101
|
The DEAD-Box RNA Helicase DDX3 Interacts with NF-κB Subunit p65 and Suppresses p65-Mediated Transcription. PLoS One 2016; 11:e0164471. [PMID: 27736973 PMCID: PMC5063347 DOI: 10.1371/journal.pone.0164471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022] Open
Abstract
RNA helicase family members exhibit diverse cellular functions, including in transcription, pre-mRNA processing, RNA decay, ribosome biogenesis, RNA export and translation. The RNA helicase DEAD-box family member DDX3 has been characterized as a tumour-associated factor and a transcriptional co-activator/regulator. Here, we demonstrate that DDX3 interacts with the nuclear factor (NF)-κB subunit p65 and suppresses NF-κB (p65/p50)-mediated transcriptional activity. The downregulation of DDX3 by RNA interference induces the upregulation of NF-κB (p65/p50)-mediated transcription. The regulation of NF-κB (p65/p50)-mediated transcriptional activity was further confirmed by the expression levels of its downstream cytokines, such as IL-6 and IL-8. Moreover, the binding of the ATP-dependent RNA helicase domain of DDX3 to the N-terminal Rel homology domain (RHD) of p65 is involved in the inhibition of NF-κB-regulated gene transcription. In summary, the results suggest that DDX3 functions to suppress the transcriptional activity of the NF-κB subunit p65.
Collapse
|
102
|
Xie M, Vesuna F, Tantravedi S, Bol GM, Heerma van Voss MR, Nugent K, Malek R, Gabrielson K, van Diest PJ, Tran PT, Raman V. RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase DDX3. Cancer Res 2016; 76:6340-6350. [PMID: 27634756 DOI: 10.1158/0008-5472.can-16-0440] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Despite advances in diagnosis and treatment, prostate cancer is the most prevalent cancer in males and the second highest cause of cancer-related mortality. We identified an RNA helicase gene, DDX3 (DDX3X), which is overexpressed in prostate cancers, and whose expression is directly correlated with high Gleason scores. Knockdown of DDX3 in the aggressive prostate cancer cell lines DU145 and 22Rv1 resulted in significantly reduced clonogenicity. To target DDX3, we rationally designed a small molecule, RK-33, which docks into the ATP-binding domain of DDX3. Functional studies indicated that RK-33 preferentially bound to DDX3 and perturbed its activity. RK-33 treatment of prostate cancer cell lines DU145, 22Rv1, and LNCaP (which have high DDX3 levels) decreased proliferation and induced a G1 phase cell-cycle arrest. Conversely, the low DDX3-expressing cell line, PC3, exhibited few changes following RK-33 treatment. Importantly, combination studies using RK-33 and radiation exhibited synergistic effects both in vitro and in a xenograft model of prostate cancer demonstrating the role of RK-33 as a radiosensitizer. Taken together, these results indicate that blocking DDX3 by RK-33 in combination with radiation treatment is a viable option for treating locally advanced prostate cancer. Cancer Res; 76(21); 6340-50. ©2016 AACR.
Collapse
Affiliation(s)
- Min Xie
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saritha Tantravedi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marise R Heerma van Voss
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
103
|
Xie M, Vesuna F, Botlagunta M, Bol GM, Irving A, Bergman Y, Hosmane RS, Kato Y, Winnard PT, Raman V. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget 2016; 6:29901-13. [PMID: 26337079 PMCID: PMC4745771 DOI: 10.18632/oncotarget.4898] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer properties of NZ51 in MCF-7 and MDA-MB-231 breast cancer cell lines. NZ51 treatment decreased cellular motility and cell viability of MCF-7 and MDA-MB-231 cells with IC50 values in the low micromolar range. Biological knockdown of DDX3 in MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates and reduced clonogenicity. In addition, NZ51 was effective in killing breast cancer cells under hypoxic conditions with the same potency as observed during normoxia. Mechanistic studies indicated that NZ51 did not cause DDX3 degradation, but greatly diminished its functionality. Moreover, in vivo experiments demonstrated that DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis without altering tumor vascular volume or permeability-surface area. In initial in vivo experiments, NZ51 treatment did not significantly reduce tumor volume. Further studies are needed to optimize drug formulation, dose and delivery. Continuing work will determine the in vitro-in vivo correlation of NZ51 activity and its utility in a clinical setting.
Collapse
Affiliation(s)
- Min Xie
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mahendran Botlagunta
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guus Martinus Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA, Utrecht, The Netherlands
| | - Ashley Irving
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yehudit Bergman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramachandra S Hosmane
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD, USA
| | - Yoshinori Kato
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul T Winnard
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA, Utrecht, The Netherlands.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
104
|
Heerma van Voss MR, Vesuna F, Trumpi K, Brilliant J, Berlinicke C, de Leng W, Kranenburg O, Offerhaus GJ, Bürger H, van der Wall E, van Diest PJ, Raman V. Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer. Oncotarget 2016; 6:28312-26. [PMID: 26311743 PMCID: PMC4695062 DOI: 10.18632/oncotarget.4873] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
Identifying druggable targets in the Wnt-signaling pathway can optimize colorectal cancer treatment. Recent studies have identified a member of the RNA helicase family DDX3 (DDX3X) as a multilevel activator of Wnt signaling in cells without activating mutations in the Wnt-signaling pathway. In this study, we evaluated whether DDX3 plays a role in the constitutively active Wnt pathway that drives colorectal cancer. We determined DDX3 expression levels in 303 colorectal cancers by immunohistochemistry. 39% of tumors overexpressed DDX3. High cytoplasmic DDX3 expression correlated with nuclear β-catenin expression, a marker of activated Wnt signaling. Functionally, we validated this finding in vitro and found that inhibition of DDX3 with siRNA resulted in reduced TCF4-reporter activity and lowered the mRNA expression levels of downstream TCF4-regulated genes. In addition, DDX3 knockdown in colorectal cancer cell lines reduced proliferation and caused a G1 arrest, supporting a potential oncogenic role of DDX3 in colorectal cancer. RK-33 is a small molecule inhibitor designed to bind to the ATP-binding site of DDX3. Treatment of colorectal cancer cell lines and patient-derived 3D cultures with RK-33 inhibited growth and promoted cell death with IC50 values ranging from 2.5 to 8 μM. The highest RK-33 sensitivity was observed in tumors with wild-type APC-status and a mutation in CTNNB1. Based on these results, we conclude that DDX3 has an oncogenic role in colorectal cancer. Inhibition of DDX3 with the small molecule inhibitor RK-33 causes inhibition of Wnt signaling and may therefore be a promising future treatment strategy for a subset of colorectal cancers.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kari Trumpi
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Justin Brilliant
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Cynthia Berlinicke
- Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Wendy de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Elsken van der Wall
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
105
|
Li HK, Mai RT, Huang HD, Chou CH, Chang YA, Chang YW, You LR, Chen CM, Lee YHW. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep 2016; 6:28637. [PMID: 27344963 PMCID: PMC4921922 DOI: 10.1038/srep28637] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Studies indicate that the presence of cancer stem cells (CSCs) is responsible for poor prognosis of hepatocellular carcinoma (HCC) patients. In this study, the functional role of DDX3 in regulation of hepatic CSCs was investigated. Our results demonstrated that reduced DDX3 expression was not only inversely associated with tumor grade, but also predicted poor prognosis of HCC patients. Knockdown of DDX3 in HCC cell line HepG2 induced stemness gene signature followed by occurrence of self-renewal, chemoreisistance, EMT, migration as well as CSC expansion, and most importantly, DDX3 knockdown promotes tumorigenesis. Moreover, we found positive correlations between DDX3 level and expressions of tumor-suppressive miR-200b, miR-200c, miR-122 and miR-145, but not miR-10b and miR-519a, implying their involvement in DDX3 knockdown-induced CSC phenotypes. In addition, DDX3 reduction promoted up-regulation of DNA methyltransferase 3A (DNMT3A), while neither DNMT3B nor DNMT1 expression was affected. Enriched DNMT3A binding along with hypermethylation on promoters of these tumor-suppressive miRNAs reflected their transcriptional repressions in DDX3-knockdown cells. Furthermore, individual restoration of these tumor-suppressive miRNAs represses DDX3 knockdown-induced CSC phenotypes. In conclusion, our study suggested that DDX3 prevents generation of CSCs through epigenetically regulating a subset of tumor-suppressive miRNAs expressions, which strengthens tumor suppressor role of DDX3 in HCC.
