101
|
NUAK2 is a critical YAP target in liver cancer. Nat Commun 2018; 9:4834. [PMID: 30446657 PMCID: PMC6240092 DOI: 10.1038/s41467-018-07394-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The Hippo-YAP signaling pathway is a critical regulator of proliferation, apoptosis, and cell fate. The main downstream effector of this pathway, YAP, has been shown to be misregulated in human cancer and has emerged as an attractive target for therapeutics. A significant insufficiency in our understanding of the pathway is the identity of transcriptional targets of YAP that drive its potent growth phenotypes. Here, using liver cancer as a model, we identify NUAK2 as an essential mediator of YAP-driven hepatomegaly and tumorigenesis in vivo. By evaluating several human cancer cell lines we determine that NUAK2 is selectively required for YAP-driven growth. Mechanistically, we found that NUAK2 participates in a feedback loop to maximize YAP activity via promotion of actin polymerization and myosin activity. Additionally, pharmacological inactivation of NUAK2 suppresses YAP-dependent cancer cell proliferation and liver overgrowth. Importantly, our work here identifies a specific, potent, and actionable target for YAP-driven malignancies. Hippo-YAP pathway plays an important role in cancers; however the in vivo relevance of YAP/TAZ target genes is unclear. Here, the authors show that NUAK2 is a target of YAP and participates in a feedback loop to maximize YAP activity. Inhibition of NUAK2 suppresses YAP-driven hepatomegaly and liver cancer growth, offering a new target for cancer therapy.
Collapse
|
102
|
Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:29-39. [PMID: 30419315 DOI: 10.1016/j.bbcan.2018.10.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a reversible developmental genetic programme of transdifferentiation of polarised epithelial cells to mesenchymal cells. In cancer, EMT is an important factor of tumour cell plasticity and has received increasing attention for its role in the resistance to conventional and targeted therapies. In this paper we provide an overview of EMT in human malignancies, and discuss contribution of EMT to the development of the resistance to Epidermal Growth Factor Receptor (EGFR)-targeted therapies in non-small cell lung cancer (NSCLC). Patients with the tumours bearing specific mutations in EGFR have a good clinical response to selective EGFR inhibitors, but the resistance inevitably develops. Several mechanisms responsible for the resistance include secondary mutations in the EGFR gene, genetic or non-mutational activation of alternative survival pathways, transdifferentiation of NSCLC to the small cell lung cancer histotype, or formation of resistant tumours with mesenchymal characteristics. Mechanistically, application of an EGFR inhibitor does not kill all cancer cells; some cells survive the exposure to a drug, and undergo genetic evolution towards resistance. Here, we present a theory that these quiescent or slow-proliferating drug-tolerant cell populations, or so-called "persisters", are generated via EMT pathways. We review the EMT-activated mechanisms of cell survival in NSCLC, which include activation of ABC transporters and EMT-associated receptor tyrosine kinase AXL, immune evasion, and epigenetic reprogramming. We propose that therapeutic inhibition of these pathways would eliminate pools of persister cells and prevent or delay cancer recurrence when applied in combination with the agents targeting EGFR.
Collapse
Affiliation(s)
- Eugene Tulchinsky
- Leicester Cancer Research Centre, Leicester University, UK; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia.
| | - Oleg Demidov
- Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, region, 117303, Russia; Instutute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia
| | | |
Collapse
|
103
|
Targeting the Hippo Pathway for Breast Cancer Therapy. Cancers (Basel) 2018; 10:cancers10110422. [PMID: 30400599 PMCID: PMC6266939 DOI: 10.3390/cancers10110422] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is one of the most prominent diseases in the world, and the treatments for BC have many limitations, such as resistance and a lack of reliable biomarkers. Currently the Hippo pathway is emerging as a tumor suppressor pathway with its four core components that regulate downstream transcriptional targets. In this review, we introduce the present targeted therapies of BC, and then discuss the roles of the Hippo pathway in BC. Finally, we summarize the evidence of the small molecule inhibitors that target the Hippo pathway, and then discuss the possibilities and future direction of the Hippo-targeted drugs for BC therapy.
Collapse
|
104
|
Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin Transl Med 2018; 7:23. [PMID: 30101371 PMCID: PMC6087706 DOI: 10.1186/s40169-018-0202-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Yes-associated protein (YAP) and its paralog WW domain containing transcription regulator 1 (TAZ) are important regulators of multiple cellular functions such as proliferation, differentiation, and survival. On the tissue level, YAP/TAZ are essential for embryonic development, organ size control and regeneration, while their deregulation leads to carcinogenesis or other diseases. As an underlying principle for YAP/TAZ-mediated regulation of biological functions, a growing body of research reveals that YAP/TAZ play a central role in delivering information of mechanical environments surrounding cells to the nucleus transcriptional machinery. In this review, we discuss mechanical cue-dependent regulatory mechanisms for YAP/TAZ functions, as well as their clinical significance in cancer progression and treatment.
Collapse
|
105
|
Zhao C, Tu S, Zhang F, Zhang X. Expression characteristics of AXL and YAP in non-small cell lung cancer and prognostic importance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3357-3365. [PMID: 31949712 PMCID: PMC6962885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 06/10/2023]
Abstract
Lung cancer has some of the highest morbidity and mortality. It is an urgent task to illuminate the exact mechanism of tumorigenesis of lung cancer. Previous studies suggested that receptor tyrosine kinase family member AXL and Hippo signal pathway co-activator YAP may be important signal molecules in tumorigenesis. In this paper we detect AXL and YAP expression in 81 non-small cell lung cancer cases that received surgery, and we discuss the relationship between the expression of AXL and YAP and tissue type, pathological staging, and degree of differentiation. We found that in NSCLC tissues AXLLowYAPLow was 29.63%, AXLHighYAPLow was 13.58%, AXLLowYAPHigh was 25.93% and AXLHighYAPHigh was 30.86%. The expression pattern of AXL and YAP was related to the degree of differentiation, T stage and pathological stage. Based on clinical follow-up data, we assessed the prognostic significance of AXL and YAP combined, with respect to recurrence and long-term survival. NSCLC tended to show AXL and YAP high expression, and high expression of AXL and YAP in NSCLC tissues suggested worse prognosis. Combined detection of AXL and YAP may be a new index to predict NSCLC patients' prognosis.
