: 12/28/2022] Open
Abstract
Our previous studies demonstrated that BMP-2 inhibits the tumorigenicity of cancer stem cells identified as cells with high aldehyde dehydrogenase activity (ALDH
br
cells) from the human osteosarcoma cell line OS99-1. We further investigated whether BMP-2 is capable of inducing bone formation in OS99-1 cells. Flow cytometry sorting was used to isolate tumorigenic ALDH
br
and non-tumorigenic ALDH
lo
cells. qRT-PCR was used to quantify the gene expression. A xenograft model was used to verify the bone formation
in vivo
. There was significantly higher mRNA expression of BMPR1B and BMPR2 in ALDH
lo
cells compared with that in ALDH
br
cells and the BMPR1B expression in ALDH
lo
cells was ∼8-fold higher compared to that in ALDH
br
cells. BMP-2 was also found to induce higher transcription of osteogenic markers Runx-2, Osterix (Osx), alkaline phosphatase (ALP) and collagen type I in ALDH
lo
cells compared to ALDH
br
cells, which were mediated by the canonical Smad signaling pathway.
In vivo
, BMP-2 was identified to induce bone formation in both ALDH
br
and ALDH
lo
cells. All animals receiving 1×10
4
ALDH
lo
cells treated with 30
μ
g of BMP-2 per animal showed bone formation within 1–2 weeks after injection in mice. Bone formation induced by BMP-2 in ALDH
lo
cells showed significantly more bone mineral content compared to that in ALDH
br
cells. BMP-2 induces bone formation in heterogeneous osteosarcoma cells and BMP-2 may have a promising therapeutic role for treating human osteosarcoma by inducing differentiation along an osteogenic pathway.
Collapse
Affiliation(s)
- Lin Wang
- Spine Research Laboratory, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
117
|
Ehata S, Yokoyama Y, Takahashi K, Miyazono K. Bi-directional roles of bone morphogenetic proteins in cancer: Another molecular Jekyll and Hyde? Pathol Int 2013; 63:287-96. [DOI: 10.1111/pin.12067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Shogo Ehata
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Yuichiro Yokoyama
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Kei Takahashi
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| | - Kohei Miyazono
- Department of Molecular Pathology; Graduate School of Medicine; The University of Tokyo; Tokyo; Japan
| |
Collapse
|
118
|
Saitoh M, Shirakihara T, Fukasawa A, Horiguchi K, Sakamoto K, Sugiya H, Beppu H, Fujita Y, Morita I, Miyazono K, Miyazawa K. Basolateral BMP signaling in polarized epithelial cells. PLoS One 2013; 8:e62659. [PMID: 23675417 PMCID: PMC3652834 DOI: 10.1371/journal.pone.0062659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER), counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.
Collapse
Affiliation(s)
- Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
120
|
Cox RF, Morgan MP. Microcalcifications in breast cancer: Lessons from physiological mineralization. Bone 2013; 53:437-50. [PMID: 23334083 DOI: 10.1016/j.bone.2013.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
Mammographic mammary microcalcifications are routinely used for the early detection of breast cancer, however the mechanisms by which they form remain unclear. Two species of mammary microcalcifications have been identified; calcium oxalate and hydroxyapatite. Calcium oxalate is mostly associated with benign lesions of the breast, whereas hydroxyapatite is associated with both benign and malignant tumors. The way in which hydroxyapatite forms within mammary tissue remains largely unexplored, however lessons can be learned from the process of physiological mineralization. Normal physiological mineralization by osteoblasts results in hydroxyapatite deposition in bone. This review brings together existing knowledge from the field of physiological mineralization and juxtaposes it with our current understanding of the genesis of mammary microcalcifications. As an increasing number of breast cancers are being detected in their non-palpable stage through mammographic microcalcifications, it is important that future studies investigate the underlying mechanisms of their formation in order to fully understand the significance of this unique early marker of breast cancer.
Collapse
Affiliation(s)
- Rachel F Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
121
|
Co-evolution of breast-to-brain metastasis and neural progenitor cells. Clin Exp Metastasis 2013; 30:753-68. [PMID: 23456474 DOI: 10.1007/s10585-013-9576-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/18/2013] [Indexed: 12/17/2022]
Abstract
Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling.
Collapse
|
122
|
Li Q, Gu X, Weng H, Ghafoory S, Liu Y, Feng T, Dzieran J, Li L, Ilkavets I, Kruithof-de Julio M, Munker S, Marx A, Piiper A, Augusto Alonso E, Gretz N, Gao C, Wölfl S, Dooley S, Breitkopf-Heinlein K. Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci 2013; 104:398-408. [PMID: 23281849 DOI: 10.1111/cas.12093] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 02/02/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism to initiate cancer invasion and metastasis. Bone morphogenetic protein (BMP)-9 is a member of the transforming growth factor (TGF)-β superfamily. It has been suggested to play a role in cancer development in some non-hepatic tumors. In the present study, two hepatocellular carcinoma (HCC) lines, HLE and HepG2, were treated with BMP-9 in vitro, and phenotypic changes and cell motility were analyzed. In situ hybridization (ISH) and immunohistochemical analyses were performed with human HCC tissue samples in order to assess expression levels of BMP-9. In vivo, BMP-9 protein and mRNA were expressed in all the tested patients to diverse degrees. At the protein level, mildly positive (1 + ) BMP-9 staining could be observed in 25/41 (61%), and moderately to strongly positive (2 + ) in 16/41 (39%) of the patients. In 27/41 (65%) patients, the BMP-9 protein expression level was consistent with the mRNA expression level as measured by ISH. In those patients with 2 + protein level, nuclear pSmad1 expression in cancer cells was also significantly increased. Expression of BMP-9 was positively related to nuclear Snail expression and reversely correlated to cell surface E-cadherin expression, although this did not reach statistical significance. Expression levels of BMP-9 were significantly associated with the T stages of the investigated tumors and high levels of BMP-9 were detected by immunofluorescence especially at the tumor borders in samples from an HCC mouse model. In vitro, BMP-9 treatment caused a reduction of E-cadherin and ZO-1 and an induction of Vimentin and Snail expression. Furthermore, cell migration was enhanced by BMP-9 in both HCC cell lines. These results imply that EMT induced by BMP-9 is related to invasiveness of HCC.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicine II, Section Molecular Hepatology - Alcohol Associated Diseases, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