Collapse
Affiliation(s)
- Hao-Kang Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ru-Tsun Mai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Hung Chou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-An Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yao-Wen Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
106
|
Su CY, Lin TC, Lin YF, Chen MH, Lee CH, Wang HY, Lee YC, Liu YP, Chen CL, Hsiao M. DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer. Oncotarget 2016; 6:18602-12. [PMID: 26087195 PMCID: PMC4621913 DOI: 10.18632/oncotarget.4329] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/12/2015] [Indexed: 12/11/2022] Open
Abstract
Background Conflicting results regarding the role of DEAD-box polypeptide 3 (DDX3) are seen not only between cancer types but also within the same type of cancer. In this study, we aimed at clarifying the prognostic significance of DDX3 in patients of major cancer types through large cohort survival analysis and further investigated its effects on cancer progression. Methods Large cohort survival analysis of 7 cancer types, including colorectal cancer, breast cancer, lung cancer, head and neck cancer, liver cancer, glioblastoma, and ovarian cancer, was performed using public database at RNA level and was further confirmed by IHC analysis at protein level. Phenotype parameters of DDX3 knockdown colon cancer cells and the mechanism of DDX3 regulated cancer progression were investigated in vitro and in vivo. Results In large cohort survival analysis, DDX3 had a significant prognostic predictive power in colorectal cancer at both RNA and protein level. Patients with low DDX3 expression had poor prognosis and frequent distant metastasis. Knockdown of DDX3 enhanced the migration and invasion abilities of colon cancer cells and promoted tumor metastasis in vivo. Snail upregulation with decreased membranous E-cadherin expression and reduced cell aggregation were found after DDX3 downregulation. Conclusions Our study revealed the strong prognostic effect of DDX3 on colorectal cancer among seven major cancer types through larger cohort survival analysis at RNA and protein level. Low DDX3 expression promotes Snail/E-cadherin pathway mediated cancer metastasis and poor clinical outcome in colorectal cancer patients.
Collapse
Affiliation(s)
- Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yao Wang
- Graduate Program of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, USA
| | - Yu-Chieh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
107
|
Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, Rusch M, Finkelstein D, Ellison DW, Gilbertson RJ, Zhang J, Kim HJ, Taylor JP. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci Rep 2016; 6:25996. [PMID: 27180681 PMCID: PMC4867597 DOI: 10.1038/srep25996] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/21/2016] [Indexed: 12/26/2022] Open
Abstract
DDX3X is a DEAD-box RNA helicase that has been implicated in multiple aspects of RNA metabolism including translation initiation and the assembly of stress granules (SGs). Recent genomic studies have reported recurrent DDX3X mutations in numerous tumors including medulloblastoma (MB), but the physiological impact of these mutations is poorly understood. Here we show that a consistent feature of MB-associated mutations is SG hyper-assembly and concomitant translation impairment. We used CLIP-seq to obtain a comprehensive assessment of DDX3X binding targets and ribosome profiling for high-resolution assessment of global translation. Surprisingly, mutant DDX3X expression caused broad inhibition of translation that impacted DDX3X targeted and non-targeted mRNAs alike. Assessment of translation efficiency with single-cell resolution revealed that SG hyper-assembly correlated precisely with impaired global translation. SG hyper-assembly and translation impairment driven by mutant DDX3X were rescued by a genetic approach that limited SG assembly and by deletion of the N-terminal low complexity domain within DDX3X. Thus, in addition to a primary defect at the level of translation initiation caused by DDX3X mutation, SG assembly itself contributes to global translation inhibition. This work provides mechanistic insights into the consequences of cancer-related DDX3X mutations, suggesting that globally reduced translation may provide a context-dependent survival advantage that must be considered as a possible contributor to tumorigenesis.
Collapse
Affiliation(s)
- Yasmine A. Valentin-Vega
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deanna M. Patmore
- Department of Oncology, Cambridge Cancer Centre, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Anderson Kanagaraj
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David W. Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Gilbertson
- Department of Oncology, Cambridge Cancer Centre, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
108
|
Chen CY, Chan CH, Chen CM, Tsai YS, Tsai TY, Wu Lee YH, You LR. Targeted inactivation of murine Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum Mol Genet 2016; 25:2905-2922. [PMID: 27179789 DOI: 10.1093/hmg/ddw143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
The X-linked DEAD-box RNA helicase DDX3 (DDX3X) is a multifunctional protein that has been implicated in gene regulation, cell cycle control, apoptosis, and tumorigenesis. However, the precise physiological function of Ddx3x during development remains unknown. Here, we show that loss of Ddx3x results in an early post-implantation lethality in male mice. The size of the epiblast marked by Oct3/4 is dramatically reduced in embryonic day 6.5 (E6.5) Ddx3x-/Y embryos. Preferential paternal X chromosome inactivation (XCI) in extraembryonic tissues of Ddx3x heterozygous (Ddx3x-/+) female mice with a maternally inherited null allele leads to placental abnormalities and embryonic lethality during development. In the embryonic tissues, Ddx3x exhibits developmental- and tissue-specific differences in escape from XCI. Targeted Ddx3x ablation in the epiblast leads to widespread apoptosis and abnormal growth, which causes embryonic lethality in the Sox2-cre/+;Ddx3xflox/Y mutant around E11.5. The observation of significant increases in γH2AX and p-p53Ser15 indicates DNA damage, which suggests that loss of Ddx3x leads to higher levels of genome damage. Significant upregulation of p21WAF1/Cip1 and p15Ink4b results in cell cycle arrest and apoptosis in Ddx3x-deficient cells. These results have uncovered that mouse Ddx3x is essential for both embryo and extraembryonic development.
Collapse
Affiliation(s)
| | | | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences.,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | - Yan-Hwa Wu Lee
- Institute of Biochemistry and Molecular Biology .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology .,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
109
|
Lo PK, Huang YC, Poulton JS, Leake N, Palmer WH, Vera D, Xie G, Klusza S, Deng WM. RNA helicase Belle/DDX3 regulates transgene expression in Drosophila. Dev Biol 2016; 412:57-70. [PMID: 26900887 DOI: 10.1016/j.ydbio.2016.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - John S Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Nicholas Leake
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - William H Palmer
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Daniel Vera
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stephen Klusza
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
110
|
Zhao L, Mao Y, Zhou J, Zhao Y, Cao Y, Chen X. Multifunctional DDX3: dual roles in various cancer development and its related signaling pathways. Am J Cancer Res 2016; 6:387-402. [PMID: 27186411 PMCID: PMC4859668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023] Open
Abstract
DEAD-box RNA helicase 3 (DDX3) is a highly conserved family member of DEAD-box protein, which is a cluster of ATP-dependent and the largest family of RNA helicase. DEAD-box family is characterized by the regulation of ATPase and helicase activities, the modulation of RNA metabolism, and the actors of RNA binding proteins or molecular chaperones to interact with other proteins or RNA. For DDX3, it exerts its multifaceted roles in viral manipulation, stress response, hypoxia, radiation response and apoptosis, and is closely related to cancer development and progression. DDX3 has dual roles in different cancer types and can act as either an oncogene or tumor suppressor gene during cancer progression. In the present review, we mainly provide an overview of current knowledge on dual roles of DDX3 in various types of cancer, including breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, oral squamous cell carcinoma, Ewing sarcoma, glioblastoma multiforme and gallbladder carcinoma, and illustrate the regulatory mechanisms for leading these two controversial biological effects. Furthermore, we summarize the essential signaling pathways that DDX3 participated, especially the Wnt/β-catenin signaling and EMT related signaling (TGF-β, Notch, Hedgehog pathways), which are crucial to DDX3 mediated cancer metastasis process. Thoroughly exploring the dual roles of DDX3 in cancer development and the essential signaling pathways it involved, it will help us open new perspectives to develop novel promising targets to elevate therapeutic effects and facilitate the "Personalized medicine" or "Precision medicine" to come into clinic.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of TechnologyGuangzhou 510640, Guangdong, China
| | - Ya Cao
- Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
111
|
Gai M, Bo Q, Qi L. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer. Biochem Biophys Res Commun 2015; 469:1000-5. [PMID: 26713367 DOI: 10.1016/j.bbrc.2015.12.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/17/2022]
Abstract
Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment.