Collapse
Affiliation(s)
- Chun Zhao
- Department of Cardiothoracic Surgery, Lishui Central Hospital Lishui, Zhejiang, P. R. China
| | - Shaosong Tu
- Department of Cardiothoracic Surgery, Lishui Central Hospital Lishui, Zhejiang, P. R. China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Central Hospital Lishui, Zhejiang, P. R. China
| | - Xiangyan Zhang
- Department of Cardiothoracic Surgery, Lishui Central Hospital Lishui, Zhejiang, P. R. China
| |
Collapse
|
106
|
Futakuchi A, Inoue T, Wei FY, Inoue-Mochita M, Fujimoto T, Tomizawa K, Tanihara H. YAP/TAZ Are Essential for TGF-β2–Mediated Conjunctival Fibrosis. ACTA ACUST UNITED AC 2018; 59:3069-3078. [DOI: 10.1167/iovs.18-24258] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Akiko Futakuchi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyuki Inoue-Mochita
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
107
|
Toward the Discovery of a Novel Class of YAP⁻TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP⁻TEAD Protein⁻Protein Interface. Cancers (Basel) 2018; 10:cancers10050140. [PMID: 29738494 PMCID: PMC5977113 DOI: 10.3390/cancers10050140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered protein YAP (yes-associated protein) interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain) creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50–71-hTEAD1209–426 complex (PDB 3KYS) published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds) was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis) and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells). A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.
Collapse
|
108
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
109
|
Holden JK, Cunningham CN. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers (Basel) 2018; 10:cancers10030081. [PMID: 29558384 PMCID: PMC5876656 DOI: 10.3390/cancers10030081] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is a critical transcriptional signaling pathway that regulates cell growth, proliferation and organ development. The transcriptional enhanced associate domain (TEAD) protein family consists of four paralogous transcription factors that function to modulate gene expression in response to the Hippo signaling pathway. Transcriptional activation of these proteins occurs upon binding to the co-activator YAP/TAZ whose entry into the nucleus is regulated by Lats1/2 kinase. In recent years, it has become apparent that the dysregulation and/or overexpression of Hippo pathway effectors is implicated in a wide range of cancers, including prostate, gastric and liver cancer. A large body of work has been dedicated to understanding the therapeutic potential of modulating the phosphorylation and localization of YAP/TAZ. However, YAP/TAZ are considered to be natively unfolded and may be intractable as drug targets. Therefore, TEAD proteins present themselves as an excellent therapeutic target for intervention of the Hippo pathway. This review summarizes the functional role of TEAD proteins in cancer and assesses the therapeutic potential of antagonizing TEAD function in vivo.
Collapse
Affiliation(s)
- Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Christian N Cunningham
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
110
|
Gheewala T, Skwor T, Munirathinam G. Photosensitizers in prostate cancer therapy. Oncotarget 2018; 8:30524-30538. [PMID: 28430624 PMCID: PMC5444762 DOI: 10.18632/oncotarget.15496] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
The search for new therapeutics for the treatment of prostate cancer is ongoing with a focus on the balance between the harms and benefits of treatment. New therapies are being constantly developed to offer treatments similar to radical therapies, with limited side effects. Photodynamic therapy (PDT) is a promising strategy in delivering focal treatment in primary as well as post radiotherapy prostate cancer. PDT involves activation of a photosensitizer (PS) by appropriate wavelength of light, generating transient levels of reactive oxygen species (ROS). Several photosensitizers have been developed with a focus on treating prostate cancer like mTHPC, motexafin lutetium, padoporfin and so on. This article will review newly developed photosensitizers under clinical trials for the treatment of prostate cancer, along with the potential advantages and disadvantages in delivering focal therapy.
Collapse
Affiliation(s)
- Taher Gheewala
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| | - Troy Skwor
- Department of Chemical and Biological Sciences, Rockford University, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| |
Collapse
|
111
|
Lin KC, Park HW, Guan KL. Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
112
|
Gheewala T, Skwor T, Munirathinam G. Photodynamic therapy using pheophorbide and 670 nm LEDs exhibits anti-cancer effects in-vitro in androgen dependent prostate cancer. Photodiagnosis Photodyn Ther 2018; 21:130-137. [DOI: 10.1016/j.pdpdt.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
|
113
|
Shen Y, Chen X, He J, Liao D, Zu X. Axl inhibitors as novel cancer therapeutic agents. Life Sci 2018; 198:99-111. [PMID: 29496493 DOI: 10.1016/j.lfs.2018.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Overexpression and activation of Axl receptor tyrosine kinase have been widely accepted to promote cell proliferation, chemotherapy resistance, invasion, and metastasis in several human cancers, such as lung, breast, and pancreatic cancers. Axl, a member of the TAM (Tyro3, Axl, Mer) family, and its inhibitors can specifically break the kinase signaling nodes, allowing advanced patients to regain drug sensitivity with improved therapeutic efficacy. Therefore, the research on Axl is promising and it is worthy of further investigations. In this review, we present an update on the Axl inhibitors and provide new insights into their latent application.
Collapse
Affiliation(s)
- Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jun He
- Department of Spine Surgery, the Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Duanfang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, Hunan, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
114
|
Wong KF, Liu AM, Hong W, Xu Z, Luk JM. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget 2018; 7:77683-77695. [PMID: 27765911 PMCID: PMC5363613 DOI: 10.18632/oncotarget.12760] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/25/2016] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC.
Collapse
Affiliation(s)
- Kwong-Fai Wong
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore
| | - Angela M Liu
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Biopolis, Singapore
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - John M Luk
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore.,Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.,Department of Translational and Clinical Medicine, Arbele Limited, Hong Kong Science Park, Shatin, Hong Kong
| |
Collapse
|
115
|
Chakraborty S, Hong W. Linking Extracellular Matrix Agrin to the Hippo Pathway in Liver Cancer and Beyond. Cancers (Basel) 2018; 10:cancers10020045. [PMID: 29415512 PMCID: PMC5836077 DOI: 10.3390/cancers10020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ, better known as the converging effectors of the Hippo pathway, are widely recognized for their new role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
116
|
Karachaliou N, Chaib I, Cardona AF, Berenguer J, Bracht JWP, Yang J, Cai X, Wang Z, Hu C, Drozdowskyj A, Servat CC, Servat JC, Ito M, Attili I, Aldeguer E, Capitan AG, Rodriguez J, Rojas L, Viteri S, Molina-Vila MA, Ou SHI, Okada M, Mok TS, Bivona TG, Ono M, Cui J, Ramón Y Cajal S, Frias A, Cao P, Rosell R. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis. EBioMedicine 2018; 29:112-127. [PMID: 29433983 PMCID: PMC5925453 DOI: 10.1016/j.ebiom.2018.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutation-positive non-small cell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p = 0.0407) and overall survival (hazard ratio of 2.23, p = 0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing. AXL and CDCP1 are co-expressed in treatment-naïve EGFR-mutation-positive NSCLC patients. AXL and CDCP1 are related to shorter progression-free survival with EGFR inhibitors and shorter overall survival. Src family kinases and YAP1 are regulatory nodes for AXL and CDCP1 expression. The combination of EGFR TKI with TPX-0005 is synergistic in EGFR-mutation-positive lung tumors in culture and in vivo.