STUDY DESIGN In vitro and in vivo study. OBJECTIVE To evaluate the role of recombinant human bone morphogenetic protein-2 (rhBMP2) on breast cancer cell (MDA-MB-231 cells) growth. SUMMARY OF BACKGROUND DATA Bone morphogenetic proteins (BMPs) are expressed in a variety of human carcinoma cell lines and are known to promote tumor invasion and metastasis. However, their roles in tumor progression have not been fully clarified. In addition, there is no in vivo study regarding the inhibitory effect of BMP2 on breast cancer cell proliferation. METHOD Cell proliferation was determined by BrdU incorporation assay and flow cytometry. BMP2 signal transduction pathways were estimated on Western blot. Fifteen animals were divided into 2 groups; 1 (control = 5) was breast cancer cells alone, while the other (experiment = 5) was rhBMP2 + breast cancer cells. Cancer cells were injected into 2 sites (subcutaneous and femur) of nude mice with or without BMP2. Tumor size was determined by direct measurements for subcutaneous tumor formation and by femur radiographs. Histological and immunohistochemical analyses were performed. RESULTS RhBMP2 inhibited the proliferation of MDA-MB-231 cells in vitro. Inhibition was associated with changes in both the Smad and Wnt signaling pathways and was ultimately mediated through effects on various cell cycle proteins. Furthermore, rhBMP2 inhibited the growth of MDA-MB-231 cells injected both subcutaneously and intrafemorally. CONCLUSION In this model using human breast adenocarcinoma cell line, rhBMP2 has no stimulatory effect of tumor growth. Therefore, we can provide the basic science data to support the utilization in the management of patients with spine tumor in the future.
Collapse
|
124
|
Mechanistic evaluation of a novel small molecule targeting mitochondria in pancreatic cancer cells. PLoS One 2013; 8:e54346. [PMID: 23349858 PMCID: PMC3549929 DOI: 10.1371/journal.pone.0054346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/12/2012] [Indexed: 12/25/2022] Open
Abstract
Background Pancreatic cancer is one of the deadliest cancers with a 5-year survival rate of 6%. Therapeutic options are very limited and there is an unmet medical need for safe and efficacious treatments. Cancer cell metabolism and mitochondria provide unexplored targets for this disease. We recently identified a novel class of triphenylphosphonium salts, TP compounds, with broad- spectrum anticancer properties. We examined the ability of our prototypical compound TP421– chosen for its fluorescent properties – to inhibit the growth of pancreatic cancer cells and further investigated the molecular mechanisms by which it exerts its anticancer effects. Methodology/Principal Findings TP421 exhibited sub-micromolar IC50 values in all the pancreatic cancer cell lines tested using MTT and colony formation assays. TP421 localized predominantly to mitochondria and induced G0/G1 arrest, ROS accumulation, and activation of several stress-regulated kinases. Caspase and PARP-1 cleavage were observed indicating an apoptotic response while LC3B-II and p62 were accumulated indicating inhibition of autophagy. Furthermore, TP421 induced de-phosphorylation of key signaling molecules involved in FAK mediated adhesion that correlated with inhibition of cell migration. Conclusions/Significance TP421 is a representative compound of a new promising class of mitochondrial-targeted agents useful for pancreatic cancer treatment. Because of their unique mechanism of action and efficacy further development is warranted.
Collapse
|
125
|
Balboni AL, Hutchinson JA, DeCastro AJ, Cherukuri P, Liby K, Sporn MB, Schwartz GN, Wells WA, Sempere LF, Yu PB, DiRenzo J. ΔNp63α-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Cancer Res 2012; 73:1020-30. [PMID: 23243027 DOI: 10.1158/0008-5472.can-12-2862] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of regenerative stasis within diverse epithelial tissues. In squamous carcinomas, TP63 is commonly amplified, and ΔNp63α confers a potent survival advantage. Genome-wide occupancy studies show that ΔNp63 promotes bidirectional target gene regulation by binding more than 5,000 sites throughout the genome; however, the subset of targets mediating discreet activities of TP63 remains unclear. We report that ΔNp63α activates bone morphogenic proteins (BMP) signaling by inducing the expression of BMP7. Immunohistochemical analysis indicates that hyperactivation of BMP signaling is common in human breast cancers, most notably in the basal molecular subtype, as well as in several mouse models of breast cancer. Suppression of BMP signaling in vitro with LDN193189, a small-molecule inhibitor of BMP type I receptor kinases, represses clonogenicity and diminishes the cancer stem cell-enriched ALDH1(+) population. Importantly, LDN193189 blocks reconstitution of mixed ALDH1(+)/ALDH1(-) cultures indicating that BMP signaling may govern aspects of cellular plasticity within tumor hierarchies. These results show that BMP signaling enables reversion of committed populations to a stem-like state, potentially supporting progression and maintenance of tumorigenesis. Treatment of a mouse model of breast cancer with LDN193189 caused reduced expression of markers associated with epithelial-to-mesenchymal transition (EMT). Furthermore, in vivo limiting dilution analysis assays revealed that LDN193189 treatment suppressed tumor-initiating capacity and increased tumor latency. These studies support a model in which ΔNp63α-mediated activation of BMP signaling governs epithelial cell plasticity, EMT, and tumorigenicity during breast cancer initiation and progression.