Collapse
Affiliation(s)
- Muhuizi Gai
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China
| | - Qifang Bo
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China
| | - Lixia Qi
- Department of Gynaecology and Obstetrics, Dongying People's Hospital, No.317, East City South 1st Road, Dongying, Shandong, 257091, China.
| |
Collapse
|
112
|
Bol GM, Xie M, Raman V. DDX3, a potential target for cancer treatment. Mol Cancer 2015; 14:188. [PMID: 26541825 PMCID: PMC4636063 DOI: 10.1186/s12943-015-0461-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/22/2015] [Indexed: 12/27/2022] Open
Abstract
RNA helicases are a large family of proteins with a distinct motif, referred to as the DEAD/H (Asp-Glu-Ala-Asp/His). The exact functions of all the human DEAD/H box proteins are unknown. However, it has been consistently demonstrated that these proteins are associated with several aspects of energy-dependent RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. In addition, DEAD/H box proteins participate in nuclear-cytoplasmic transport and organellar gene expression. A member of this RNA helicase family, DDX3, has been identified in a variety of cellular biogenesis processes, including cell-cycle regulation, cellular differentiation, cell survival, and apoptosis. In cancer, DDX3 expression has been evaluated in patient samples of breast, lung, colon, oral, and liver cancer. Both tumor suppressor and oncogenic functions have been attributed to DDX3 and are discussed in this review. In general, there is concordance with in vitro evidence to support the hypothesis that DDX3 is associated with an aggressive phenotype in human malignancies. Interestingly, very few cancer types harbor mutations in DDX3, which result in altered protein function rather than a loss of function. Efficacy of drugs to curtail cancer growth is hindered by adaptive responses that promote drug resistance, eventually leading to treatment failure. One way to circumvent development of resistant disease is to develop novel drugs that target over-expressed proteins involved in this adaptive response. Moreover, if the target gene is developmentally regulated, there is less of a possibility to abruptly accumulate mutations leading to drug resistance. In this regard, DDX3 could be a druggable target for cancer treatment. We present an overview of DDX3 biology and the currently available DDX3 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Guus Martinus Bol
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, The Netherlands.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor 340, Baltimore, MD, 21205, USA
| | - Min Xie
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor 340, Baltimore, MD, 21205, USA
| | - Venu Raman
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, The Netherlands. .,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor 340, Baltimore, MD, 21205, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
113
|
Lai MC, Sun HS, Wang SW, Tarn WY. DDX3 functions in antiviral innate immunity through translational control of PACT. FEBS J 2015; 283:88-101. [PMID: 26454002 PMCID: PMC7164078 DOI: 10.1111/febs.13553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 01/14/2023]
Abstract
It has emerged that DDX3 plays a role in antiviral innate immunity. However, the exact mechanism by which DDX3 functions in antiviral innate immunity remains to be determined. We found that the expression of the protein activator of the interferon‐induced protein kinase (PACT) was regulated by DDX3 in human cells. PACT acts as a cellular activator of retinoic acid‐inducible gene‐I‐like receptors in the sensing of viral RNAs. DDX3 facilitated the translation of PACT mRNA that may contain a structured 5′ UTR. Knockdown of DDX3 decreased the viral RNA detection sensitivity of the cells. PACT partially rescued defects of interferon‐β1 and chemokine (C‐C motif) ligand 5/RANTES (regulated on activation normal T cell expressed and secreted) induction in DDX3‐knockdown HEK293 cells. Therefore, DDX3 may participate in antiviral innate immunity, at least in part, by translational control of PACT. Moreover, we show that overexpression of the hepatitis C virus (HCV) core protein inhibited the translation of a reporter mRNA harboring the PACT 5′ UTR. The HCV core protein was associated and colocalized with DDX3 in cytoplasmic stress granules, suggesting that the HCV core may abrogate the function of DDX3 by sequestering DDX3 in stress granules. The perturbation of DDX3 by viral proteins delineates a critical role for DDX3 in antiviral host defense.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shainn-Wei Wang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
114
|
Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, Cole RN, Raman V, Loeb DM. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene 2015; 35:2574-83. [PMID: 26364611 DOI: 10.1038/onc.2015.336] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023]
Abstract
RNA helicase DDX3 has oncogenic activity in breast and lung cancers and is required for translation of complex mRNA transcripts, including those encoding key cell-cycle regulatory proteins. We sought to determine the expression and function of DDX3 in sarcoma cells, and to investigate the antitumor activity of a novel small molecule DDX3 inhibitor, RK-33. Utilizing various sarcoma cell lines, xenografts and human tissue microarrays, we measured DDX3 expression at the mRNA and protein levels, and evaluated cytotoxicity of RK-33 in sarcoma cell lines. To study the role of DDX3 in Ewing sarcoma, we generated stable DDX3-knockdown Ewing sarcoma cell lines using DDX3-specific small hairpin RNA (shRNA), and assessed oncogenic activity. DDX3-knockdown and RK-33-treated Ewing sarcoma cells were compared with wild-type cells using an isobaric mass-tag quantitative proteomics approach to identify target proteins impacted by DDX3 inhibition. Overall, we found high expression of DDX3 in numerous human sarcoma subtypes compared with non-malignant mesenchymal cells, and knockdown of DDX3 by RNA interference inhibited oncogenic activity in Ewing sarcoma cells. Treatment with RK-33 was preferentially cytotoxic to sarcoma cells, including chemotherapy-resistant Ewing sarcoma stem cells, while sparing non-malignant cells. Sensitivity to RK-33 correlated with DDX3 protein expression. Growth of human Ewing sarcoma xenografts expressing high DDX3 was inhibited by RK-33 treatment in mice, without overt toxicity. DDX3 inhibition altered the Ewing sarcoma cellular proteome, especially proteins involved in DNA replication, mRNA translation and proteasome function. These data support further investigation of the role of DDX3 in sarcomas, advancement of RK-33 to Ewing sarcoma clinical trials and development of RNA helicase inhibition as a novel anti-neoplastic strategy.
Collapse
Affiliation(s)
- B A Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - C Kim
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - G McCarty
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - E A Montgomery
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - K Kammers
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - L R DeVine
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - R N Cole
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - V Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - D M Loeb
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
115
|
Y-Box Binding Protein 1 Stabilizes Hepatitis C Virus NS5A via Phosphorylation-Mediated Interaction with NS5A To Regulate Viral Propagation. J Virol 2015; 89:11584-602. [PMID: 26355086 DOI: 10.1128/jvi.01513-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Replication of hepatitis C virus (HCV) is dependent on virus-encoded proteins and numerous cellular factors. DDX3 is a well-known host cofactor of HCV replication. In this study, we investigated the role of a DDX3-interacting protein, Y-box binding protein 1 (YB-1), in the HCV life cycle. Both YB-1 and DDX3 interacted with the viral nonstructural protein NS5A. During HCV infection, YB-1 partially colocalized with NS5A and the HCV replication intermediate double-stranded RNA (dsRNA) in HCV-infected Huh-7.5.1 cells. Despite sharing the same interacting partners, YB-1 participated in HCV RNA replication but was dispensable in steady-state HCV RNA replication, different from the action of DDX3. Moreover, knockdown of YB-1 in HCV-infected cells prevented infectious virus production and reduced the ratio of hyperphosphorylated (p58) to hypophosphorylated (p56) forms of NS5A, whereas DDX3 silencing did not affect the ratio of the p58 and p56 phosphoforms of NS5A. Interestingly, silencing of YB-1 severely reduced NS5A protein stability in NS5A-ectopically expressing, replicon-containing, and HCV-infected cells. Furthermore, mutations of serine 102 of YB-1 affected both YB-1-NS5A interaction and NS5A-stabilizing activity of YB-1, indicating that this Akt phosphorylation site of YB-1 plays an important role in stabilizing NS5A. Collectively, our results support a model in which the event of YB-1 phosphorylation-mediated interaction with NS5A results in stabilizing NS5A to sustain HCV RNA replication and infectious HCV production. Overall, our study may reveal a new aspect for the development of novel anti-HCV drugs. IMPORTANCE Chronic hepatitis C virus (HCV) infection induces liver cirrhosis and hepatocellular carcinoma. The viral nonstructural protein NS5A co-opting various cellular signaling pathways and cofactors to support viral genome replication and virion assembly is a new strategy for anti-HCV drug development. NS5A phosphorylation is believed to modulate switches between different stages of the HCV life cycle. In this study, we identified the cellular protein YB-1 as a novel NS5A-interacting protein. YB-1 is a multifunctional protein participating in oncogenesis and is an oncomarker of hepatocellular carcinoma (HCC). We found that YB-1 protects NS5A from degradation and likely regulates NS5A phosphorylation through its phosphorylation-dependent interaction with NS5A, which might be controlled by HCV-induced signaling pathways. Our observations suggest a model in which HCV modulates NS5A level and the ratio of the p58 and p56 phosphoforms for efficient viral propagation via regulation of cellular signaling inducing YB-1 phosphorylation. Our finding may provide new aspects for developing novel anti-HCV drugs.