We explore the molecular changes that occur after the application of an EGFR inhibitor in EGFR-mutation positive tumors. The tumors do not acquire secondary drivers to overcome a primary driver but, counter-regulatory nodes observable before treatment, are immediately made apparent by pathway-specific intervention. The expression of the receptor tyrosine kinase AXL and the transmembrane protein CDCP1 in baseline samples of EGFR-mutation positive NSCLC patients can provide us with information on the treatment outcome. The upfront combination of an EGFR inhibitor with a multikinase inhibitor, that controls the regulatory nodes for RTKs activation, is a therapeutic approach that deserves to be further explored.
Collapse
Affiliation(s)
- Niki Karachaliou
- Instituto Oncológico Dr Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain; Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Imane Chaib
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
| | - Andres Felipe Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Jordi Berenguer
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | | | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhigang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | | | - Carles Codony Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Masaoki Ito
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ilaria Attili
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Istituto Oncologico Veneto, IRCCS, Padova, Italy; Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Erika Aldeguer
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Ana Gimenez Capitan
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - July Rodriguez
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Santiago Viteri
- Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Sai-Hong Ignatius Ou
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, United States
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tony S Mok
- The State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong
| | - Trever G Bivona
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, United States
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jean Cui
- TP Therapeutics, Inc., San Diego, CA, United States
| | | | - Alex Frias
- Brain Tumor Biology, Danish Cancer Society Research Center, Denmark
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain; Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
117
|
Zhang S, Wang J, Wang H, Fan L, Fan B, Zeng B, Tao J, Li X, Che L, Cigliano A, Ribback S, Dombrowski F, Chen B, Cong W, Wei L, Calvisi DF, Chen X. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:995-1006. [PMID: 29378174 DOI: 10.1016/j.ajpath.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 02/05/2023]
Abstract
Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors.
Collapse
Affiliation(s)
- Shanshan Zhang
- Tumor Immunology and Gene Therapy Center, Second Military Medical University, Shanghai, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Fan
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Biao Fan
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Billy Zeng
- Department of Pediatrics, University of California, San Francisco, California; Institute for Computational Health Sciences, University of California, San Francisco, California
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Cigliano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Bin Chen
- Department of Pediatrics, University of California, San Francisco, California; Institute for Computational Health Sciences, University of California, San Francisco, California
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Second Military Medical University, Shanghai, China
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.
| |
Collapse
|
118
|
Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, Reynolds AB, Chen J. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal 2017; 10:eaan4667. [PMID: 29208682 PMCID: PMC5819349 DOI: 10.1126/scisignal.aan4667] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS, respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ, as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Verra M Ngwa
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eileen Shiuan
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
119
|
Ghiso E, Migliore C, Ciciriello V, Morando E, Petrelli A, Corso S, De Luca E, Gatti G, Volante M, Giordano S. YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC. Neoplasia 2017; 19:1012-1021. [PMID: 29136529 PMCID: PMC5683041 DOI: 10.1016/j.neo.2017.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023] Open
Abstract
The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.
Collapse
Affiliation(s)
- Elena Ghiso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy.
| | - Cristina Migliore
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Vito Ciciriello
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Elena Morando
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Annalisa Petrelli
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Simona Corso
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy
| | - Emmanuele De Luca
- Thoracic Oncology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Gaia Gatti
- Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Marco Volante
- University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy; Pathology Unit, San Luigi Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Silvia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, SP 142 km 3.95, 10060, Candiolo, Italy; University of Torino, Department of Oncology, SP 142 km 3.95, 10060, Candiolo, Italy.
| |
Collapse
|
120
|
The prognostic impacts of TEA domain (TEAD) transcription factor polymorphisms in Chinese hepatocellular carcinoma patients. Oncotarget 2017; 8:69823-69832. [PMID: 29050244 PMCID: PMC5642519 DOI: 10.18632/oncotarget.19310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
TEA domain (TEAD) transcription factors play an important role in hepatocellular carcinoma (HCC) development and progression by regulating the expression of a number of genes. However, the association of their genetic variations with HCC prognosis remains elusive. Seven potentially functional single nucleotide polymorphisms in TEAD1-4 (rs2304733, rs10831923, rs12104362, rs3745305, rs11756089, rs2076173, rs7135838) were genotyped from 331 hepatitis B virus positive HCC patients using the Sequenom MassARRAY iPLEX platform. The TEAD3 rs2076173 C allele and rs11756089 T allele were identified as protective alleles as they were significantly associated with longer median overall survival time (MST). The T allele of rs2076173 was significantly associated with HCC survival independent of age, gender, smoking and drinking status, BCLC stage, and chemotherapy or TACE status (HR = 0.73, 95% CI = 0.56-0.93, P = 0.012). This protective effect was more prominent for patients who were non-drinkers (P for multiplicative interaction = 0.002). Patients had more than one of these protective alleles had significant longer MST of 19.25 months than those had none (MST=12.85 months, adjusted HR = 0.56, 95% CI = 0.33-0.95, P=0.030), especially for those non-drinkers (adjusted HR = 0.48, 95% CI = 0.32-0.74, P = 0.001). These findings suggested that rs2076173 and rs11756089 in TEAD3 gene could serve as genetic markers for favorable survival in the Chinese HCC patients.
Collapse
|
121
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
122
|
Al-Moujahed A, Brodowska K, Stryjewski TP, Efstathiou NE, Vasilikos I, Cichy J, Miller JW, Gragoudas E, Vavvas DG. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci Rep 2017; 7:7602. [PMID: 28790340 PMCID: PMC5548915 DOI: 10.1038/s41598-017-07632-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
Verteporfin (VP), a light-activated drug used in photodynamic therapy for the treatment of choroidal neovascular membranes, has also been shown to be an effective inhibitor of malignant cells. Recently, studies have demonstrated that, even without photo-activation, VP may still inhibit certain tumor cell lines, including ovarian cancer, hepatocarcinoma and retinoblastoma, through the inhibition of the YAP-TEAD complex. In this study, we examined the effects of VP without light activation on human glioma cell lines (LN229 and SNB19). Through western blot analysis, we identified that human glioma cells that were exposed to VP without light activation demonstrated a downregulation of YAP-TEAD-associated downstream signaling molecules, including c-myc, axl, CTGF, cyr61 and survivin and upregulation of the tumor growth inhibitor molecule p38 MAPK. In addition, we observed that expression of VEGFA and the pluripotent marker Oct-4 were also decreased. Verteporfin did not alter the Akt survival pathway or the mTor pathway but there was a modest increase in LC3-IIB, a marker of autophagosome biogenesis. This study suggests that verteporfin should be further explored as an adjuvant therapy for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Katarzyna Brodowska
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Tomasz P. Stryjewski
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Nikolaos E. Efstathiou
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Ioannis Vasilikos
- 0000 0000 9428 7911grid.7708.8University Medical Center Freiburg, Freiburg, Germany
| | - Joanna Cichy
- 0000 0001 2162 9631grid.5522.0Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joan W. Miller
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Evangelos Gragoudas
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| | - Demetrios G. Vavvas
- 000000041936754Xgrid.38142.3cRetina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114 USA
| |
Collapse
|
123
|
Xia J, Zeng M, Zhu H, Chen X, Weng Z, Li S. Emerging role of Hippo signalling pathway in bladder cancer. J Cell Mol Med 2017; 22:4-15. [PMID: 28782275 PMCID: PMC5742740 DOI: 10.1111/jcmm.13293] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.