Collapse
Affiliation(s)
- Amanda L Balboni
- Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, The Audrey and Theodor Geisel School of Medicine at Dartmouth, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Karathanasi V, Tosios KI, Nikitakis NG, Piperi E, Koutlas I, Trimis G, Sklavounou A. TGF-β1, Smad-2/-3, Smad-1/-5/-8, and Smad-4 signaling factors are expressed in ameloblastomas, adenomatoid odontogenic tumors, and calcifying cystic odontogenic tumors: an immunohistochemical study. J Oral Pathol Med 2012; 42:415-23. [PMID: 23157422 DOI: 10.1111/jop.12016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The TGF-β/Smad signaling pathway regulates diverse cellular functions, including tooth development, and is involved in numerous pathological processes such as tumorigenesis. The aim of this study was to investigate the immunoexpression of the TGF-β/Smad signaling pathway members in ameloblastoma (AM), calcifying cystic odontogenic tumor (CCOT), and adenomatoid odontogenic tumor (AOT). MATERIALS AND METHODS This retrospective cross-sectional study included 65 tissue specimens: 34 AMs, 13 CCOTs, and 18 AOTs. Serial sections were immunohistochemically stained with TGF-β1, Smad-4, Smad-1/-5/-8, and Smad-2/-3 antibodies, and a semiquantitative measurement of the positive cells was carried out by two oral pathologists using a 0-3 scale (0: no immunoreactivity, 1: <20% positive cells, 2: 20-50% positive cells, 3: >50% positive cells). RESULTS All biomarkers studied were found significantly decreased in AM compared to CCOT and AOT. AOT and CCOT expressed Smad-1/-5/-8 more strongly compared to AM (OR = 11.66, P < 0.001 and OR = 5.34, P = 0.013, respectively), and Smad-2/-3 immunostaining was found significantly increased in CCOT (OR = 10.42, P = 0.001) and AOT (OR = 5.16, P < 0.004) compared to AM. Similarly, Smad-4 was expressed more strongly in AOT and CCOT compared to AM (P = 0.001), while AOT demonstrated a fivefold higher chance to express TGF-β1 compared to AM (P = 0.011). CONCLUSION TGF-β/Smad signaling pathway is activated in AM, AOT, and CCOT. The statistically significant reduced TGF-β1/Smad immunoexpression in AM compared to AOT/CCOT could be associated with the more aggressive biological behavior of AM including increased cell proliferation and reduced apoptosis and differentiation. Thus, the biomarkers TGF-β, Smad-4, Smad-1/-5/-8, and Smad-2/-3 could serve as supplementary diagnostic indices between odontogenic tumors of high and low neoplastic dynamics.
Collapse
Affiliation(s)
- Vasiliki Karathanasi
- Department of Oral Pathology and Medicine, Dental School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
127
|
Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144. Exp Cell Res 2012; 319:12-22. [PMID: 23153552 DOI: 10.1016/j.yexcr.2012.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/02/2012] [Accepted: 11/05/2012] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) frequently metastasizes to the liver, a phenomenon that involves the participation of transforming-growth-factor-β(1) (TGFβ(1)). Blockade of the protumorigenic effects elicited by TGFβ(1) in advanced CRC could attenuate liver metastasis. We aimed in the present study to assess the antimetastatic effect of TGFβ(1)-blocking peptides P17 and P144, and to study mechanisms responsible for this activity in a mouse model. Colon adenocarcinoma cells expressing luciferase were pretreated with TGFβ(1) (Mc38-luc(TGFβ1) cells), injected into the spleen of mice and monitored for tumor development. TGFβ(1) increased primary tumor growth and liver metastasis, whereas systemic treatment of mice with either P17 or P144 significantly reduced tumor burden (p<0.01). In metastatic nodules, mitotic/apoptotic ratio, mesenchymal traits and angiogenesis (evaluated by CD-31, as well as circulating endothelial and progenitor cells) induced by TGFβ(1) were consistently reduced following injection of peptides. In vitro experiments revealed a direct effect of TGFβ(1) in Mc38 cells, which resulted in activation of Smad2, Smad3 and Smad1/5/8, and increased invasion and transendothelial migration, whereas blockade of TGFβ(1)-signaling reverted these features. Because TGFβ(1)-mediated epithelial-mesenchymal transition (EMT) has been suggested to induce a cancer stem cell (CSC) phenotype, we analyzed the ability of this cytokine to induce tumorsphere formation and the expression of CSC markers. In TGFβ(1)-treated cells, tumorspheres were enriched in CD44 and SOX2, which were diminished in the presence of P17. Our data provide a preclinical rationale to evaluate P17 and P144 as potential therapeutic options for the treatment of metastatic CRC.
Collapse
|
128
|
Lv ZD, Kong B, Li JG, Qu HL, Wang XG, Cao WH, Liu XY, Wang Y, Yang ZC, Xu HM, Wang HB. Transforming growth factor-β 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition. Oncol Rep 2012; 29:219-25. [PMID: 23129177 DOI: 10.3892/or.2012.2111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
Metastasis is unequivocally the most lethal aspect of breast cancer and the most prominent feature associated with disease recurrence, the molecular mechanisms whereby epithelial-to-mesenchymal transition (EMT) mediates the initiation and resolution of breast cancer metastasis remains poorly understood. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that is intimately involved in regulating numerous physiological processes, including cellular differentiation, homeostasis and EMT. Recent findings have implicated high levels of TGF-β1 were associated with poor outcome, whereas inhibition of TGF-β signaling reduces metastasis in breast cancer, suggesting that the chemo-therapeutic targeting of TGF-β1 or TGF-β signaling may offer new inroads in ameliorating metastatic disease in breast cancer patients. In this study, we showed immunohistochemical evidence for EMT, which is associated with TGF-β1 expression, at the invasion front of breast cancer in vivo. The data also indicated that human breast cancer cell lines, MCF-7 and MDA-MB-435S, of epithelial cell characteristics were induced to undergo EMT by TGF-β1 and dependent on the Smad2 signaling pathway. Following TGF-β1 treatment, cells showed dramatic morphological changes assessed by phase contrast microscopy, accompanied by decreased epithelial marker and increased mesenchymal markers. Importantly, cell invasion was also enhanced in the EMT process, while knockdown of the Smad2 gene by silencing siRNA partially inhibited these effects in MDA-MB435S (P<0.05). These data suggested that EMT of breast cancer induced by TGF-β1 is dependent on Smad2 signaling and promotes breast cancer cell metastasis.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
McClure SA, Movahed R, Salama A, Ord RA. Maxillofacial metastases: a retrospective review of one institution's 15-year experience. J Oral Maxillofac Surg 2012; 71:178-88. [PMID: 22705221 DOI: 10.1016/j.joms.2012.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/19/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
PURPOSE Metastasis to the maxillofacial region is a rare occurrence. In our retrospective study of patients with metastasis to the maxillofacial region, the subjects were evaluated to define the clinical behavior patterns in response to the treatment given. MATERIALS AND METHODS A retrospective record review during a 15-year period (1990 to 2005) was conducted. The patients were selected for inclusion in the present study if they had histologically confirmed maxillofacial metastases. RESULTS In our retrospective study, during the 15-year period, 1,221 new patients with maxillofacial/oral cancer were seen and evaluated. Of these 1,221 patients, 26 (16 men and 10 women) were identified as having a histologically confirmed metastasis to the maxillofacial region, for an incidence of 2.1%. CONCLUSIONS Patients with metastasis to the maxillofacial region are often deemed to not be surgical candidates because of the extensive nature of the metastatic disease. We believe that surgical intervention plays a beneficial role in improving quality of life in a properly selected group of patients with metastasis to the maxillofacial region. In our case series, surgery was performed in about 50% of the patients, and palliation and radiotherapy were the most commonly used modalities.