Collapse
|
116
|
The Clinical and Pathological Significance of Nectin-2 and DDX3 Expression in Pancreatic Ductal Adenocarcinomas. DISEASE MARKERS 2015; 2015:379568. [PMID: 26294807 PMCID: PMC4534609 DOI: 10.1155/2015/379568] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease, but the genetic basis of PDAC is still unclear. In this study, Nectin-2 and DDX3 expression in 106 PDAC, 35 peritumoral tissues, 55 benign pancreatic lesions, and 13 normal pancreatic tissues were measured by immunohistochemical methods. Results showed that the percentage of positive Nectin-2 and DDX3 expression was significantly higher in PDAC tumors than in peritumoral tissues, benign pancreatic tissues, and normal pancreatic tissues (P < 0.01). The percentage of cases with positive Nectin-2 and DDX3 expression was significantly lower in PDAC patients without lymph node metastasis and invasion and having TNM stage I/II disease than in patients with lymph node metastasis, invasion, and TNM stage III/IV disease (P < 0.05 or P < 0.01). Positive DDX3 expression is associated with poor differentiation of PDAC. Kaplan-Meier survival analysis showed that positive Nectin-2 and DDX3 expression were significantly associated with survival in PDAC patients (P < 0.001). Cox multivariate analysis revealed that positive Nectin-2 and DDX3 expression were independent poor prognosis factors in PDAC patients. In conclusion, positive Nectin-2 and DDX3 expression are associated with the progression and poor prognosis in PDAC patients.
Collapse
|
117
|
Hueng DY, Tsai WC, Chiou HYC, Feng SW, Lin C, Li YF, Huang LC, Lin MH. DDX3X Biomarker Correlates with Poor Survival in Human Gliomas. Int J Mol Sci 2015; 16:15578-91. [PMID: 26184164 PMCID: PMC4519914 DOI: 10.3390/ijms160715578] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022] Open
Abstract
Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X) controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC) staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81) than in non-tumor controls (n = 23, p = 1.13 × 10−10). Moreover, DDX3X level was also higher in WHO grade III (n = 19) than in non-tumor controls (p = 2.43 × 10−5). Kaplan–Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24) than in those with low DDX3X expression (n = 53) (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893–0.6496). Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas.
Collapse
Affiliation(s)
- Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
- Department of Biochemistry, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hsin-Ying Clair Chiou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Shao-Wei Feng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Chin Lin
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
118
|
Ezrin Binds to DEAD-Box RNA Helicase DDX3 and Regulates Its Function and Protein Level. Mol Cell Biol 2015; 35:3145-62. [PMID: 26149384 DOI: 10.1128/mcb.00332-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/21/2015] [Indexed: 12/30/2022] Open
Abstract
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5' untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.
Collapse
|
119
|
Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, Heerma van Voss MR, Gabrielson K, Bordt EA, Polster BM, Cope L, van der Groep P, Kondaskar A, Rudek MA, Hosmane RS, van der Wall E, van Diest PJ, Tran PT, Raman V. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med 2015; 7:648-69. [PMID: 25820276 PMCID: PMC4492822 DOI: 10.15252/emmm.201404368] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy worldwide and is a focus for developing targeted therapies due to its refractory nature to current treatment. We identified a RNA helicase, DDX3, which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients. We designed a first-in-class small molecule inhibitor, RK-33, which binds to DDX3 and abrogates its activity. Inhibition of DDX3 by RK-33 caused G1 cell cycle arrest, induced apoptosis, and promoted radiation sensitization in DDX3-overexpressing cells. Importantly, RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer. Mechanistically, loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3-β-catenin axis and inhibited non-homologous end joining-the major DNA repair pathway in mammalian somatic cells. Overall, inhibition of DDX3 by RK-33 promotes tumor regression, thus providing a compelling argument to develop DDX3 inhibitors for lung cancer therapy.
Collapse
Affiliation(s)
- Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Xie
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Zeng
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Khaled Aziz
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishant Gandhi
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Levine
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Irving
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorian Korz
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saritha Tantravedi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marise R Heerma van Voss
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan A Bordt
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian M Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Atul Kondaskar
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD, USA
| | - Michelle A Rudek
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramachandra S Hosmane
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD, USA
| | - Elsken van der Wall
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
120
|
Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep 2015; 5:9982. [PMID: 25918862 PMCID: PMC4412077 DOI: 10.1038/srep09982] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
DDX3 belongs to DEAD box RNA helicase family and is involved in the progression of several types of cancer. In this work, we employed a High Throughput Virtual screening approach to identify bioactive compounds against DDX3 from ZINC natural database. Ketorolac salt was selected based on its binding free energy less than or equals to −5 Kcal/mol with reference to existing synthetic DDX3 inhibitors and strong hydrogen bond interactions as similar to crystallized DDX3 protein (2I4I). The anti-cancer activity of Ketorolac salt against DDX3 was tested using oral squamous cell carcinoma (OSCC) cell lines. This compound significantly down regulated the expression of DDX3 in human OSCC line (H357) and the half maximal growth inhibitory concentration (IC50) of Ketorolac salt in H357 cell line is 2.6 µM. Ketorolac salt also inhibited the ATP hydrolysis by directly interacting with DDX3. More importantly, we observed decreased number of neoplastic tongue lesions and reduced lesion severity in Ketorolac salt treated groups in a carcinogen induced tongue tumor mouse model. Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer.
Collapse
|
121
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
122
|
Somma D, Mastrovito P, Grieco M, Lavorgna A, Pignalosa A, Formisano L, Salzano AM, Scaloni A, Pacifico F, Siebenlist U, Leonardi A. CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. THE JOURNAL OF IMMUNOLOGY 2015; 194:3286-94. [PMID: 25710910 DOI: 10.4049/jimmunol.1401589] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IL-17 is a proinflammatory cytokine that promotes the expression of different cytokines and chemokines via the induction of gene transcription and the posttranscriptional stabilization of mRNAs. In this study, we show that IL-17 increases the half-life of the Zc3h12a mRNA via interaction of the adaptor protein CIKS with the DEAD box protein DDX3X. IL-17 stimulation promotes the formation of a complex between CIKS and DDX3X, and this interaction requires the helicase domain of DDX3X but not its ATPase activity. DDX3X knockdown decreases the IL-17-induced stability of Zc3h12a without affecting the stability of other mRNAs. IKKε, TNFR-associated factor 2, and TNFR-associated factor 5 were also required to mediate the IL-17-induced Zc3h12a stabilization. DDX3X directly binds the Zc3h12a mRNA after IL-17 stimulation. Collectively, our findings define a novel, IL-17-dependent mechanism regulating the stabilization of a selected mRNA.