Collapse
Affiliation(s)
- Jianling Xia
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hua Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangjian Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiliang Weng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
124
|
Weiler SME, Pinna F, Wolf T, Lutz T, Geldiyev A, Sticht C, Knaub M, Thomann S, Bissinger M, Wan S, Rössler S, Becker D, Gretz N, Lang H, Bergmann F, Ustiyan V, Kalin TV, Singer S, Lee JS, Marquardt JU, Schirmacher P, Kalinichenko VV, Breuhahn K. Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer. Gastroenterology 2017; 152:2037-2051.e22. [PMID: 28249813 DOI: 10.1053/j.gastro.2017.02.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/07/2017] [Accepted: 02/19/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. METHODS We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan-Meier curves. We analyzed changes in expression of these signature genes, at mRNA and protein levels, after small interfering RNA-mediated silencing of YAP in Sk-Hep1, SNU182, HepG2, or pancreatic cancer cells, as well as incubation with thiostrepton (an inhibitor of forkhead box M1 [FOXM1]) or verteporfin (inhibitor of the interaction between YAP and TEA domain transcription factor 4 [TEAD4]). We performed co-immunoprecipitation and chromatin immunoprecipitation experiments. We collected liver tissues from mice that express a constitutively active form of YAP (YAPS127A) and analyzed gene expression signatures and histomorphologic parameters associated with chromosomal instability. Mice were given injections of thiostrepton and livers were collected and analyzed by immunoblotting, immunohistochemistry, histology, and real-time polymerase chain reaction. We performed immunohistochemical analyses on tissue microarrays of 105 HCCs and 7 nontumor liver tissues. RESULTS Gene expression patterns associated with chromosome instability, called CIN25 and CIN70, were detected in HCCs from patients with shorter survival time or early cancer recurrence. TEAD4 and YAP were required for CIN25 and CIN70 signature expression via induction and binding of FOXM1. Disrupting the interaction between YAP and TEAD4 with verteporfin, or inhibiting FOXM1 with thiostrepton, reduced the chromosome instability gene expression patterns. Hyperplastic livers and tumors from YAPS127A mice had increased CIN25 and CIN70 gene expression patterns, aneuploidy, and defects in mitosis. Injection of YAPS127A mice with thiostrepton reduced liver overgrowth and signs of chromosomal instability. In human HCC tissues, high levels of nuclear YAP correlated with increased chromosome instability gene expression patterns and aneuploidy. CONCLUSIONS By analyzing cell lines, genetically modified mice, and HCC tissues, we found that YAP cooperates with FOXM1 to contribute to chromosome instability. Agents that disrupt this pathway might be developed as treatments for liver cancer. Transcriptome data are available in the Gene Expression Omnibus public database (accession numbers: GSE32597 and GSE73396).
Collapse
Affiliation(s)
- Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Wolf
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Aman Geldiyev
- International Educational-Scientific Center, Ashgabat City, Turkmenistan
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Maria Knaub
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Shan Wan
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Rössler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Diana Becker
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Hauke Lang
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tatiana V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jens U Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
125
|
McGowan M, Kleinberg L, Halvorsen AR, Helland Å, Brustugun OT. NSCLC depend upon YAP expression and nuclear localization after acquiring resistance to EGFR inhibitors. Genes Cancer 2017; 8:497-504. [PMID: 28680534 PMCID: PMC5489647 DOI: 10.18632/genesandcancer.136] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Yes-associated protein (YAP) is a downstream target of the Hippo pathway and has been found to be oncogenic driving many cancers into developing metastatic phenotypes leading to poor survival outcomes. This study investigated if YAP expression is associated with drug resistance in two non-small cell lung cancer (NSCLC) lines (HCC827 and H1975) generated to become resistant to the EGFR tyrosine kinase inhibitors (EGFR TKI) erlotinib, gefitinib or the T790M-specific osimertinib. We found that acquired EGFR TKI resistance was associated with YAP over-expression (osimertinib-resistant cells) or YAP amplification (erlotinib- and gefitinib-resistant cells) along with EMT phenotypic changes. YAP was localized in the nucleus, indicative of active protein. siRNA-mediated silencing of YAP resulted in re-sensitizing the drug-resistant cells to EGFR TKI compared to the negative siRNA controls (p = <0.05). These results suggest YAP is a potential mechanism of EGFR-TKI resistance in NSCLC and may presents itself as a viable therapeutic target.
Collapse
Affiliation(s)
- Marc McGowan
- Department of Cancer Genetics, Radium Hospital - Oslo University Hospital, Oslo, Norway
| | - Lilach Kleinberg
- Department of Cancer Genetics, Radium Hospital - Oslo University Hospital, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ann Rita Halvorsen
- Department of Cancer Genetics, Radium Hospital - Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Radium Hospital - Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Radium Hospital - Oslo University Hospital, Oslo, Norway.,Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| |
Collapse
|
126
|
Wei H, Xu Z, Liu F, Wang F, Wang X, Sun X, Li J. Hypoxia induces oncogene yes-associated protein 1 nuclear translocation to promote pancreatic ductal adenocarcinoma invasion via epithelial-mesenchymal transition. Tumour Biol 2017; 39:1010428317691684. [PMID: 28475017 DOI: 10.1177/1010428317691684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal cancers. The Hippo pathway is involved in tumorigenesis and remodeling of tumor microenvironments. Hypoxia exists in the microenvironment of solid tumors, including pancreatic ductal adenocarcinoma and plays a vital role in tumor progression and metastasis. However, it remains unclear how hypoxia interacts with the Hippo pathway to regulate these events. In this study, expressions of yes-associated protein 1 and hypoxia-inducible factor-1α were found to be elevated in pancreatic ductal adenocarcinoma samples compared with those in matched adjacent non-tumor samples. Moreover, hypoxia-inducible factor-1α expression was positively correlated with yes-associated protein 1 level in pancreatic ductal adenocarcinoma tissues. The higher expression of nuclear yes-associated protein 1 was associated with poor histological grade and prognosis for pancreatic ductal adenocarcinoma patients. In vitro, yes-associated protein 1 was highly expressed in pancreatic ductal adenocarcinoma cells. Depletion of yes-associated protein 1 inhibited the invasion of pancreatic ductal adenocarcinoma cells via downregulation of Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-13, and upregulation of E-cadherin. In addition, hypoxia promoted the invasion of pancreatic ductal adenocarcinoma cells via regulating the targeted genes. Hypoxia also deactivated the Hippo pathway and induced yes-associated protein 1 nuclear translocation. Furthermore, depletion of yes-associated protein 1 or hypoxia-inducible factor-1α suppressed the invasion of pancreatic ductal adenocarcinoma cells under hypoxia. Mechanism studies showed that nuclear yes-associated protein 1 interacted with hypoxia-inducible factor-1α and activated Snail transcription to participate in epithelial-mesenchymal transition-mediated and matrix metalloproteinase-mediated remodeling of tumor microenvironments. Collectively, yes-associated protein 1 is an independent prognostic predictor that interacts with hypoxia-inducible factor-1α to enhance the invasion of pancreatic cancer cells and remodeling of tumor microenvironments. Therefore, yes-associated protein 1 may serve as a novel promising target to enhance therapeutic effects for treating pancreatic cancer.