Collapse
Affiliation(s)
- Shawn A McClure
- Department of Oral and Maxillofacial Surgery, Nova Southeastern University, Fort Lauderdale-Davie, FL 33314-7796, USA
| | | | | | | |
Collapse
|
130
|
Pollari S, Leivonen SK, Perälä M, Fey V, Käkönen SM, Kallioniemi O. Identification of microRNAs inhibiting TGF-β-induced IL-11 production in bone metastatic breast cancer cells. PLoS One 2012; 7:e37361. [PMID: 22629385 PMCID: PMC3357420 DOI: 10.1371/journal.pone.0037361] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
Development of bone metastases is dependent on the cancer cell-bone cell interactions in the bone microenvironment. Transforming growth factor β (TGF-β) is released from bone during osteoclastic bone resorption and induces production of osteolytic factors, such as interleukin 11 (IL-11), in breast cancer cells. IL-11 in turn increases osteolysis by stimulating osteoclast function, launching a vicious cycle of cancer growth and bone destruction. We aimed to identify and functionally characterize microRNAs (miRNAs) that mediate the bone metastatic process, focusing on miRNAs that regulate the TGF-β induction of IL-11. First, we profiled the expression of 455 miRNAs in a highly bone metastatic MDA-MB-231(SA) variant as compared to the parental MDA-MB-231 breast cancer cell line and found 16 miRNAs (3.5%) having a >3-fold expression difference between the two cell types. We then applied a cell-based overexpression screen with Pre-miRNA constructs to functionally identify miRNAs regulating TGF-β-induced IL-11 production. This analysis pinpointed miR-204, miR-211, and miR-379 as such key regulators. These miRNAs were shown to directly target IL11 by binding to its 3′ UTR. MiR-379 also inhibited Smad2/3/4-mediated transcriptional activity. Gene expression analysis of miR-204 and miR-379-transfected cells indicated that these miRNAs downregulated the expression of several genes involved in TGF-β signaling, including prostaglandin-endoperoxide synthase 2 (PTGS2). In addition, there was a significant correlation between the genes downregulated by miR-379 and a set of genes upregulated in basal subtype of breast cancer. Taken together, the functional evidence and clinical correlations imply novel mechanistic links between miRNAs and the key steps in the bone metastatic process in breast cancer, with potential clinical relevance.
Collapse
Affiliation(s)
- Sirkku Pollari
- Medical Biotechnology, VTT Technical Research Centre of Finland, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
131
|
Raso C, Cosentino C, Gaspari M, Malara N, Han X, McClatchy D, Park SK, Renne M, Vadalà N, Prati U, Cuda G, Mollace V, Amato F, Yates JR. Characterization of breast cancer interstitial fluids by TmT labeling, LTQ-Orbitrap Velos mass spectrometry, and pathway analysis. J Proteome Res 2012; 11:3199-210. [PMID: 22563702 DOI: 10.1021/pr2012347] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer is currently considered as the end point of numerous genomic and epigenomic mutations and as the result of the interaction of transformed cells within the stromal microenvironment. The present work focuses on breast cancer, one of the most common malignancies affecting the female population in industrialized countries. In this study, we perform a proteomic analysis of bioptic samples from human breast cancer, namely, interstitial fluids and primary cells, normal vs disease tissues, using tandem mass tags (TmT) quantitative mass spectrometry combined with the MudPIT technique. To the best of our knowledge, this work, with over 1700 proteins identified, represents the most comprehensive characterization of the breast cancer interstitial fluid proteome to date. Network analysis was used to identify functionally active networks in the breast cancer associated samples. From the list of differentially expressed genes, we have retrieved the associated functional interaction networks. Many different signaling pathways were found activated, strongly linked to invasion, metastasis development, proliferation, and with a significant cross-talking rate. This pilot study presents evidence that the proposed quantitative proteomic approach can be applied to discriminate between normal and tumoral samples and for the discovery of yet unknown carcinogenesis mechanisms and therapeutic strategies.