Collapse
Affiliation(s)
- Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy
| | - Paola Mastrovito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy
| | - Marianeve Grieco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy
| | - Alfonso Lavorgna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy
| | - Angelica Pignalosa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy
| | - Luigi Formisano
- Dipartimento di Neuroscienze, Università Federico II di Napoli, 80131 Naples, Italy
| | - Anna Maria Salzano
- Laboratorio di Proteomica e Spettrometria di Massa, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, Consiglio Nazionale delle Ricerche, 80147 Naples, Italy
| | - Andrea Scaloni
- Laboratorio di Proteomica e Spettrometria di Massa, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, Consiglio Nazionale delle Ricerche, 80147 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; and
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, 80131 Naples, Italy;
| |
Collapse
|
123
|
Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S, Youbi SE, Kallarakal A, Chruszcz M, Padmanabhan R, Casey JL, Üren A, Toretsky JA. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res 2015; 43:1069-80. [PMID: 25564528 PMCID: PMC4333382 DOI: 10.1093/nar/gku1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy.
Collapse
Affiliation(s)
- Hayriye Verda Erkizan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Schneider
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Kamal Sajwan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Garrett T Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Brittany Griffin
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road NW, New Research Building E220, Washington, DC 20007, USA
| | - Sarah E Youbi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Abraham Kallarakal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| |
Collapse
|
124
|
Ariumi Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 2014; 5:423. [PMID: 25538732 PMCID: PMC4257086 DOI: 10.3389/fgene.2014.00423] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022] Open
Abstract
The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research - International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
125
|
Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 2014. [DOI: 10.4161/cib.13844] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
126
|
Nozaki K, Kagamu H, Shoji S, Igarashi N, Ohtsubo A, Okajima M, Miura S, Watanabe S, Yoshizawa H, Narita I. DDX3X induces primary EGFR-TKI resistance based on intratumor heterogeneity in lung cancer cells harboring EGFR-activating mutations. PLoS One 2014; 9:e111019. [PMID: 25343452 PMCID: PMC4208809 DOI: 10.1371/journal.pone.0111019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
The specific mechanisms how lung cancer cells harboring epidermal growth factor receptor (EGFR) activating mutations can survive treatment with EGFR-tyrosine kinase inhibitors (TKIs) until they eventually acquire treatment-resistance genetic mutations are unclear. The phenotypic diversity of cancer cells caused by genetic or epigenetic alterations (intratumor heterogeneity) confers treatment failure and may foster tumor evolution through Darwinian selection. Recently, we found DDX3X as the protein that was preferentially expressed in murine melanoma with cancer stem cell (CSC)-like phenotypes by proteome analysis. In this study, we transfected PC9, human lung cancer cells harboring EGFR exon19 deletion, with cDNA encoding DDX3X and found that DDX3X, an ATP-dependent RNA helicase, induced CSC-like phenotypes and the epithelial-mesenchymal transition (EMT) accompanied with loss of sensitivity to EGFR-TKI. DDX3X expression was associated with upregulation of Sox2 and increase of cancer cells exhibiting CSC-like phenotypes, such as anchorage-independent proliferation, strong expression of CD44, and aldehyde dehydrogenase (ALDH). The EMT with switching from E-cadherin to N-cadherin was also facilitated by DDX3X. Either ligand-independent or ligand-induced EGFR phosphorylation was inhibited in lung cancer cells that strongly expressed DDX3X. Lack of EGFR signal addiction resulted in resistance to EGFR-TKI. Moreover, we found a small nonadherent subpopulation that strongly expressed DDX3X accompanied by the same stem cell-like properties and the EMT in parental PC9 cells. The unique subpopulation lacked EGFR signaling and was highly resistant to EGFR-TKI. In conclusion, our data indicate that DDX3X may play a critical role for inducing phenotypic diversity, and that treatment targeting DDX3X may overcome primary resistance to EGFR-TKI resulting from intratumor heterogeneity.
Collapse
Affiliation(s)
- Koichiro Nozaki
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Kagamu
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail:
| | - Satoshi Shoji
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Natsue Igarashi
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Aya Ohtsubo
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaaki Okajima
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satoru Miura
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satoshi Watanabe
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hirohisa Yoshizawa
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ichiei Narita
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
127
|
DDX3 DEAD-box RNA helicase is a host factor that restricts hepatitis B virus replication at the transcriptional level. J Virol 2014; 88:13689-98. [PMID: 25231298 DOI: 10.1128/jvi.02035-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED DDX3 is a member of the DEAD-box RNA helicase family, involved in mRNA metabolism, including transcription, splicing, and translation. We previously identified DDX3 as a hepatitis B virus (HBV) polymerase (Pol) binding protein, and by using a transient transfection, we found that DDX3 inhibits HBV replication at the posttranscriptional level, perhaps following encapsidation. To determine the exact mechanism of the inhibition, we here employed a diverse HBV experimental system. Inconsistently, we found that DDX3-mediated inhibition occurs at the level of transcription. By using tetracycline-inducible HBV-producing cells, we observed that lentivirus-mediated DDX3 expression led to a reduced level of HBV RNAs. Importantly, knockdown of DDX3 by short hairpin RNA resulted in augmentation of HBV RNAs in two distinct HBV replication systems: (i) tetracycline-inducible HBV-producing cells and (ii) constitutive HBV-producing HepG2.2.15 cells. Moreover, DDX3 knockdown in HBV-susceptible HepG2-NTCP cells, where covalently closed circular DNA (cccDNA) serves as the template for viral transcription, resulted in increased HBV RNAs, validating that transcription regulation by DDX3 occurs on a physiological template. Overall, our results demonstrate that DDX3 represents an intrinsic host antiviral factor that restricts HBV transcription. IMPORTANCE Upon entry into host cells, viruses encounter host factors that restrict viral infection. During evolution, viruses have acquired the ability to subvert cellular factors that adversely affect their replication. Such host factors include TRIM5α and APOBEC3G, which were discovered in retroviruses. The discovery of host restriction factors provided deeper insight into the innate immune response and viral pathogenesis, leading to better understanding of host-virus interactions. In contrast to the case with retroviruses, little is known about host factors that restrict hepatitis B virus (HBV), a virus distantly related to retroviruses. DDX3 DEAD box RNA helicase is best characterized as an RNA helicase involved in RNA metabolism, such as RNA processing and translation. Here, we show that DDX3 inhibits HBV infection at the level of viral transcription.
Collapse
|
128
|
Chen HH, Yu HI, Cho WC, Tarn WY. DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene 2014; 34:2790-800. [PMID: 25043297 DOI: 10.1038/onc.2014.190] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/17/2014] [Accepted: 05/28/2014] [Indexed: 01/20/2023]
Abstract
The DEAD-box RNA helicase DDX3 is a versatile protein involved in multiple steps of gene expression and various cellular signaling pathways. DDX3 mutations have been implicated in the wingless (Wnt) type of medulloblastoma. We show here that small interfering RNA-mediated DDX3 knockdown in various cell lines increased cell-cell adhesion but decreased cell-extracellular matrix adhesion. Moreover, DDX3 depletion suppressed cell motility and impaired directional migration in the wound-healing assay. Accordingly, DDX3-depleted cells exhibited reduced invasive capacities in vitro as well as reduced metastatic potential in mice. We also examined the mechanism underlying DDX3-regulated cell migration. DDX3 knockdown reduced the levels of both Rac1 and β-catenin proteins, and consequentially downregulated the expression of several β-catenin target genes. Moreover, we demonstrated that DDX3-regulated Rac1 mRNA translation, possibly through an interaction with its 5'-untranslated region, and affected β-catenin protein stability in an Rac1-dependent manner. Taken together, our results indicate the DDX3-Rac1-β-catenin regulatory axis in modulating the expression of Wnt/β-catenin target genes. Therefore, this report provides a mechanistic context for the role of DDX3 in Wnt-type tumors.