Collapse
Affiliation(s)
- Honglong Wei
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zongzhen Xu
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Feng Liu
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Fuhai Wang
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xin Wang
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xueying Sun
- 2 Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jie Li
- 1 Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
127
|
Uehara S, Fukuzawa Y, Matuyama T, Gotoh K. Role of Tyro3, Axl, and Mer Receptors and Their Ligands (Gas6, and Protein S) in Patients with Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jct.2017.82010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
128
|
Janse van Rensburg HJ, Yang X. The roles of the Hippo pathway in cancer metastasis. Cell Signal 2016; 28:1761-72. [DOI: 10.1016/j.cellsig.2016.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023]
|
129
|
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy. Genes (Basel) 2016; 7:genes7090055. [PMID: 27589805 PMCID: PMC5042386 DOI: 10.3390/genes7090055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.
Collapse
|
130
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
131
|
Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Gene 2016; 591:292-303. [PMID: 27421669 DOI: 10.1016/j.gene.2016.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
Abstract
TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.
Collapse
Affiliation(s)
- André Landin-Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Ataaillah Benhaddou
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Team Molecular Oncology and Ovarian Pathologies, IJM, UMR 7592 CNRS, Paris, France.
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| |
Collapse
|
132
|
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016; 29:783-803. [PMID: 27300434 PMCID: PMC6186419 DOI: 10.1016/j.ccell.2016.05.005] [Citation(s) in RCA: 1444] [Impact Index Per Article: 160.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
YAP and TAZ are highly related transcriptional regulators pervasively activated in human malignancies. Recent work indicates that, remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, chemoresistance, and metastasis. YAP/TAZ are sensors of the structural and mechanical features of the cell microenvironment. A number of cancer-associated extrinsic and intrinsic cues conspire to overrule the YAP-inhibiting microenvironment of normal tissues, including changes in mechanotransduction, inflammation, oncogenic signaling, and regulation of the Hippo pathway. Addiction to YAP/TAZ thus potentially represents a central cancer vulnerability that may be exploited therapeutically.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| |
Collapse
|
133
|
Reichl P, Mikulits W. Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review). Oncol Rep 2016; 36:613-25. [PMID: 27278244 PMCID: PMC4930874 DOI: 10.3892/or.2016.4842] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy and a leading cause of cancer-related mortality worldwide. Accurate detection and differential diagnosis of early HCC can significantly improve patient survival. Currently, detection of HCC in clinical practice is performed by diagnostic imaging techniques and determination of serum biomarkers, most notably α-fetoprotein (AFP), fucosylated AFP and des-γ-carboxyprothrombin. However, these methods display limitations in sensitivity and specificity, especially with respect to early stages of HCC. Recently, high-throughput technologies have elucidated many new pathways involved in hepatocarcinogenesis and have led to the discovery of a plethora of novel, non-invasive serum biomarkers. In particular, the combination of AFP with these new candidate molecules has yielded promising results. In this review, we aimed at recapitulating the most recent (2013–2015) developments in HCC biomarker research. We compared promising novel diagnostic serum protein biomarkers, such as annexin A2, the soluble form of the receptor tyrosine kinase Axl and thioredoxin, as well as their combinations with AFP. High diagnostic performance (area under the curve >0.75) as shown by threshold-independent receiver operating characteristic curve analysis was a prerequisite for inclusion in this review. In addition, we discuss the role and potential of microRNAs in HCC diagnosis and associated methodological challenges.
Collapse
Affiliation(s)
- Patrick Reichl
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
134
|
Lazzari C, Verlicchi A, Gkountakos A, Pilotto S, Santarpia M, Chaib I, Ramirez Serrano JL, Viteri S, Morales-Espinosa D, Dazzi C, de Marinis F, Cao P, Karachaliou N, Rosell R. Molecular Bases for Combinatorial Treatment Strategies in Patients with KRAS Mutant Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Pulm Ther 2016. [DOI: 10.1007/s41030-016-0013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
135
|
Guerrant W, Kota S, Troutman S, Mandati V, Fallahi M, Stemmer-Rachamimov A, Kissil JL. YAP Mediates Tumorigenesis in Neurofibromatosis Type 2 by Promoting Cell Survival and Proliferation through a COX-2-EGFR Signaling Axis. Cancer Res 2016; 76:3507-19. [PMID: 27216189 DOI: 10.1158/0008-5472.can-15-1144] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
Abstract
The Hippo-YAP pathway has emerged as a major driver of tumorigenesis in many human cancers. YAP is a transcriptional coactivator and while details of YAP regulation are quickly emerging, it remains unknown what downstream targets are critical for the oncogenic functions of YAP. To determine the mechanisms involved and to identify disease-relevant targets, we examined the role of YAP in neurofibromatosis type 2 (NF2) using cell and animal models. We found that YAP function is required for NF2-null Schwann cell survival, proliferation, and tumor growth in vivo Moreover, YAP promotes transcription of several targets including PTGS2, which codes for COX-2, a key enzyme in prostaglandin biosynthesis, and AREG, which codes for the EGFR ligand, amphiregulin. Both AREG and prostaglandin E2 converge to activate signaling through EGFR. Importantly, treatment with the COX-2 inhibitor celecoxib significantly inhibited the growth of NF2-null Schwann cells and tumor growth in a mouse model of NF2. Cancer Res; 76(12); 3507-19. ©2016 AACR.
Collapse
Affiliation(s)
- William Guerrant
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida
| | - Smitha Kota
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida
| | - Scott Troutman
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida
| | - Vinay Mandati
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida
| | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute, Jupiter, Florida
| | | | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
136
|
Pei T, Li Y, Wang J, Wang H, Liang Y, Shi H, Sun B, Yin D, Sun J, Song R, Pan S, Sun Y, Jiang H, Zheng T, Liu L. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 2016; 6:17206-20. [PMID: 26015398 PMCID: PMC4627302 DOI: 10.18632/oncotarget.4043] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Yes-associated protein (YAP), a transcriptional co-activator, has important regulatory roles in cell signaling and is dysregulated in a number of cancers. However, the role of YAP in cholangiocarcinoma (CCA) progression remains unclear. Here, we demonstrated that YAP was overexpressed in CCA cells and human specimens. High levels of nuclear YAP (nYAP) correlated with histological differentiation, TNM stage, metastasis and poor prognosis in CCA. Silencing YAP increased tumor sensitivity to chemotherapy and inhibited CCA tumorigenesis and metastasis both in vivo and in vitro. YAP overexpression in vivo and in vitro promoted CCA tumorigenesis and metastasis. Additionally, we found that YAP induced epithelial-mesenchymal transition (EMT) and formed a regulatory circuit with miR-29c, IGF1, AKT and gankyrin to promote the progression of CCA. Results of CCA tissue microarray showed positive correlations between nYAP and gankyrin or p-AKT expression. Combination of nYAP and gankyrin or p-AKT exhibited improved prognostic accuracy for CCA patients. In conclusion, YAP promotes carcinogenesis and metastasis by up-regulating gankyrin through activation of the AKT pathway.