Collapse
Affiliation(s)
- Cinzia Raso
- Department of Experimental and Clinical Medicine, Magna Graecia University , viale Europa loc. Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Katsuno Y, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-β. J Pathol 2012; 228:391-404. [PMID: 22430847 DOI: 10.1002/path.4020] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) has been shown to serve as a marker for cancer-initiating cells (CICs), but little is known about the regulation of the CIC functions of ALDH1+ cancer cells. We isolated ALDH1+ cells from human diffuse-type gastric carcinoma cells and characterized these cells using an Aldefluor assay. ALDH1+ cells constituted 5-8% of the human diffuse-type gastric carcinoma cells, OCUM-2MLN and HSC-39; were more tumourigenic than ALDH1- cells; and were able to self-renew and generate heterogeneous cell populations. Using gene expression microarray analyses, we identified REG4 (regenerating islet-derived family, member 4) as one of the genes up-regulated in ALDH1+ cells, and thus as a novel marker for ALDH1+ tumour cells. Induced expression of REG4 enhanced the colony-forming ability of OCUM-2MLN cells, while knockdown of REG4 inhibited the tumourigenic potential of ALDH1+ cells. We further found that TGF-β signalling reduces the expression of ALDH1 and REG4, and the size of the ALDH1+ cell population. In human diffuse-type gastric carcinoma tissues, the expression of ALDH1 and REG4 correlated with each other, as assessed by immunohistochemistry, and ALDH1 expression correlated inversely with Smad3 phosphorylation as a measure of TGF-β signalling. These findings illustrate that, in diffuse-type gastric carcinoma, REG4 is up-regulated in ALDH1+ CICs, and that the increased tumourigenic ability of ALDH1+ cells depends on REG4. Moreover, TGF-β down-regulates ALDH1 and REG4 expression, which correlates with a reduction in CIC population size and tumourigenicity. Targeting REG4 in ALDH1+ CICs may provide a novel strategy in the treatment of diffuse-type gastric carcinoma.
Collapse
Affiliation(s)
- Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo- conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer. [BMB reports 2011; 44(10): 619-634].
Collapse
Affiliation(s)
- Meejung Kim
- Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, IncheonKorea
| | | |
Collapse
|
134
|
Lim M, Chuong CM, Roy-Burman P. PI3K, Erk signaling in BMP7-induced epithelial-mesenchymal transition (EMT) of PC-3 prostate cancer cells in 2- and 3-dimensional cultures. Discov Oncol 2012; 2:298-309. [PMID: 21948155 DOI: 10.1007/s12672-011-0084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We reported previously that bone morphogenetic protein 7 (BMP7) could induce epithelial-mesenchymal transition (EMT) in PC-3 prostate cancer cells grown in tissue culture plates. In this study, we examined BMP7-induced morphological and molecular expression changes that are characteristic of EMT using these cells under both two- (2D) and three-dimensional (3D) culture conditions. Filamentous outgrowths from spheroid structures that were formed from PC-3 cells in 3D cultures were strikingly evident when the spheroids were exposed to extracellular BMP7. This morphological change in 3D was accompanied by down-regulation of E-cadherin, which is an essential adhesion molecule for the integrity of epithelial phenotype. Invasiveness of the cancer cells was significantly enhanced with BMP7 treatment along with activation and up-regulation of proteases such as MMP1, MMP13, and urokinase plasminogen activator. Signal transduction of EMT conversion was examined by the use of certain pathway-specific inhibitors. Of the chemical inhibitors tested, inhibitors of PI3 kinase and Erk were found to suppress BMP-induced morphological changes both in 2D and 3D conditions. These results suggest that, besides the Smad signaling pathways, BMP-induced activation of PI3K and Erk contribute to EMT morphologic conversion of the PC-3 prostate cancer cells. Together, the results support the notion that the complexity of EMT may be better evaluated in terms of both spatial and temporal processes in 3D cell culture models that are physiologically more relevant than the cell growth in tissue culture plates.
Collapse
Affiliation(s)
- Minyoung Lim
- Program in Genetic, Molecular, and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | | |
Collapse
|
135
|
Haupt A, Joberty G, Bantscheff M, Fröhlich H, Stehr H, Schweiger MR, Fischer A, Kerick M, Boerno ST, Dahl A, Lappe M, Lehrach H, Gonzalez C, Drewes G, Lange BM. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer 2012; 12:38. [PMID: 22277058 PMCID: PMC3342885 DOI: 10.1186/1471-2407-12-38] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/25/2012] [Indexed: 01/08/2023] Open
Abstract
Background The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. Methods We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads"). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. Results We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. Conclusions We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications.
Collapse
Affiliation(s)
- Armin Haupt
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Jin H, Pi J, Huang X, Huang F, Shao W, Li S, Chen Y, Cai J. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol 2012; 93:1715-23. [PMID: 22270235 DOI: 10.1007/s00253-011-3865-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) has been shown to modulate the proliferation and differentiation of breast cancer cells. However, the biochemical effects and mechanisms remain unknown. In this paper, the effects of recombinant human BMP2 on the migration of MCF-7 cells-one breast cancer cell line, using transwell and wound healing experiments, as well as on the cellular morphology, cytoskeleton, cell surface adhesion, and stiffness detected at subcellular level by an atomic force microscope, were investigated. After BMP2 treatment, the untreated round-shaped MCF-7 cells transformed to a spindle-like shape with lots of specialized structures, such as lamellipodia, filopodia, membrane protrusions, and others, which are essential for cellular migration or spreading. Moreover, flow cytometry quantitatively detected the BMP2-induced changes in the expression of adhesion molecules, a significant rise of CD44, and a remarkable drop of E-cadherin. The data indicated that BMP2 promoted the migration and invasion of MCF-7 cells by regulating the reorganization of cytoskeleton and the expression of adhesion molecules in/on the cells. Thus, it is very imperative to evaluate the oncogenicity of BMP2 when used in tissue engineering.
Collapse
Affiliation(s)
- Hua Jin
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Yan H, Zhu S, Song C, Liu N, Kang J. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells. Cell Signal 2011; 24:961-8. [PMID: 22234345 DOI: 10.1016/j.cellsig.2011.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/01/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection.