Collapse
Affiliation(s)
- H-H Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - H-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-C Cho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-Y Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
129
|
Weinreb I, Zhang L, Tirunagari LMS, Sung YS, Chen CL, Perez-Ordonez B, Clarke BA, Skalova A, Chiosea SI, Seethala RR, Waggott D, Boutros PC, How C, Liu FF, Irish JC, Goldstein DP, Gilbert R, Ud Din N, Assaad A, Hornick JL, Thompson LDR, Antonescu CR. Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes Chromosomes Cancer 2014; 53:845-56. [PMID: 24942367 DOI: 10.1002/gcc.22195] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022] Open
Abstract
Polymorphous low-grade adenocarcinoma (PLGA) and cribriform adenocarcinoma of minor salivary gland (CAMSG) are low-grade carcinomas arising most often in oral cavity and oropharynx, respectively. Controversy exists as to whether these tumors represent separate entities or variants of one spectrum, as they appear to have significant overlap, but also clinicopathologic differences. As many salivary carcinomas harbor recurrent translocations, paired-end RNA sequencing and FusionSeq data analysis was applied for novel fusion discovery on two CAMSGs and two PLGAs. Validated rearrangements were then screened by fluorescence in situ hybridization (FISH) in 60 cases. Histologic classification was performed without knowledge of fusion status and included: 21 CAMSG, 18 classic PLGA, and 21 with "mixed/indeterminate" features. The RNAseq of 2 CAMSGs showed ARID1A-PRKD1 and DDX3X-PRKD1 fusions, respectively, while no fusion candidates were identified in two PLGAs. FISH for PRKD1 rearrangements identified 11 additional cases (22%), two more showing ARID1A-PRKD1 fusions. As PRKD2 and PRKD3 share similar functions with PRKD1 in the diacylglycerol and protein kinase C signal transduction pathway, we expanded the investigation for these genes by FISH. Six additional cases each showed PRKD2 and PRKD3 rearrangements. Of the 26 (43%) fusion-positive tumors, there were 16 (80%) CAMSGs and 9 (45%) indeterminate cases. A PRKD2 rearrangement was detected in one PLGA (6%). We describe novel and recurrent gene rearrangements in PRKD1-3 primarily in CAMSG, suggesting a possible pathogenetic dichotomy from "classic" PLGA. However, the presence of similar genetic findings in half of the indeterminate cases and a single PLGA suggests a possible shared pathogenesis for these tumor types.
Collapse
Affiliation(s)
- Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Ratnoglik SL, Jiang DP, Aoki C, Sudarmono P, Shoji I, Deng L, Hotta H. Induction of cell-mediated immune responses in mice by DNA vaccines that express hepatitis C virus NS3 mutants lacking serine protease and NTPase/RNA helicase activities. PLoS One 2014; 9:e98877. [PMID: 24901478 PMCID: PMC4046998 DOI: 10.1371/journal.pone.0098877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 05/07/2014] [Indexed: 12/14/2022] Open
Abstract
Effective therapeutic vaccines against virus infection must induce sufficient levels of cell-mediated immune responses against the target viral epitopes and also must avoid concomitant risk factors, such as potential carcinogenic properties. The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) carries a variety of CD4(+) and CD8(+) T cell epitopes, and induces strong HCV-specific T cell responses, which are correlated with viral clearance and resolution of acute HCV infection. On the other hand, NS3 possesses serine protease and nucleoside triphosphatase (NTPase)/RNA helicase activities, which not only play important roles in viral life cycle but also concomitantly interfere with host defense mechanisms by deregulating normal cellular functions. In this study, we constructed a series of DNA vaccines that express NS3 of HCV. To avoid the potential harm of NS3, we introduced mutations to the catalytic triad of the serine protease (H57A, D81A and S139A) and the NTPase/RNA helicase domain (K210N, F444A, R461Q and W501A) to eliminate the enzymatic activities. Immunization of BALB/c mice with each of the DNA vaccine candidates (pNS3[S139A/K210N], pNS3[S139A/F444A], pNS3[S139A/R461Q] and pNS3[S139A/W501A]) that expresses an NS3 mutant lacking both serine protease and NTPase/helicase activities induced T cell immune responses to the degree comparable to that induced by the wild type NS3 and the NS3/4A complex, as demonstrated by interferon-γ production and cytotoxic T lymphocytes activities against NS3. The present study has demonstrated that plasmids expressing NS3 mutants, NS3(S139A/K210N), NS3(S139A/F444A), NS3(S139A/R461Q) and NS3(S139A/W501A), which lack both serine protease and NTPase/RNA helicase activities, would be good candidates for safe and efficient therapeutic DNA vaccines against HCV infection.
Collapse
Affiliation(s)
- Suratno Lulut Ratnoglik
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Da-Peng Jiang
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chie Aoki
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- JST/JICA SATREPS Laboratory of Kobe University, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Ikuo Shoji
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
131
|
Park KI, Park HS, Kim MK, Hong GE, Nagappan A, Lee HJ, Yumnam S, Lee WS, Won CK, Shin SC, Kim GS. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
132
|
Brandimarte L, La Starza R, Gianfelici V, Barba G, Pierini V, Di Giacomo D, Cools J, Elia L, Vitale A, Luciano L, Bardi A, Chiaretti S, Matteucci C, Specchia G, Mecucci C. DDX3X-MLLT10 fusion in adults with NOTCH1 positive T-cell acute lymphoblastic leukemia. Haematologica 2014; 99:64-6. [PMID: 24584351 DOI: 10.3324/haematol.2013.101725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
133
|
Prep1 and Meis1 competition for Pbx1 binding regulates protein stability and tumorigenesis. Proc Natl Acad Sci U S A 2014; 111:E896-905. [PMID: 24578510 DOI: 10.1073/pnas.1321200111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pbx-regulating protein-1 (Prep1) is a tumor suppressor, whereas myeloid ecotropic viral integration site-1 (Meis1) is an oncogene. We show that, to perform these activities in mouse embryonic fibroblasts, both proteins competitively heterodimerize with pre-B-cell leukemia homeobox-1 (Pbx1). Meis1 alone transforms Prep1-deficient fibroblasts, whereas Prep1 overexpression inhibits Meis1 tumorigenicity. Pbx1 can, therefore, alternatively act as an oncogene or tumor suppressor. Prep1 posttranslationally controls the level of Meis1, decreasing its stability by sequestering Pbx1. The different levels of Meis1 and the presence of Prep1 are followed at the transcriptional level by the induction of specific transcriptional signatures. The decrease of Meis1 prevents Meis1 interaction with Ddx3x and Ddx5, which are essential for Meis1 tumorigenesis, and modifies the growth-promoting DNA binding landscape of Meis1 to the growth-controlling landscape of Prep1. Hence, the key feature of Prep1 tumor-inhibiting activity is the control of Meis1 stability.
Collapse
|
134
|
|
135
|
Kechavarzi B, Janga SC. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol 2014; 15:R14. [PMID: 24410894 PMCID: PMC4053825 DOI: 10.1186/gb-2014-15-1-r14] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/10/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) play important roles in cellular homeostasis by controlling gene expression at the post-transcriptional level. RESULTS We explore the expression of more than 800 RBPs in sixteen healthy human tissues and their patterns of dysregulation in cancer genomes from The Cancer Genome Atlas project. We show that genes encoding RBPs are consistently and significantly highly expressed compared with other classes of genes, including those encoding regulatory components such as transcription factors, miRNAs and long non-coding RNAs. We also demonstrate that a set of RBPs, numbering approximately 30, are strongly upregulated (SUR) across at least two-thirds of the nine cancers profiled in this study. Analysis of the protein-protein interaction network properties for the SUR and non-SUR groups of RBPs suggests that path length distributions between SUR RBPs is significantly lower than those observed for non-SUR RBPs. We further find that the mean path lengths between SUR RBPs increases in proportion to their contribution to prognostic impact. We also note that RBPs exhibiting higher variability in the extent of dysregulation across breast cancer patients have a higher number of protein-protein interactions. We propose that fluctuating RBP levels might result in an increase in non-specific protein interactions, potentially leading to changes in the functional consequences of RBP binding. Finally, we show that the expression variation of a gene within a patient group is inversely correlated with prognostic impact. CONCLUSIONS Overall, our results provide a roadmap for understanding the impact of RBPs on cancer pathogenesis.