Collapse
Affiliation(s)
- Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuejin Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanlai Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of General Surgery, Qiqihaer City Hospital of Traditional Chinese Medicine, Qiqihaer, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huawen Shi
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshi Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dalong Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
137
|
Liu J, Wang K, Yan Z, Xia Y, Li J, Shi L, Zou Q, Wan X, Jiao B, Wang H, Wu M, Zhang Y, Shen F. Axl Expression Stratifies Patients with Poor Prognosis after Hepatectomy for Hepatocellular Carcinoma. PLoS One 2016; 11:e0154767. [PMID: 27182739 PMCID: PMC4868325 DOI: 10.1371/journal.pone.0154767] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/19/2016] [Indexed: 01/04/2023] Open
Abstract
Background Axl is a receptor tyrosine kinase which plays an important role in multiple human malignancies. Design The Axl expression was examined in several hepatocellular carcinoma(HCC) cell lines, paired tumor and nontumorous samples. Then, we examined cell growth curve, cell apoptosis and cell migration in SMMC-7721 cells over-expressed with Axl or siRNA against Axl, respectively. Finally, the prognostic value of Axl was investigated in a prospective cohort of 246 consecutive HCC patients undergoing curative hepatoectomy. Results We found Axl was positive in 22% of examined tumor tissues and all four cell lines. Over-expressing Axl in SMMC-7721 cells accelerated cell growth, cell migration and inhibited cell apoptosis, while knock-down of Axl exerted opposite effect. Axl expression was closely associated with serum AFP, multiple tumors, absence of encapsulation, microvascular invasion, and advanced BCLC or TNM stage. Patients with positive Axl staining had a higher 5-year recurrence rate (92% vs. 71%, P<0.001) and a lower 5-year survival rate (9% vs. 48%, P<0.001) than those with negative staining. The multivariate analyses showed that Axl expression was an independent factor for both tumor recurrence (HR: 1.725; 95% CI: 1.219–2.441) and survival (1.847; 1.291–2.642). Conclusion Axl expression suggests more aggressive tumor invasiveness and predicts worse prognosis for HCC patients undergoing resection.
Collapse
Affiliation(s)
- Jian Liu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhenlin Yan
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lehua Shi
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qifei Zou
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuying Wan
- Department of Clinical Database, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Mengchao Wu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Yongjie Zhang
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FS); (YZ)
| | - Feng Shen
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FS); (YZ)
| |
Collapse
|
138
|
Hippo pathway effector YAP inhibition restores the sensitivity of EGFR-TKI in lung adenocarcinoma having primary or acquired EGFR-TKI resistance. Biochem Biophys Res Commun 2016; 474:154-160. [PMID: 27105908 DOI: 10.1016/j.bbrc.2016.04.089] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
The efficacy of EGFR-tyrosine kinase inhibitors (TKIs) is significantly limited by various resistance mechanisms to those drugs. The resistance to EGFR-TKI is largely divided by two classes; acquired resistance after EGFR-TKI treatment, and primary resistance marked by cancer cell's dependence on other oncogene, such as KRAS. YAP has emerged as critical oncogene in conferring drug resistance against targeted therapy. In this study, we evaluated the role of YAP in primary and acquired EGFR-TKI resistance using gefitinib-resistant A549 and PC9 cells and their parental cell lines. Our study revealed that EGFR-TKI resistance is associated with enhanced YAP activity. Notably, YAP activation was independent of the Hippo pathway. We confirmed that AXL is a downstream target of YAP that confers EGFR-TKI resistance. And our results showed that YAP can induce ERK activation in lung adenocarcinoma. The combination of YAP inhibition with EGFR-TKI overcomes primary and acquired EGFR-TKI resistance. We also found increased YAP expression in human lung cancer after acquiring EGFR-TKI resistance. Collectively, we suggest a novel EGFR-TKI resistance mechanism involving YAP activation and suggest targeting YAP and EGFR simultaneously may be a breakthrough treatment of primary and acquired EGFR-TKI resistant lung cancer.
Collapse
|
139
|
Lei L, Wu J, Gu D, Liu H, Wang S. CIZ1 interacts with YAP and activates its transcriptional activity in hepatocellular carcinoma cells. Tumour Biol 2016; 37:11073-9. [PMID: 26906552 DOI: 10.1007/s13277-016-4866-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
Dysregulation of Hippo-Yes-associate protein (YAP) signaling has important roles in the tumorigenesis of hepatocellular carcinoma (HCC). Our previous studies have shown that Cip1 interacting zinc finger protein 1 (CIZ1) activated YAP signaling in the HCC cells and promoted the growth and migration of cancer cells. However, the mechanisms for the activation of YAP signaling by CIZ1 are unknown. In this study, it was found that CIZ1 interacted with the transcriptional factor YAP in HCC cells. The nuclear matrix anchor domain of CIZ1 is responsible for its interaction with YAP. Moreover, CIZ1 enhanced the interaction between YAP and TEAD. Knocking down the expression of CIZ1 impaired the transcriptional activity as well as the biological functions of YAP. Taken together, our study demonstrated that CIZ1 is a positive regulator of YAP signaling, and CIZ1 might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Liu Lei
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Jinsheng Wu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Dianhua Gu
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Shaochuang Wang
- Department of Hepatobiliary & Pancreatic Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6th of West Beijing Road, Huai'an, Jiangsu Province, 223300, People's Republic of China.
| |
Collapse
|
140
|
ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 2016; 7:10498. [PMID: 26876920 PMCID: PMC4756710 DOI: 10.1038/ncomms10498] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Early dissemination, metastasis and therapy resistance are central hallmarks of aggressive cancer types and the leading cause of cancer-associated deaths. The EMT-inducing transcriptional repressor ZEB1 is a crucial stimulator of these processes, particularly by coupling the activation of cellular motility with stemness and survival properties. ZEB1 expression is associated with aggressive behaviour in many tumour types, but the potent effects cannot be solely explained by its proven function as a transcriptional repressor of epithelial genes. Here we describe a direct interaction of ZEB1 with the Hippo pathway effector YAP, but notably not with its paralogue TAZ. In consequence, ZEB1 switches its function to a transcriptional co-activator of a ‘common ZEB1/YAP target gene set', thereby linking two pathways with similar cancer promoting effects. This gene set is a predictor of poor survival, therapy resistance and increased metastatic risk in breast cancer, indicating the clinical relevance of our findings. The transcription factors ZEB1 and YAP function in different pathways yet both activate aggressive behaviour in cancer cells. Here, the authors describe that the proteins physically interact and that this changes the transcriptional activity of ZEB1 from a repressor to an activator.