Collapse
Affiliation(s)
- Hualong Yan
- Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
138
|
Guo D, Huang J, Gong J. Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol Cell Biochem 2011; 363:179-90. [PMID: 22167620 DOI: 10.1007/s11010-011-1170-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/23/2011] [Indexed: 01/20/2023]
Abstract
Bone-morphogenetic proteins (BMPs) play an important role in development and many cellular processes. However, their functional role in the development and progression of breast cancer is not clearly understood. In the present study, we performed a systematic expression analysis of the 14 types of BMPs in 10 human breast cancer cell lines. We found that bone morphogenetic protein 4 (BMP4) was one of the most frequently expressed BMPs. Furthermore, the expression level of BMP4 was maybe correlated with the metastatic potential of the cancer lines. Accordingly, overexpression of BMP4 in the breast cancer cell lines MCF-7 and MBA-MD-231 promoted the migration and invasion phenotypes of the cancer cells, whereas RNAi-mediated knockdown of BMP4 expression inhibited the migration and invasion activities of the cancer cells. To identify the important factors that may mediate the BMP4 functions in breast cancer cells, we analyzed a panel of cancer-related genes, and found that the expression of matrix metalloproteinase-1 (MMP-1) and C-X-C chemokine receptor type 4 (CXCR4) sharply increased at both the mRNA and protein levels in the breast cancer cells overexpressing BMP4. Interestingly, when breast cancer cells MDA-MB-231 or MCF-7 were co-cultured with the osteoblast-like cells MG63 to mimic a bone metastasis microenvironment, BMP4 did not exhibit any significant effect on the expression of OPG or RANKL, two important factors in bone remodeling. BMPs antagonists, Noggin, parallel inhibited breast cancer cell migration and invasion and induced bone remodeling. Taken together, our results strongly suggest that BMP4 may promote the migration and invasion of breast cancer cells, at least in part by up-regulating the expressions of MMP-1 and CXCR4. It is conceivable that novel therapeutics for breast cancer may be developed by targeting BMP4 signaling pathway and/or its important downstream mediators in breast cancer cells.
Collapse
Affiliation(s)
- Dan Guo
- Department of Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
139
|
Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A, Sahin O, Wiemann S, Tschulena U. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 2011; 31:4150-63. [PMID: 22158050 DOI: 10.1038/onc.2011.571] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) as modulators of gene expression have been described to display both tumor-promoting and tumor-suppressive functions. Although their role has been studied in different tumor types, little is known about how they regulate nuclear factor κB (NF-κB) signaling in breast cancer. Here, we performed an unbiased whole genome miRNA (miRome) screen to identify novel modulators of NF-κB pathway in breast cancer. The screen identified 13 miRNA families whose members induced consistent effects on NF-κB activity. Among those, the miR-520/373 family inhibited NF-κB signaling through direct targeting of RELA and thus strongly reduced expression and secretion of the pro-inflammatory cytokines interleukin (IL)-6 and IL-8. With a combination of in vitro and in vivo approaches, we propose a metastasis-suppressive role of miR-520/373 family. miR-520c and miR-373 abrogated both in vitro cell invasion and in vivo intravasation of highly invasive MDA-MB-231 cells. However, knockdown of RELA did not affect their metastatic ability. mRNA profiling of MDA-MB-231 cells on overexpression of miR-520/373 members revealed a strong downregulation of transforming growth factor-β (TGF-β) signaling. Mechanistically, the metastasis-suppressive role of miR-520/373 can be attributed to direct suppression of TGFBR2, as the silencing of TGFBR2 phenocopied the effects of miR-520/373 overexpression on suppression of Smad-dependent expression of the metastasis-promoting genes parathyroid hormone-related protein, plasminogen activator inhibitor-1 and angiopoietin-like 4 as well as tumor cell invasion, in vitro and in vivo. A negative correlation between miR-520c and TGFBR2 expression was observed in estrogen receptor negative (ER(-)) breast cancer patients but not in the ER positive (ER(+)) subtype. Remarkably, decreased expression of miR-520c correlated with lymph node metastasis specifically in ER(-) tumors. Taken together, our findings reveal that miR-520/373 family has a tumor-suppressive role in ER(-) breast cancer by acting as a link between the NF-κB and TGF-β pathways and may thus contribute to the interplay of tumor progression, metastasis and inflammation.
Collapse
Affiliation(s)
- I Keklikoglou
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K. TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 2011; 151:205-16. [PMID: 22161143 DOI: 10.1093/jb/mvr136] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cancer cells undergo epithelial-mesenchymal transition (EMT) during invasion and metastasis. Although transforming growth factor-β (TGF-β) and pro-inflammatory cytokines have been implicated in EMT, the underlying molecular mechanisms remain to be elucidated. Here, we studied the effects of proinflammatory cytokines derived from the mouse macrophage cell line RAW 264.7 on TGF-β-induced EMT in A549 lung cancer cells. Co-culture and treatment with conditioned medium of RAW 264.7 cells enhanced a subset of TGF-β-induced EMT phenotypes in A549 cells, including changes in cell morphology and induction of mesenchymal marker expression. These effects were increased by the treatment of RAW 264.7 cells with lipopolysaccharide, which also induced the expression of various proinflammatory cytokines, including TNF-α and IL-1β. The effects of conditioned medium of RAW 264.7 cells were partially inhibited by a TNF-α neutralizing antibody. Dehydroxy methyl epoxyquinomicin, a selective inhibitor of NFκB, partially inhibited the enhancement of fibronectin expression by TGF-β, TNF-α, and IL-1β, but not of N-cadherin expression. Effects of other pharmacological inhibitors also suggested complex regulatory mechanisms of the TGF-β-induced EMT phenotype by TNF-α stimulation. These findings provide direct evidence of the effects of RAW 264.7-derived TNF-α on TGF-β-induced EMT in A549 cells, which is transduced in part by NFκB signalling.
Collapse
Affiliation(s)
- Mikiko Kawata
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Imamura T, Hikita A, Inoue Y. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 2011; 19:118-24. [PMID: 22139728 DOI: 10.1007/s12282-011-0321-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) ligand is a multifunctional growth factor that regulates various cell behavior, such as cell proliferation, differentiation, migration, and apoptosis. Because TGF-β is a potent growth inhibitor, abnormalities in TGF-β signaling result in carcinogenesis. In addition to tumor suppressor function, TGF-β acts as an oncogenic factor. In particular, TGF-β signaling plays an important role during metastasis of breast cancer. Recently, epithelial-mesenchymal transition (EMT) has been shown to confer malignant properties such as cell motility and invasiveness to cancer cells and plays crucial roles during cancer metastasis. Moreover, breast stem-like cells exhibit EMT properties. Because TGF-β is a potent regulator of EMT as well as cell stemness, TGF-β signaling might play a crucial role in the regulation of breast cancer stem cells.