Collapse
Affiliation(s)
- Bobak Kechavarzi
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University – Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University – Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
136
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
137
|
Koshio J, Kagamu H, Nozaki K, Saida Y, Tanaka T, Shoji S, Igarashi N, Miura S, Okajima M, Watanabe S, Yoshizawa H, Narita I. DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an immunogenic target of cancer stem cells. Cancer Immunol Immunother 2013; 62:1619-28. [PMID: 23974721 PMCID: PMC11028571 DOI: 10.1007/s00262-013-1467-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Accumulating evidence suggests that most solid malignancies consist of heterogeneous tumor cells and that a relatively small subpopulation, which shares biological features with stem cells, survives through potentially lethal stresses such as chemotherapy and radiation treatment. Since the survival of this subpopulation of cancer stem cells (CSC) plays a critical role in recurrence, it must be eradicated in order to cure cancer. We previously reported that vaccination with CD133(+) murine melanoma cells exhibiting biological CSC features induced CSC-specific effector T cells. These were capable of eradicating CD133(+) tumor cells in vivo, thereby curing the parental tumor. In the current study, we indicated that DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked (DDX3X) is an immunogenic protein preferentially expressed in CD133(+) tumor cells. Vaccination with DDX3X primed specific T cells, resulting in protective and therapeutic antitumor immunity. The DDX3X-primed CD4(+) T cells produced CD133(+) tumor-specific IFNγ and IL-17 and mediated potent antitumor therapeutic efficacy. DDX3X is expressed in various human cancer cells, including lung, colon, and breast cancer cells. These results suggest that anti-DDX3X immunotherapy is a promising treatment option in efforts to eradicate CSC in the clinical setting.
Collapse
Affiliation(s)
- Jun Koshio
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Hiroshi Kagamu
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Koichiro Nozaki
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yu Saida
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Tomohiro Tanaka
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Satoshi Shoji
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Natsue Igarashi
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Satoru Miura
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Masaaki Okajima
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Satoshi Watanabe
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hirohisa Yoshizawa
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ichiei Narita
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Course for Biological Functions and Medical Control, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| |
Collapse
|
138
|
Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 2013; 123:1681-90. [PMID: 24037725 DOI: 10.1182/blood-2013-05-500595] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Follicular lymphoma (FL), the second most common type of non-Hodgkin lymphoma in the western world, is characterized by the t(14;18) translocation, which is present in up to 90% of cases. We studied 277 lymphoma samples (198 FL and 79 transformed FL [tFL]) using a single-nucleotide polymorphism array to identify the secondary chromosomal abnormalities that drive the development of FL and its transformation to diffuse large B-cell lymphoma. Common recurrent chromosomal abnormalities in FL included gains of 2, 5, 7, 6p, 8, 12, 17q, 18, 21, and X and losses on 6q and 17p. We also observed many frequent small abnormalities, including losses of 1p36.33-p36.31, 6q23.3-q24.1, and 10q23.1-q25.1 and gains of 2p16.1-p15, 8q24.13-q24.3, and 12q12-q13.13, and identified candidate genes that may be driving this selection. Recurrent abnormalities more frequent in tFL samples included gains of 3q27.3-q28 and chromosome 11 and losses of 9p21.3 and 15q. Four abnormalities, gain of X or Xp and losses of 6q23.2-24.1 or 6q13-15, predicted overall survival. Abnormalities associated with transformation of the disease likely impair immune surveillance, activate the nuclear factor-κB pathway, and deregulate p53 and B-cell transcription factors.
Collapse
|
139
|
Lai MC, Wang SW, Cheng L, Tarn WY, Tsai SJ, Sun HS. Human DDX3 interacts with the HIV-1 Tat protein to facilitate viral mRNA translation. PLoS One 2013; 8:e68665. [PMID: 23840900 PMCID: PMC3698215 DOI: 10.1371/journal.pone.0068665] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/01/2013] [Indexed: 12/30/2022] Open
Abstract
Nuclear export and translation of intron-containing viral mRNAs are required for HIV-1 gene expression and replication. In this report, we provide evidence to show that DDX3 regulates the translation of HIV-1 mRNAs. We found that knockdown of DDX3 expression effectively inhibited HIV-1 production. Translation of HIV-1 early regulatory proteins, Tat and rev, was impaired in DDX3-depleted cells. All HIV-1 transcripts share a highly structured 5' untranslated region (UTR) with inhibitory elements on translation of viral mRNAs, yet DDX3 promoted translation of reporter mRNAs containing the HIV-1 5' UTR, especially with the transactivation response (TAR) hairpin. Interestingly, DDX3 directly interacts with HIV-1 Tat, a well-characterized transcriptional activator bound to the TAR hairpin. HIV-1 Tat is partially targeted to cytoplasmic stress granules upon DDX3 overexpression or cell stress conditions, suggesting a potential role of Tat/DDX3 complex in translation. We further demonstrated that HIV-1 Tat remains associated with translating mRNAs and facilitates translation of mRNAs containing the HIV-1 5' UTR. Taken together, these findings indicate that DDX3 is recruited to the TAR hairpin by interaction with viral Tat to facilitate HIV-1 mRNA translation.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Shainn-Wei Wang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Lie Cheng
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - H. Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
140
|
Zhou X, Luo J, Mills L, Wu S, Pan T, Geng G, Zhang J, Luo H, Liu C, Zhang H. DDX5 facilitates HIV-1 replication as a cellular co-factor of Rev. PLoS One 2013; 8:e65040. [PMID: 23741449 PMCID: PMC3669200 DOI: 10.1371/journal.pone.0065040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/21/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Rev plays an important role in the late phase of HIV-1 replication, which facilitates export of unspliced viral mRNAs from the nucleus to cytoplasm in infected cells. Recent studies have shown that DDX1 and DDX3 are co-factors of Rev for the export of HIV-1 transcripts. In this report, we have demonstrated that DDX5 (p68), which is a multifunctional DEAD-box RNA helicase, functions as a new cellular co-factor of HIV-1 Rev. We found that DDX5 affects Rev function through the Rev-RRE axis and subsequently enhances HIV-1 replication. Confocal microscopy and co-immunoprecipitation analysis indicated that DDX5 binds to Rev and this interaction is largely dependent on RNA. If the DEAD-box motif of DDX5 is mutated, DDX5 loses almost all of its ability to bind to Rev, indicating that the DEAD-box motif of DDX5 is required for the interaction between DDX5 and Rev. Our data indicate that interference of DDX5-Rev interaction could reduce HIV-1 replication and potentially provide a new molecular target for anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Juan Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisa Mills
- Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Shuangxin Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jim Zhang
- Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HZ); (CL)
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Human Virology, Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HZ); (CL)
| |
Collapse
|
141
|
Bol GM, Raman V, van der Groep P, Vermeulen JF, Patel AH, van der Wall E, van Diest PJ. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One 2013; 8:e63548. [PMID: 23696831 PMCID: PMC3656050 DOI: 10.1371/journal.pone.0063548] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/03/2013] [Indexed: 12/11/2022] Open
Abstract
Aims DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1α (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer. Methods and Results DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1α, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERα, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1α and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERα and c-Met in a HIF-1α dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1α. Conclusions In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1α and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.
Collapse
Affiliation(s)
- Guus M. Bol
- Departments of Pathology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Venu Raman
- Departments of Pathology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Petra van der Groep
- Departments of Pathology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeroen F. Vermeulen
- Departments of Pathology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Arvind H. Patel
- MRC, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Paul J. van Diest
- Departments of Pathology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
142
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
143
|
Fan CC, Lee LY, Yu MY, Tzen CY, Chou C, Chang MS. Upregulated hPuf-A promotes breast cancer tumorigenesis. Tumour Biol 2013; 34:2557-64. [PMID: 23625657 DOI: 10.1007/s13277-013-0801-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/09/2013] [Indexed: 12/11/2022] Open
Abstract
hPuf-A is a member of RNA-binding PUF family that regulates mRNA translation. Redistribution of hPuf-A from the nucleolus to the nucleoplasm upon genotoxic stress modulates the poly(ADP-ribosyl)ation activity of PARP-1. Here, we report a novel function of hPuf-A involved in promoting breast cancer progression. Immunohistochemical studies showed higher expression levels of hPuf-A in stage I, II, III, and IV breast cancer specimens in contrast with those of hPuf-A in ductal carcinoma in situ. The presence of hPuf-A is highly associated with colony formation capacities in breast cancer T47D and MDA-MB-231 cells. Xenograft growth of hPuf-A-silenced and hPuf-A overexpressing MDA-MB-231 cells in nude mice was substantially in concert with colony formation capacities. This promoting effect of hPuf-A in tumorigenesis might be correlated with the regulation of its associated mRNAs, such as RbAp48 and DDX3. Collectively, hPuf-A may have diagnostic values in breast cancer progression.