Collapse
|
141
|
Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, Zhu LJ, Goel HL, Mercurio AM, Park JS, Davis RJ, Mao J. Tead and AP1 Coordinate Transcription and Motility. Cell Rep 2016; 14:1169-1180. [PMID: 26832411 DOI: 10.1016/j.celrep.2015.12.104] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/11/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022] Open
Abstract
The Tead family transcription factors are the major intracellular mediators of the Hippo-Yap pathway. Despite the importance of Hippo signaling in tumorigenesis, Tead-dependent downstream oncogenic programs and target genes in cancer cells remain poorly understood. Here, we characterize Tead4-mediated transcriptional networks in a diverse range of cancer cells, including neuroblastoma, colorectal, lung, and endometrial carcinomas. By intersecting genome-wide chromatin occupancy analyses of Tead4, JunD, and Fra1/2, we find that Tead4 cooperates with AP1 transcription factors to coordinate target gene transcription. We find that Tead-AP1 interaction is JNK independent but engages the SRC1-3 co-activators to promote downstream transcription. Furthermore, we show that Tead-AP1 cooperation regulates the activity of the Dock-Rac/CDC42 module and drives the expression of a unique core set of target genes, thereby directing cell migration and invasion. Together, our data unveil a critical regulatory mechanism underlying Tead- and AP1-controlled transcriptional and functional outputs in cancer cells.
Collapse
Affiliation(s)
- Xiangfan Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huapeng Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mihir Rajurkar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hira L Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joo-Seop Park
- Divisions of Pediatric Urology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
142
|
Xu Z, Cao C, Xia H, Shi S, Hong L, Wei X, Gu D, Bian J, Liu Z, Huang W, Zhang Y, He S, Lee NPY, Chen J. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma. Front Med 2016; 10:52-60. [PMID: 26809466 DOI: 10.1007/s11684-016-0433-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a lethal liver malignancy worldwide. In this study, we reported that protein phosphatase magnesium-dependent 1δ (PPM1D) was highly expressed in the majority of HCC cases (approximately 59%) and significantly associated with high serum α-fetoprotein (AFP) level (P = 0.044). Kaplan- Meier and Cox regression data indicated that PPM1D overexpression was an independent predictor of HCCspecific overall survival (HR, 2.799; 95% CI, 1.346-5.818, P = 0.006). Overexpressing PPM1D promoted cell viability and invasion, whereas RNA interference-mediated knockdown of PPM1D inhibited proliferation, invasion, and migration of cultured HCC cells. In addition, PPM1D suppression by small interfering RNA decreased the tumorigenicity of HCC cells in vivo. Overall, results suggest that PPM1D is a potential prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Chunxiang Cao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Haiyan Xia
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Shujing Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lingzhi Hong
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jianmin Bian
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Zijun Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yixin Zhang
- Department of General Surgery, Nantong Tumor Hospital, Nantong, 226361, China
| | - Song He
- Department of Pathology, Nantong Tumor Hospital, Nantong, 226361, China
| | - Nikki Pui-Yue Lee
- Department of Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
143
|
Zhou Y, Huang T, Cheng ASL, Yu J, Kang W, To KF. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010138. [PMID: 26805820 PMCID: PMC4730377 DOI: 10.3390/ijms17010138] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
The TEAD family of transcription factors is necessary for developmental processes. The family members contain a TEA domain for the binding with DNA elements and a transactivation domain for the interaction with transcription coactivators. TEAD proteins are required for the participation of coactivators to transmit the signal of pathways for the downstream signaling processes. TEADs also play an important role in tumor initiation and facilitate cancer progression via activating a series of progression-inducing genes, such as CTGF, Cyr61, Myc and Gli2. Recent studies have highlighted that TEADs, together with their coactivators, promote or even act as the crucial parts in the development of various malignancies, such as liver, ovarian, breast and prostate cancers. Furthermore, TEADs are proposed to be useful prognostic biomarkers due to the ideal correlation between high expression and clinicopathological parameters in gastric, breast, ovarian and prostate cancers. In this review, we summarize the functional role of TEAD proteins in tumorigenesis and discuss the key role of TEAD transcription factors in the linking of signal cascade transductions. Improved knowledge of the TEAD proteins will be helpful for deep understanding of the molecular mechanisms of tumorigenesis and identifying ideal predictive or prognostic biomarkers, even providing clinical translation for anticancer therapy in human cancers.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China.
| |
Collapse
|
144
|
Kang W, Cheng ASL, Yu J, To KF. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol 2016; 22:1279-1288. [PMID: 26811664 PMCID: PMC4716037 DOI: 10.3748/wjg.v22.i3.1279] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
More evidence has underscored the importance of Hippo signaling pathway in gastrointestinal tissue homeostasis, whereas its deregulation induces tumorigenesis. Yes-associated protein 1 (YAP1) and its close paralog TAZ, transcriptional co-activator with a PDZ-binding motif, function as key effectors negatively controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In various cancers, Hippo pathway cross-talks with pro- or anti-tumorigenic pathways such as GPCR, Wnt/β-catenin, Notch and TGF-β signaling and is deregulated by multiple factors including cell density/junction and microRNAs. As YAP1 expression is significantly associated with poor prognosis of gastric and other gastrointestinal cancers, detailed delineation of Hippo regulation in tumorigenesis provides novel insight for therapeutic intervention. In current review, we summarized the recent research progresses on the deregulation of Hippo pathway in the gastrointestinal tract including stomach and discuss the molecular consequences leading to tumorigenesis.
Collapse
|
145
|
Scaltriti M, Elkabets M, Baselga J. Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy. Clin Cancer Res 2016; 22:1313-7. [PMID: 26763248 DOI: 10.1158/1078-0432.ccr-15-1458] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023]
Abstract
AXL is a tyrosine kinase membrane receptor that signals via PI3K, MAPK, and protein kinase C (PKC), among other pathways. AXL has oncogenic potential and interacts with other membrane receptors, depending on their relative abundance and availability. The increased expression of AXL in cancer is often the result of pharmacologic selective pressure to a number of chemotherapies and targeted therapies and acts as a mechanism of acquired drug resistance. This resistance phenotype, frequently accompanied by epithelial-to-mesenchymal transition, can be reversed by AXL inhibition. In tumors with high levels of EGFR, including lung, head and neck, and triple-negative breast cancer, AXL dimerizes with this receptor and initiates signaling that circumvents the antitumor effects of anti-EGFR therapies. Likewise, AXL overexpression and dimerization with EGFR can overcome PI3K inhibition by activating the phospholipase C-γ-PKC cascade that, in turn, sustains mTORC1 activity. The causative role of AXL in inducing drug resistance is underscored by the fact that the suppression of AXL restores sensitivity to these agents. Hence, these observations indicate that AXL is selectively expressed in tumor cells refractory to therapy and that cotargeting AXL in this setting would potentially overcome drug resistance. The use of AXL inhibitors should be considered in the clinic.