Collapse
Affiliation(s)
- Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan.
| | | | | |
Collapse
|
142
|
Bone morphogenetic protein modulator BMPER is highly expressed in malignant tumors and controls invasive cell behavior. Oncogene 2011; 31:2919-30. [PMID: 22020334 DOI: 10.1038/onc.2011.473] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that exert important functions in cell proliferation, migration and differentiation. Till date, multiple human tumors have been reported to display a dysregulation of several members of the BMP pathway that is associated with enhanced malignant tumor growth and metastasis. BMPER (BMP endothelial cell precursor-derived regulator) is a direct BMP modulator that is necessary for BMPs to exert their full-range signaling activity. Moreover, BMPER is expressed by endothelial cells and their progenitors, and has pro-angiogenic features in these cells. Here, we describe the expression of BMPER in human specimens of lung, colon and cervix carcinomas and cell lines derived from such carcinomas. In contrast to healthy tissues, BMPER is highly expressed upon malignant deterioration. Functionally, loss of BMPER in the lung tumor cell line A549 impairs proliferation, migration, invasion as well as tumor cell-induced endothelial cell sprout formation. In contrast, stimulation of A549 cells with exogenous BMPER had no further effect. We found that the BMPER effect may be transduced by regulation of the BMP target transcription factor inhibitor of DNA binding 1 (Id1) and matrix metalloproteinases (MMPs) 9 and 2. These facilitators of cell migration are downregulated when BMPER is absent. To prove the relevance of our in vitro results in vivo, we generated Lewis lung carcinoma cells with impaired BMPER expression and implanted them into the lungs of C57BL/6 mice. In this model, the absence of BMPER resulted in severely reduced tumor growth and tumor angiogenesis. Taken together, these data unequivocally demonstrate that the BMP modulator BMPER is highly expressed in malignant tumors and tumor growth is dependent on the presence of BMPER.
Collapse
|
143
|
Bone morphogenetic protein-2 and -4 play tumor suppressive roles in human diffuse-type gastric carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2920-30. [PMID: 21996676 DOI: 10.1016/j.ajpath.2011.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/21/2011] [Accepted: 08/29/2011] [Indexed: 11/21/2022]
Abstract
A relationship exists between defects in bone morphogenetic protein (BMP) signaling and formation of hamartoma and adenoma in the gastric epithelium; however, the role of BMP signaling in the progression of diffuse-type gastric carcinoma remains unknown. We investigated whether BMP functions as a tumor suppressor in human diffuse-type gastric carcinoma using three different human diffuse-type gastric carcinoma cell lines (OCUM-12, HSC-39, and OCUM-2MLN). Overexpression of the dominant-negative form of BMP-2/4-specific type I receptor (ALK-3) in OCUM-12 and HSC-39 cells accelerated their growth in vivo. BMP-4 induced cell cycle arrest in these cells via p21 induction through the SMAD pathway. Moreover, overexpression of the constitutively active form of ALK-3 in HSC-39 and OCUM-2MLN cells suppressed the proliferation of these cells in vitro and in vivo. Our findings suggest that BMP-2 and BMP-4 function as potent tumor suppressors in diffuse-type gastric carcinoma.
Collapse
|
144
|
Abstract
Despite recognizing the devastating consequences of metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The inherent complexity of genomic alterations in late-stage cancers, coupled with numerous heterotypic interactions that occur between tumour and stromal cells, represent fundamental challenges in our quest to understand and control metastatic disease. The incorporation of genomic and other systems level approaches, as well as technological breakthroughs in imaging and animal modelling, have galvanized the effort to overcome gaps in our understanding of metastasis. Future research carries with it the potential to translate the wealth of new knowledge and conceptual advances into effective targeted therapies.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Washington Road, LTL 255, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
145
|
Wang K, Feng H, Ren W, Sun X, Luo J, Tang M, Zhou L, Weng Y, He TC, Zhang Y. BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. J Cancer Res Clin Oncol 2011; 137:1687-96. [PMID: 21892652 DOI: 10.1007/s00432-011-1047-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/18/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) is known to promote tumor proliferation, migration, invasion, and metastasis. Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily. Several BMPs (BMP2 and BMP7) can enhance the invasion and bone metastasis of breast cancer cells. The function of BMP9, the latest discovered and most powerful osteogenetic factor, in breast cancer has not been fully elucidated. METHODS BMP9 expression in twenty-three breast cancer patients and three breast cancer cell line types was detected by reverse transcriptase polymerase chain reaction. Changes in proliferation, apoptosis, invasion, and migration in the recombinant MDA-MB-231/BMP9 cells were detected using various assays. The assays were MTT, flow cytometry, colony forming, cell wounding, and transwell invasion. Proliferating cell nuclear antigen and terminal deoxynucleotidy transferase biotin-dUTP nick end labeling staining methods were conducted to detect whether BMP9 affected proliferation and apoptosis in xenogenic mouse models. RESULTS Twenty-one of the twenty-three breast cancer patients had amplified BMP9 mRNA transcripts in adjacent non-tumor tissues, although BMP9 was observed in the breast cancer tissue of two patients, its expression was higher in the adjacent non-tumor tissues. BMP9 overexpression inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of the breast cancer cell line MDA-MB-231 in vitro. BMP9 also inhibited tumor growth and induced apoptosis significantly in the xenogenic mouse models. CONCLUSIONS Decreased BMP9 expression is associated with the elevated proliferation and migration of human breast cancer. BMP9 can inhibit the growth, invasion, and migration of breast cancer cells in vitro and in vivo. BMP9 is a putative tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, 1 YiXueYuan Road, Yuzhong District, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Homing of cancer cells to the bone. CANCER MICROENVIRONMENT 2011; 4:221-35. [PMID: 21826451 DOI: 10.1007/s12307-011-0083-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/27/2011] [Indexed: 12/26/2022]
Abstract
A variety of tumor cells preferentially home to the bone. The homing of cancer cells to the bone represents a multi-step process that involves malignant progression of the tumor, invasion of the tumor through the extracellular matrix and the blood vessels and settling of the tumor cells in the bone. Gaining a greater understanding as to the mechanisms used by cancer cells in these processes will facilitate the design of drugs which could specifically target the homing process. In this review we will discuss the properties of tumor cells and the bone microenvironment which promote homing of a cancer cell to the bone. We will highlight the different steps and the molecular pathways involved when a cancer cell metastasize to the bone. Since bone is the major home for hematopoietic stem cells (HSCs), we will also highlight the similarities between the homing of cancer and HSC to the bone. Finally we will conclude with therapeutic and early detection strategies which can prevent homing of a cancer cell to the bone.