Collapse
Affiliation(s)
- Chi-Chen Fan
- Department of Physiology, Mackay Memorial Hospital, Taipei, Taiwan,
| | | | | | | | | | | |
Collapse
|
144
|
Soto-Rifo R, Ohlmann T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:369-85. [PMID: 23606618 DOI: 10.1002/wrna.1165] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DDX3 belongs to the DEAD-box proteins, a large family of ATP-dependent RNA helicases that participate in all aspects of RNA metabolism. Human DDX3 is a component of several messenger ribonucleoproteins that are found in the spliceosome, the export and the translation initiation machineries but also in different cytoplasmic mRNA granules. DDX3 has been involved in several cellular processes such as cell cycle progression, apoptosis, cancer, innate immune response, and also as a host factor for viral replication. Interestingly, not all these functions require the catalytic activities of DDX3 and thus, the precise roles of this apparently multifaceted protein remain largely obscure. The aim of this review is to provide a rapid and critical overview of the structure and functions of DDX3 with a particular emphasis on its role during mRNA metabolism.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
145
|
DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 2013; 33:1515-26. [PMID: 23584477 DOI: 10.1038/onc.2013.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/28/2013] [Accepted: 02/07/2013] [Indexed: 12/18/2022]
Abstract
P53 inactivation by p53 mutation and E6 oncoprotein has a crucial role in human carcinogenesis. DDX3 has been shown to be a target of p53. In this study, we hypothesized that DDX3 loss by p53 inactivation may promote tumor malignancy and poor patients' outcome. Mechanically, DDX3 loss by p53 knockdown and E6 overexpression was observed in A549 lung cancer cells. Conversely, DDX3 expression was markedly elevated by wild-type (WT) p53 ectopic expression in p53-null H1299 cells, E6-knockdown TL-1 lung cancer and SiHa cervical cancer cells. Interestingly, DDX3 loss promotes soft-agar growth and invasive capability; however, both capabilities were suppressed by DDX3 overexpression. We next expected that DDX3 loss might result in Slug-suppressed E-cadherin expression via decreased MDM2-mediated Slug degradation. As expected, MDM2 transcription is suppressed by DDX3 loss via decreased SP1 binding activity to the MDM2 promoter. Consequently, Slug expression was elevated by the reduction of MDM2 because of DDX3 loss, and E-cadherin expression was suppressed by Slug. Consistent observations in the correlation of DDX3 loss with MDM2, Slug and E-cadherin were seen in lung tumors from lung cancer patients. In addition, patients with low-DDX3 tumors had poorer survival and relapse than patients with high-DDX3 tumors. In conclusion, we suggest that DDX3 loss by p53 inactivation via MDM2/Slug/E-cadherin pathway promotes tumor malignancy and poor patient outcome.
Collapse
|
146
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
147
|
Hooper C, Hilliker A. Packing them up and dusting them off: RNA helicases and mRNA storage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:824-34. [PMID: 23528738 DOI: 10.1016/j.bbagrm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Cytoplasmic mRNA can be translated, translationally repressed, localized or degraded. Regulation of translation is an important step in control of gene expression and the cell can change whether and to what extent an mRNA is translated. If an mRNA is not translating, it will associate with translation repression factors; the mRNA can be stored in these non-translating states. The movement of mRNA into storage and back to translation is dictated by the recognition of the mRNA by trans factors. So, remodeling the factors that bind mRNA is critical for changing the fate of mRNA. RNA helicases, which have the ability to remodel RNA or RNA-protein complexes, are excellent candidates for facilitating such rearrangements. This review will focus on the RNA helicases implicated in translation repression and/or mRNA storage and how their study has illuminated mechanisms of mRNA regulation. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Christopher Hooper
- Department of Neonatology, Vanderbilt Children's Hospital, Nashville, TN, USA
| | | |
Collapse
|
148
|
Sun M, Zhou T, Jonasch E, Jope RS. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1489-97. [PMID: 23470959 DOI: 10.1016/j.bbamcr.2013.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/04/2013] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
The DEAD box protein family member DDX3 was previously identified as an inhibitor of death receptor-mediated extrinsic apoptotic signaling. However, there had been no studies of the role of DDX3 in regulating the other major type of apoptosis, intrinsic apoptotic signaling, which was examined here. Intrinsic apoptosis was induced in MCF-7 cells by treatment with staurosporine, a general kinase inhibitor, thapsigargin, which induces endoplasmic reticulum (ER) stress, and camptothecin, which causes DNA damage. Each of these treatments caused time-dependent activation of caspase-7, the predominant executioner caspase in these cells. Depletion of DDX3 using shRNA did not alter apoptotic responses to staurosporine or thapsigargin. However, caspase-7 activation induced by camptothecin was regulated by DDX3 in a manner dependent on the functional status of p53. Depletion of DDX3 abrogated camptothecin-induced caspase-7 activation in MCF-7 cells expressing functional wild-type p53, but oppositely potentiated camptothecin-mediated caspase activation in cells expressing mutant or non-functional p53, which was accompanied by increased activation of the extrinsic apoptotic signaling initiator caspase-8. In MCF-7 cells, depletion of DDX3 reduced by more than 50% camptothecin-induced p53 accumulation, and this effect was blocked by inhibition of the proteasome with MG132, indicating that DDX3 regulates p53 not at expression level but rather its stabilization after DNA damage. Co-immunoprecipitation experiments demonstrated that DDX3 associates with p53, and overexpression of DDX3 was sufficient to double the accumulation of p53 in the nucleus after DNA damage. Thus, DDX3 associates with p53, increases p53 accumulation, and positively regulates camptothecin-induced apoptotic signaling in cells expressing functional wild-type p53, whereas in cells expressing mutant or non-functional p53 DDX3 inhibits activation of the extrinsic apoptotic pathway to reduce caspase activation. These results demonstrate that DDX3 not only regulates extrinsic apoptotic signaling, as previously reported, but also selectively regulates intrinsic apoptotic signaling following DNA damage.
Collapse
Affiliation(s)
- Mianen Sun
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
149
|
Lee CH, Lin SH, Yang SF, Yang SM, Chen MK, Lee H, Ko JL, Chen CJ, Yeh KT. Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis 2013; 20:76-83. [PMID: 23410059 DOI: 10.1111/odi.12076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/17/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE DDX3 has diverse biological functions in translation control, cell growth regulation, and tumor progression. Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide with a poor clinical prognosis. The impact of DDX3 expression in OSCC is seldom discussed. MATERIALS AND METHODS Tumor tissues and adjacent normal tissues were obtained from 324 patients with OSCC. In this study, we used immunohistochemical staining methods to investigate the associations between DDX3 expression and the clinicopathological characteristics of OSCC. RESULTS Low/negative DDX3 expression in tumor cells was significantly associated OSCC patient characteristics including male gender (P < 0.001), smoking (P < 0.001), alcohol consumption (P < 0.001), betel quid chewing (P = 0.002), poor relapse-free survival (P = 0.001), and poor overall survival (OS) (P = 0.001). Patients with low/negative DDX3 expression, and particularly non-smoker OSCC patients, had significantly worse OS as defined by the log-rank test (P = 0.020 for all cases; P = 0.008 for non-smoker patients). In non-smoker patients with OSCC, low/negative DDX3 expression in tumor cells was associated with poor prognosis (P = 0.024) and a 3.802-fold higher death risk, as determined by Cox regression. CONCLUSIONS Low/negative DDX3 expression in tumor cells was significantly associated with aggressive clinical manifestations and might be an independent survival predictor, particularly in non-smoker patients with OSCC.
Collapse
Affiliation(s)
- C-H Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Chen CY, Liu X, Boris-Lawrie K, Sharma A, Jeang KT. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 2013; 171:357-65. [PMID: 22814432 PMCID: PMC3493675 DOI: 10.1016/j.virusres.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Xiang Liu
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Amit Sharma
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Kuan-Teh Jeang
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|