Collapse
Affiliation(s)
- Maurizio Scaltriti
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - José Baselga
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
146
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
147
|
LI XIAOYUN, WEN JINGYUN, JIA CHANGCHANG, WANG TIANTIAN, LI XING, DONG MIN, LIN QU, CHEN ZHANHONG, MA XIAOKUN, WEI LI, LIN ZEXIAO, RUAN DANYUN, CHEN JIE, WU DONGHAO, LIU WEI, TAI YAN, XIONG ZHIYONG, WU XIANGYUAN, ZHANG QI. MicroRNA-34a-5p enhances sensitivity to chemotherapy by targeting AXL in hepatocellular carcinoma MHCC-97L cells. Oncol Lett 2015; 10:2691-2698. [PMID: 26722228 PMCID: PMC4665305 DOI: 10.3892/ol.2015.3654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Mature microRNA (miRNA) 34a-5p, which is a well-known tumor suppressor in hepatitis virus-associated hepatocellular carcinoma (HCC), plays an important role in cell processes, such as cell proliferation and apoptosis, and is therefore an optimal biomarker for future clinical use. However, the role of miRNA-34a-5p in chemoresistance has yet to be identified. In the present study, the expression of miRNA-34a-5p was assessed by an in situ hybridization assay in HCC tissues and was found to be significantly decreased compared with the pericarcinomatous areas of the tissue specimens, which consisted of samples obtained from 114 patients with HCC. High expression of miRNA-34a-5p was found to be associated with a favorable overall survival time in HCC patients. Functional tests performed by transfecting miRNA-34a-5p mimics or inhibitors into MHCC-97L cells illustrated that miRNA-34a-5p inhibited proliferation, elevated apoptosis and decreased chemoresistance to cisplatin in HCC cells. AXL is the direct target of miRNA-34a-5p, as confirmed by sequence analysis and luciferase assay. Transfection of the cells with small interfering RNA for AXL (siAXL) increased the apoptosis ratio of the MHCC-97L cell line. Transfection with siAXL led to similar biological behaviors in the MHCC-97L cells to those induced by ectopic expression of miRNA-34a-5p. Thus, it was concluded that miRNA-34a-5p enhanced the sensitivity of the cells to chemotherapy by targeting AXL in hepatocellular carcinoma. In addition, low expression of miRNA-34a-5p in HCC tissues yielded an unfavorable prognosis for patients with HCC that received radical surgery, due to the promotion of proliferation and an increase in chemoresistance in HCC cells.
Collapse
Affiliation(s)
- XIAO-YUN LI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - JING-YUN WEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - CHANG-CHANG JIA
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - TIAN-TIAN WANG
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XING LI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - MIN DONG
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - QU LIN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZHAN-HONG CHEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XIAO-KUN MA
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - LI WEI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZE-XIAO LIN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - DAN-YUN RUAN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - JIE CHEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - DONG-HAO WU
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - WEI LIU
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - YAN TAI
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZHI-YONG XIONG
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XIANG-YUAN WU
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - QI ZHANG
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| |
Collapse
|
148
|
Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CSB, Luo X, Hong W, Poulsen A. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Structure 2015; 23:2076-86. [PMID: 26592798 DOI: 10.1016/j.str.2015.09.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEAD's co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small-molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration, and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| | - Xiao Han
- Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Alvin W Hung
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - Seetoh Weiguang
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - Nur Huda
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - Guo-Ying Chen
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - Cheng San Brian Chia
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Anders Poulsen
- Experimental Therapeutics Centre, A(∗)STAR, 31 Biopolis Way, #3-01, Singapore 138669, Singapore.
| |
Collapse
|
149
|
Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH, Han YW, Zhang RX, Zhang Z, Chen T, Hong W. YAP and TAZ Take Center Stage in Cancer. Biochemistry 2015; 54:6555-66. [PMID: 26465056 DOI: 10.1021/acs.biochem.5b01014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified and named through screening for mutations in Drosophila, and the core components of the Hippo pathway are highly conserved in mammals. In the Hippo pathway, MST1/2 and LATS1/2 regulate downstream transcription coactivators YAP and TAZ, which mainly interact with TEAD family transcription factors to promote tissue proliferation, self-renewal of normal and cancer stem cells, migration, and carcinogenesis. The Hippo pathway was initially thought to be quite straightforward; however, recent studies have revealed that YAP/TAZ is an integral part and a nexus of a network composed of multiple signaling pathways. Therefore, in this review, we will summarize the latest findings on events upstream and downstream of YAP/TAZ and the ways of regulation of YAP/TAZ. In addition, we also focus on the crosstalk between the Hippo pathway and other tumor-related pathways and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Hai-Xia Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital , 300052 Tianjin, China
| | - Zhi-Mei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Nan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Xiao-Hui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Wei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Rui-Xue Zhang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , 300020 Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| |
Collapse
|
150
|
Nguyen Q, Anders RA, Alpini G, Bai H. Yes-associated protein in the liver: Regulation of hepatic development, repair, cell fate determination and tumorigenesis. Dig Liver Dis 2015; 47:826-35. [PMID: 26093945 DOI: 10.1016/j.dld.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
The liver is a vital organ that plays a major role in many bodily functions from protein production and blood clotting to cholesterol, glucose and iron metabolism and nutrition storage. Maintenance of liver homeostasis is critical for these essential bodily functions and disruption of liver homeostasis causes various kinds of liver diseases, some of which have high mortality rate. Recent research advances of the Hippo signalling pathway have revealed its nuclear effector, Yes-associated protein, as an important regulator of liver development, repair, cell fate determination and tumorigenesis. Therefore, a precise control of Yes-associated protein activity is critical for the maintenance of liver homeostasis. This review is going to summarize the discoveries on how the manipulation of Yes-associated protein activity affects liver homeostasis and induces liver diseases and the regulatory mechanisms that determine the Yes-associated protein activity in the liver. Finally, we will discuss the potential of targeting Yes-associated protein as therapeutic strategies in liver diseases.
Collapse
Affiliation(s)
- Quy Nguyen
- Research, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States
| | - Haibo Bai
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Digestive Diseases Research Center, BaylorScott&White Healthcare, Temple, TX, United States; Department of Internal Medicine and Medical Physiology, Texas A&M Health Science Center, Temple, TX, United States.
| |
Collapse
|