Collapse
|
147
|
Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, Hirose J, Omata Y, Yasuda H, Imamura T, Nakamura K, Tanaka S. Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6. J Bone Miner Res 2011; 26:1447-56. [PMID: 21305609 DOI: 10.1002/jbmr.357] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have shown that transforming growth factor β (TGF-β) promotes receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the underlying molecular mechanisms have not been elucidated. When TGF-β signals were blocked either by a specific inhibitor of TGF-β type 1 receptor kinase activity, SB431542, or by introducing a dominant-negative mutant of TGF-β type 2 receptor, RANKL-induced osteoclastogenesis was almost completely suppressed. Blockade of Smad signaling by overexpression of Smad7 or c-Ski markedly suppressed RANKL-induced osteoclastogenesis, and retroviral induction of an activated mutant of Smad2 or Smad3 reversed the inhibitory effect of SB431542. Immunoprecipitation analysis revealed that Smad2/3 directly associates with the TRAF6-TAB1-TAK1 molecular complex, which is generated in response to RANKL stimulation and plays an essential role in osteoclast differentiation. TRAF6-TAB1-TAK1 complex formation was not observed when TGF-β signaling was blocked. Analysis using deletion mutants revealed that the MH2 domain of Smad3 is necessary for TRAF6-TAB1-TAK1 complex formation, downstream signal transduction, and osteoclast formation. In addition, gene silencing of Smad3 in osteoclast precursors markedly suppressed RANKL-induced osteoclast differentiation. In summary, TGF-β is indispensable in RANKL-induced osteoclastogenesis, and the binding of Smad3 to the TRAF6-TAB1-TAK1 complex is crucial for RANKL-induced osteoclastogenic signaling.
Collapse
Affiliation(s)
- Tetsuro Yasui
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Virtanen S, Alarmo EL, Sandström S, Ampuja M, Kallioniemi A. Bone morphogenetic protein -4 and -5 in pancreatic cancer--novel bidirectional players. Exp Cell Res 2011; 317:2136-46. [PMID: 21704030 DOI: 10.1016/j.yexcr.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2-BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.
Collapse
Affiliation(s)
- Siru Virtanen
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, Finland.
| | | | | | | | | |
Collapse
|
149
|
Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci U S A 2011; 109:2814-9. [PMID: 21576484 DOI: 10.1073/pnas.1101139108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily of signaling molecules. BMPs can elicit a wide range of effects in many cell types and have previously been shown to induce growth inhibition in carcinoma cells as well as normal epithelia. Recently, it has been demonstrated that BMP4 and BMP7 are overexpressed in human breast cancers and may have tumor suppressive and promoting effects. We sought to determine whether disruption of the BMP receptor 2 (BMPR2) would alter mammary tumor progression in mice that express the Polyoma middle T antigen. Mice expressing Polyoma middle T antigen under the mouse mammary tumor virus promoter were combined with mice that have doxycycline-inducible expression of a dominant-negative (DN) BMPR2. We did not observe any differences in tumor latency. However, mice expressing the BMPR2-DN had a fivefold increase in lung metastases. We characterized several cell autonomous changes and found that BMPR2-DN-expressing tumor cells had higher rates of proliferation. We also identified unique changes in inflammatory cells and secreted chemokines/cytokines that accompanied BMPR2-DN-expressing tumors. By immunohistochemistry, it was found that BMPR2-DN primary tumors and metastases had an altered reactive stroma, indicating specific changes in the tumor microenvironment. Among the changes we discovered were increased myeloid derived suppressor cells and the chemokine CCL9. BMP was shown to directly regulate CCL9 expression. We conclude that BMPR2 has tumor-suppressive function in mammary epithelia and microenvironment and that disruption can accelerate mammary carcinoma metastases.
Collapse
|
150
|
Thorpe MP, Valentine RJ, Moulton CJ, Wagoner Johnson AJ, Evans EM, Layman DK. Breast tumors induced by N-methyl-N-nitrosourea are damaging to bone strength, structure, and mineralization in the absence of metastasis in rats. J Bone Miner Res 2011; 26:769-76. [PMID: 20939066 DOI: 10.1002/jbmr.277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current theory on the influence of breast cancer on bone describes metastasis of tumor cells to bone tissue, followed by induction of osteoclasts and bone degradation. Tumor influences on bone health in pre- or nonmetastatic models are unknown. Female rats (n = 48, 52 days old) were injected with N-methyl-N-nitrosourea (MNU) to induce breast cancer. Animals were euthanized 10 weeks later, and tumors were weighed and classified histologically. Right femurs were extracted for testing of bone mineral density (BMD) by dual X-ray absorptiometry (DXA), bone mechanical strength by three-point bending and femoral neck bending tests, and structure by micro-computed tomography (µCT). Of 48 rats, 22 developed one or more tumors in response to MNU injection by 10 weeks. Presence of any tumor predicted significantly poorer bone health in 17 of 28 measures. In tumored versus nontumored animals, BMD was adversely affected by 3%, force at failure of the femoral midshaft by 4%, force at failure of the femoral neck by 12%, and various trabecular structural parameters by 6% to 27% (all p < .05). Similarly, greater tumor burden, represented by total tumor weight, adversely correlated with bone outcomes: r = -0.51 for BMD, -0.42 and -0.35 for femur midshaft force and work at failure, and between 0.36 and 0.59 (absolute values) for trabecular architecture (all p < .05). Presence of MNU-induced tumors and total tumor burden showed a negative association with bone health of the femur in rats in the absence of metastasis. Further study is required to elucidate mechanisms for this association.
Collapse
Affiliation(s)
- Matthew P Thorpe
- Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|